esp-pci.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. /*
  2. * QEMU ESP/NCR53C9x emulation
  3. *
  4. * Copyright (c) 2005-2006 Fabrice Bellard
  5. * Copyright (c) 2012 Herve Poussineau
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a copy
  8. * of this software and associated documentation files (the "Software"), to deal
  9. * in the Software without restriction, including without limitation the rights
  10. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. * copies of the Software, and to permit persons to whom the Software is
  12. * furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice shall be included in
  15. * all copies or substantial portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23. * THE SOFTWARE.
  24. */
  25. #include "qemu/osdep.h"
  26. #include "hw/pci/pci.h"
  27. #include "hw/irq.h"
  28. #include "hw/nvram/eeprom93xx.h"
  29. #include "hw/scsi/esp.h"
  30. #include "migration/vmstate.h"
  31. #include "trace.h"
  32. #include "qapi/error.h"
  33. #include "qemu/log.h"
  34. #include "qemu/module.h"
  35. #define TYPE_AM53C974_DEVICE "am53c974"
  36. #define PCI_ESP(obj) \
  37. OBJECT_CHECK(PCIESPState, (obj), TYPE_AM53C974_DEVICE)
  38. #define DMA_CMD 0x0
  39. #define DMA_STC 0x1
  40. #define DMA_SPA 0x2
  41. #define DMA_WBC 0x3
  42. #define DMA_WAC 0x4
  43. #define DMA_STAT 0x5
  44. #define DMA_SMDLA 0x6
  45. #define DMA_WMAC 0x7
  46. #define DMA_CMD_MASK 0x03
  47. #define DMA_CMD_DIAG 0x04
  48. #define DMA_CMD_MDL 0x10
  49. #define DMA_CMD_INTE_P 0x20
  50. #define DMA_CMD_INTE_D 0x40
  51. #define DMA_CMD_DIR 0x80
  52. #define DMA_STAT_PWDN 0x01
  53. #define DMA_STAT_ERROR 0x02
  54. #define DMA_STAT_ABORT 0x04
  55. #define DMA_STAT_DONE 0x08
  56. #define DMA_STAT_SCSIINT 0x10
  57. #define DMA_STAT_BCMBLT 0x20
  58. #define SBAC_STATUS (1 << 24)
  59. typedef struct PCIESPState {
  60. /*< private >*/
  61. PCIDevice parent_obj;
  62. /*< public >*/
  63. MemoryRegion io;
  64. uint32_t dma_regs[8];
  65. uint32_t sbac;
  66. ESPState esp;
  67. } PCIESPState;
  68. static void esp_pci_handle_idle(PCIESPState *pci, uint32_t val)
  69. {
  70. trace_esp_pci_dma_idle(val);
  71. esp_dma_enable(&pci->esp, 0, 0);
  72. }
  73. static void esp_pci_handle_blast(PCIESPState *pci, uint32_t val)
  74. {
  75. trace_esp_pci_dma_blast(val);
  76. qemu_log_mask(LOG_UNIMP, "am53c974: cmd BLAST not implemented\n");
  77. }
  78. static void esp_pci_handle_abort(PCIESPState *pci, uint32_t val)
  79. {
  80. trace_esp_pci_dma_abort(val);
  81. if (pci->esp.current_req) {
  82. scsi_req_cancel(pci->esp.current_req);
  83. }
  84. }
  85. static void esp_pci_handle_start(PCIESPState *pci, uint32_t val)
  86. {
  87. trace_esp_pci_dma_start(val);
  88. pci->dma_regs[DMA_WBC] = pci->dma_regs[DMA_STC];
  89. pci->dma_regs[DMA_WAC] = pci->dma_regs[DMA_SPA];
  90. pci->dma_regs[DMA_WMAC] = pci->dma_regs[DMA_SMDLA];
  91. pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
  92. | DMA_STAT_DONE | DMA_STAT_ABORT
  93. | DMA_STAT_ERROR | DMA_STAT_PWDN);
  94. esp_dma_enable(&pci->esp, 0, 1);
