2
0

virt.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625
  1. /*
  2. * QEMU RISC-V VirtIO Board
  3. *
  4. * Copyright (c) 2017 SiFive, Inc.
  5. *
  6. * RISC-V machine with 16550a UART and VirtIO MMIO
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2 or later, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include "qemu/osdep.h"
  21. #include "qemu/units.h"
  22. #include "qemu/log.h"
  23. #include "qemu/error-report.h"
  24. #include "qapi/error.h"
  25. #include "hw/boards.h"
  26. #include "hw/loader.h"
  27. #include "hw/sysbus.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/char/serial.h"
  30. #include "target/riscv/cpu.h"
  31. #include "hw/riscv/riscv_hart.h"
  32. #include "hw/riscv/sifive_plic.h"
  33. #include "hw/riscv/sifive_clint.h"
  34. #include "hw/riscv/sifive_test.h"
  35. #include "hw/riscv/virt.h"
  36. #include "hw/riscv/boot.h"
  37. #include "chardev/char.h"
  38. #include "sysemu/arch_init.h"
  39. #include "sysemu/device_tree.h"
  40. #include "sysemu/sysemu.h"
  41. #include "exec/address-spaces.h"
  42. #include "hw/pci/pci.h"
  43. #include "hw/pci-host/gpex.h"
  44. #include <libfdt.h>
  45. #if defined(TARGET_RISCV32)
  46. # define BIOS_FILENAME "opensbi-riscv32-virt-fw_jump.bin"
  47. #else
  48. # define BIOS_FILENAME "opensbi-riscv64-virt-fw_jump.bin"
  49. #endif
  50. static const struct MemmapEntry {
  51. hwaddr base;
  52. hwaddr size;
  53. } virt_memmap[] = {
  54. [VIRT_DEBUG] = { 0x0, 0x100 },
  55. [VIRT_MROM] = { 0x1000, 0x11000 },
  56. [VIRT_TEST] = { 0x100000, 0x1000 },
  57. [VIRT_CLINT] = { 0x2000000, 0x10000 },
  58. [VIRT_PLIC] = { 0xc000000, 0x4000000 },
  59. [VIRT_UART0] = { 0x10000000, 0x100 },
  60. [VIRT_VIRTIO] = { 0x10001000, 0x1000 },
  61. [VIRT_FLASH] = { 0x20000000, 0x4000000 },
  62. [VIRT_DRAM] = { 0x80000000, 0x0 },
  63. [VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
  64. [VIRT_PCIE_PIO] = { 0x03000000, 0x00010000 },
  65. [VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
  66. };
  67. #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
  68. static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
  69. const char *name,
  70. const char *alias_prop_name)
  71. {
  72. /*
  73. * Create a single flash device. We use the same parameters as
  74. * the flash devices on the ARM virt board.
  75. */
  76. DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
  77. qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
  78. qdev_prop_set_uint8(dev, "width", 4);
  79. qdev_prop_set_uint8(dev, "device-width", 2);
  80. qdev_prop_set_bit(dev, "big-endian", false);
  81. qdev_prop_set_uint16(dev, "id0", 0x89);
  82. qdev_prop_set_uint16(dev, "id1", 0x18);
  83. qdev_prop_set_uint16(dev, "id2", 0x00);
  84. qdev_prop_set_uint16(dev, "id3", 0x00);
  85. qdev_prop_set_string(dev, "name", name);
  86. object_property_add_child(OBJECT(s), name, OBJECT(dev),
  87. &error_abort);
  88. object_property_add_alias(OBJECT(s), alias_prop_name,
  89. OBJECT(dev), "drive", &error_abort);
  90. return PFLASH_CFI01(dev);
  91. }
  92. static void virt_flash_create(RISCVVirtState *s)
  93. {
  94. s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
  95. s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
  96. }
  97. static void virt_flash_map1(PFlashCFI01 *flash,
  98. hwaddr base, hwaddr size,
  99. MemoryRegion *sysmem)
  100. {
  101. DeviceState *dev = DEVICE(flash);
  102. assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
  103. assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
  104. qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
  105. qdev_init_nofail(dev);
  106. memory_region_add_subregion(sysmem, base,
  107. sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
  108. 0));
  109. }
  110. static void virt_flash_map(RISCVVirtState *s,
  111. MemoryRegion *sysmem)
  112. {
  113. hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
  114. hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
  115. virt_flash_map1(s->flash[0], flashbase, flashsize,
  116. sysmem);
  117. virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
  118. sysmem);
  119. }
  120. static void create_pcie_irq_map(void *fdt, char *nodename,
  121. uint32_t plic_phandle)
  122. {
  123. int pin, dev;
  124. uint32_t
  125. full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
  126. uint32_t *irq_map = full_irq_map;
  127. /* This code creates a standard swizzle of interrupts such that
  128. * each device's first interrupt is based on it's PCI_SLOT number.
  129. * (See pci_swizzle_map_irq_fn())
  130. *
  131. * We only need one entry per interrupt in the table (not one per
  132. * possible slot) seeing the interrupt-map-mask will allow the table
  133. * to wrap to any number of devices.
  134. */
  135. for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
  136. int devfn = dev * 0x8;
  137. for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
  138. int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
  139. int i = 0;
  140. irq_map[i] = cpu_to_be32(devfn << 8);
  141. i += FDT_PCI_ADDR_CELLS;
  142. irq_map[i] = cpu_to_be32(pin + 1);