  95. }
  96. static void esp_pci_dma_write(PCIESPState *pci, uint32_t saddr, uint32_t val)
  97. {
  98. trace_esp_pci_dma_write(saddr, pci->dma_regs[saddr], val);
  99. switch (saddr) {
  100. case DMA_CMD:
  101. pci->dma_regs[saddr] = val;
  102. switch (val & DMA_CMD_MASK) {
  103. case 0x0: /* IDLE */
  104. esp_pci_handle_idle(pci, val);
  105. break;
  106. case 0x1: /* BLAST */
  107. esp_pci_handle_blast(pci, val);
  108. break;
  109. case 0x2: /* ABORT */
  110. esp_pci_handle_abort(pci, val);
  111. break;
  112. case 0x3: /* START */
  113. esp_pci_handle_start(pci, val);
  114. break;
  115. default: /* can't happen */
  116. abort();
  117. }
  118. break;
  119. case DMA_STC:
  120. case DMA_SPA:
  121. case DMA_SMDLA:
  122. pci->dma_regs[saddr] = val;
  123. break;
  124. case DMA_STAT:
  125. if (pci->sbac & SBAC_STATUS) {
  126. /* clear some bits on write */
  127. uint32_t mask = DMA_STAT_ERROR | DMA_STAT_ABORT | DMA_STAT_DONE;
  128. pci->dma_regs[DMA_STAT] &= ~(val & mask);
  129. }
  130. break;
  131. default:
  132. trace_esp_pci_error_invalid_write_dma(val, saddr);
  133. return;
  134. }
  135. }
  136. static uint32_t esp_pci_dma_read(PCIESPState *pci, uint32_t saddr)
  137. {
  138. uint32_t val;
  139. val = pci->dma_regs[saddr];
  140. if (saddr == DMA_STAT) {
  141. if (pci->esp.rregs[ESP_RSTAT] & STAT_INT) {
  142. val |= DMA_STAT_SCSIINT;
  143. }
  144. if (!(pci->sbac & SBAC_STATUS)) {
  145. pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_ERROR | DMA_STAT_ABORT |
  146. DMA_STAT_DONE);
  147. }
  148. }
  149. trace_esp_pci_dma_read(saddr, val);
  150. return val;
  151. }
  152. static void esp_pci_io_write(void *opaque, hwaddr addr,
  153. uint64_t val, unsigned int size)
  154. {
  155. PCIESPState *pci = opaque;
  156. if (size < 4 || addr & 3) {
  157. /* need to upgrade request: we only support 4-bytes accesses */
  158. uint32_t current = 0, mask;
  159. int shift;
  160. if (addr < 0x40) {
  161. current = pci->esp.wregs[addr >> 2];
  162. } else if (addr < 0x60) {
  163. current = pci->dma_regs[(addr - 0x40) >> 2];
  164. } else if (addr < 0x74) {
  165. current = pci->sbac;
  166. }
  167. shift = (4 - size) * 8;
  168. mask = (~(uint32_t)0 << shift) >> shift;
  169. shift = ((4 - (addr & 3)) & 3) * 8;
  170. val <<= shift;
  171. val |= current & ~(mask << shift);
  172. addr &= ~3;
  173. size = 4;
  174. }
  175. if (addr < 0x40) {
  176. /* SCSI core reg */
  177. esp_reg_write(&pci->esp, addr >> 2, val);
  178. } else if (addr < 0x60) {
  179. /* PCI DMA CCB */
  180. esp_pci_dma_write(pci, (addr - 0x40) >> 2, val);
  181. } else if (addr == 0x70) {
  182. /* DMA SCSI Bus and control */
  183. trace_esp_pci_sbac_write(pci->sbac, val);
  184. pci->sbac = val;
  185. } else {
  186. trace_esp_pci_error_invalid_write((int)addr);
  187. }
  188. }
  189. static uint64_t esp_pci_io_read(void *opaque, hwaddr addr,
  190. unsigned int size)
  191. {
  192. PCIESPState *pci = opaque;
  193. uint32_t ret;
  194. if (addr < 0x40) {
  195. /* SCSI core reg */
  196. ret = esp_reg_read(&pci->esp, addr >> 2);
  197. } else if (addr < 0x60) {
  198. /* PCI DMA CCB */
  199. ret = esp_pci_dma_read(pci, (addr - 0x40) >> 2);
  200. } else if (addr == 0x70) {
  201. /* DMA SCSI Bus and control */
  202. trace_esp_pci_sbac_read(pci->sbac);
  203. ret = pci->sbac;
  204. } else {
  205. /* Invalid region */
  206. trace_esp_pci_error_invalid_read((int)addr);
  207. ret = 0;
  208. }
  209. /* give only requested data */
  210. ret >>= (addr & 3) * 8;
  211. ret &= ~(~(uint64_t)0 << (8 * size));
  212. return ret;
  213. }
  214. static void esp_pci_dma_memory_rw(PCIESPState *pci, uint8_t *buf, int len,
  215. DMADirection dir)
  216. {
  217. dma_addr_t addr;
  218. DMADirection expected_dir;
  219. if (pci->dma_regs[DMA_CMD] & DMA_CMD_DIR) {
  220. expected_dir = DMA_DIRECTION_FROM_DEVICE;
  221. } else {
  222. expected_dir = DMA_DIRECTION_TO_DEVICE;
  223. }
  224. if (dir != expected_dir) {
  225. trace_esp_pci_error_invalid_dma_direction();
  226. return;
  227. }
  228. if (pci->dma_regs[DMA_STAT] & DMA_CMD_MDL) {
  229. qemu_log_mask(LOG_UNIMP, "am53c974: MDL transfer not implemented\n");
  230. }
  231. addr = pci->dma_regs[DMA_SPA];
  232. if (pci->dma_regs[DMA_WBC] < len) {
  233. len = pci->dma_regs[DMA_WBC];
  234. }
  235. pci_dma_rw(PCI_DEVICE(pci), addr, buf, len, dir);
  236. /* update status registers */
  237. pci->dma_regs[DMA_WBC] -= len;
  238. pci->dma_regs[DMA_WAC] += len;
  239. if (pci->dma_regs[DMA_WBC] == 0) {
  240. pci->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
  241. }
  242. }
  243. static void esp_pci_dma_memory_read(void *opaque, uint8_t *buf, int len)
  244. {
  245. PCIESPState *pci = opaque;
  246. esp_pci_dma_memory_rw(pci, buf, len, DMA_DIRECTION_TO_DEVICE);
  247. }
  248. static void esp_pci_dma_memory_write(void *opaque, uint8_t *buf, int len)
  249. {
  250. PCIESPState *pci = opaque;
  251. esp_pci_dma_memory_rw(pci, buf, len, DMA_DIRECTION_FROM_DEVICE);
  252. }
  253. static const MemoryRegionOps esp_pci_io_ops = {
  254. .read = esp_pci_io_read,
  255. .write = esp_pci_io_write,
  256. .endianness = DEVICE_LITTLE_ENDIAN,
  257. .impl = {
  258. .min_access_size = 1,
  259. .max_access_size = 4,
  260. },
  261. };
  262. static void esp_pci_hard_reset(DeviceState *dev)
  263. {
  264. PCIESPState *pci = PCI_ESP(dev);
  265. esp_hard_reset(&pci->esp);
  266. pci->dma_regs[DMA_CMD] &= ~(DMA_CMD_DIR | DMA_CMD_INTE_D | DMA_CMD_INTE_P
  267. | DMA_CMD_MDL | DMA_CMD_DIAG | DMA_CMD_MASK);
  268. pci->dma_regs[DMA_WBC] &= ~0xffff;
  269. pci->dma_regs[DMA_WAC] = 0xffffffff;
  270. pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
  271. | DMA_STAT_DONE | DMA_STAT_ABORT
  272. | DMA_STAT_ERROR);
  273. pci->dma_regs[DMA_WMAC] = 0xfffffffd;
  274. }
  275. static const VMStateDescription vmstate_esp_pci_scsi = {
  276. .name = "pciespscsi",
  277. .version_id = 1,
  278. .minimum_version_id = 1,
  279. .fields = (VMStateField[]) {
  280. VMSTATE_PCI_DEVICE(parent_obj, PCIESPState),
  281. VMSTATE_BUFFER_UNSAFE(dma_regs, PCIESPState, 0, 8 * sizeof(uint32_t)),
  282. VMSTATE_STRUCT(esp, PCIESPState, 0, vmstate_esp, ESPState),
  283. VMSTATE_END_OF_LIST()
  284. }
  285. };
  286. static void esp_pci_command_complete(SCSIRequest *req, uint32_t status,
  287. size_t resid)
  288. {
  289. ESPState *s = req->hba_private;
  290. PCIESPState *pci = container_of(s, PCIESPState, esp);
  291. esp_command_complete(req, status, resid);
  292. pci->dma_regs[DMA_WBC] = 0;
  293. pci->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
  294. }
  295. static const struct SCSIBusInfo esp_pci_scsi_info = {
  296. .tcq = false,
  297. .max_target = ESP_MAX_DEVS,
  298. .max_lun = 7,
  299. .transfer_data = esp_transfer_data,
  300. .complete = esp_pci_command_complete,
  301. .cancel = esp_request_cancelled,
  302. };
  303. static void esp_pci_scsi_realize(PCIDevice *dev, Error **errp)
  304. {
  305. PCIESPState *pci = PCI_ESP(dev);
  306. DeviceState *d = DEVICE(dev);
  307. ESPState *s = &pci->esp;
  308. uint8_t *pci_conf;
  309. pci_conf = dev->config;
  310. /* Interrupt pin A */
  311. pci_conf[PCI_INTERRUPT_PIN] = 0x01;
  312. s->dma_memory_read = esp_pci_dma_memory_read;
  313. s->dma_memory_write = esp_pci_dma_memory_write;
  314. s->dma_opaque = pci;
  315. s->chip_id = TCHI_AM53C974;
  316. memory_region_init_io(&pci->io, OBJECT(pci), &esp_pci_io_ops, pci,
  317. "esp-io", 0x80);
  318. pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &pci->io);
  319. s->irq = pci_allocate_irq(dev);
  320. scsi_bus_new(&s->bus, sizeof(s->bus), d, &esp_pci_scsi_info, NULL);
  321. }
  322. static void esp_pci_scsi_uninit(PCIDevice *d)
  323. {
  324. PCIESPState *pci = PCI_ESP(d);
  325. qemu_free_irq(pci->esp.irq);
  326. }
  327. static void esp_pci_class_init(ObjectClass *klass, void *data)
  328. {
  329. DeviceClass *dc = DEVICE_CLASS(klass);
  330. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  331. k->realize = esp_pci_scsi_realize;
  332. k->exit = esp_pci_scsi_uninit;
  333. k->vendor_id = PCI_VENDOR_ID_AMD;
  334. k->device_id = PCI_DEVICE_ID_AMD_SCSI;
  335. k->revision = 0x10;
  336. k->class_id = PCI_CLASS_STORAGE_SCSI;
  337. set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
  338. dc->desc = "AMD Am53c974 PCscsi-PCI SCSI adapter";
  339. dc->reset = esp_pci_hard_reset;
  340. dc->vmsd = &vmstate_esp_pci_scsi;
  341. }
  342. static const TypeInfo esp_pci_info = {
  343. .name = TYPE_AM53C974_DEVICE,
  344. .parent = TYPE_PCI_DEVICE,
  345. .instance_size = sizeof(PCIESPState),
  346. .class_init = esp_pci_class_init,
  347. .interfaces = (InterfaceInfo[]) {
  348. { INTERFACE_CONVENTIONAL_PCI_DEVICE },
  349. { },
  350. },
  351. };
  352. typedef struct {
  353. PCIESPState pci;
  354. eeprom_t *eeprom;
  355. } DC390State;
  356. #define TYPE_DC390_DEVICE "dc390"
  357. #define DC390(obj) \
  358. OBJECT_CHECK(DC390State, obj, TYPE_DC390_DEVICE)
  359. #define EE_ADAPT_SCSI_ID 64
  360. #define EE_MODE2 65
  361. #define EE_DELAY 66
  362. #define EE_TAG_CMD_NUM 67
  363. #define EE_ADAPT_OPTIONS 68
  364. #define EE_BOOT_SCSI_ID 69
  365. #define EE_BOOT_SCSI_LUN 70
  366. #define EE_CHKSUM1 126
  367. #define EE_CHKSUM2 127
  368. #define EE_ADAPT_OPTION_F6_F8_AT_BOOT 0x01
  369. #define EE_ADAPT_OPTION_BOOT_FROM_CDROM 0x02
  370. #define EE_ADAPT_OPTION_INT13 0x04
  371. #define EE_ADAPT_OPTION_SCAM_SUPPORT 0x08
  372. static uint32_t dc390_read_config(PCIDevice *dev, uint32_t addr, int l)
  373. {
  374. DC390State *pci = DC390(dev);
  375. uint32_t val;
  376. val = pci_default_read_config(dev, addr, l);
  377. if (addr == 0x00 && l == 1) {
  378. /* First byte of address space is AND-ed with EEPROM DO line */
  379. if (!eeprom93xx_read(pci->eeprom)) {
  380. val &= ~0xff;
  381. }
  382. }
  383. return val;
  384. }
  385. static void dc390_write_config(PCIDevice *dev,
  386. uint32_t addr, uint32_t val, int l)
  387. {
  388. DC390State *pci = DC390(dev);
  389. if (addr == 0x80) {
  390. /* EEPROM write */
  391. int eesk = val & 0x80 ? 1 : 0;
  392. int eedi = val & 0x40 ? 1 : 0;
  393. eeprom93xx_write(pci->eeprom, 1, eesk, eedi);
  394. } else if (addr == 0xc0) {
  395. /* EEPROM CS low */
  396. eeprom93xx_write(pci->eeprom, 0, 0, 0);
  397. } else {
  398. pci_default_write_config(dev, addr, val, l);
  399. }
  400. }
  401. static void dc390_scsi_realize(PCIDevice *dev, Error **errp)
  402. {
  403. DC390State *pci = DC390(dev);
  404. Error *err = NULL;
  405. uint8_t *contents;
  406. uint16_t chksum = 0;
  407. int i;
  408. /* init base class */
  409. esp_pci_scsi_realize(dev, &err);
  410. if (err) {
  411. error_propagate(errp, err);
  412. return;
  413. }
  414. /* EEPROM */
  415. pci->eeprom = eeprom93xx_new(DEVICE(dev), 64);
  416. /* set default eeprom values */
  417. contents = (uint8_t *)eeprom93xx_data(pci->eeprom);
  418. for (i = 0; i < 16; i++) {
  419. contents[i * 2] = 0x57;
  420. contents[i * 2 + 1] = 0x00;
  421. }
  422. contents[EE_ADAPT_SCSI_ID] = 7;
  423. contents[EE_MODE2] = 0x0f;
  424. contents[EE_TAG_CMD_NUM] = 0x04;
  425. contents[EE_ADAPT_OPTIONS] = EE_ADAPT_OPTION_F6_F8_AT_BOOT
  426. | EE_ADAPT_OPTION_BOOT_FROM_CDROM
  427. | EE_ADAPT_OPTION_INT13;
  428. /* update eeprom checksum */
  429. for (i = 0; i < EE_CHKSUM1; i += 2) {
  430. chksum += contents[i] + (((uint16_t)contents[i + 1]) << 8);
  431. }
  432. chksum = 0x1234 - chksum;
  433. contents[EE_CHKSUM1] = chksum & 0xff;
  434. contents[EE_CHKSUM2] = chksum >> 8;
  435. }
  436. static void dc390_class_init(ObjectClass *klass, void *data)
  437. {
  438. DeviceClass *dc = DEVICE_CLASS(klass);
  439. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  440. k->realize = dc390_scsi_realize;
  441. k->config_read = dc390_read_config;
  442. k->config_write = dc390_write_config;
  443. set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
  444. dc->desc = "Tekram DC-390 SCSI adapter";
  445. }
  446. static const TypeInfo dc390_info = {
  447. .name = "dc390",
  448. .parent = TYPE_AM53C974_DEVICE,
  449. .instance_size = sizeof(DC390State),
  450. .class_init = dc390_class_init,
  451. };
  452. static void esp_pci_register_types(void)
  453. {
  454. type_register_static(&esp_pci_info);
  455. type_register_static(&dc390_info);
  456. }
  457. type_init(esp_pci_register_types)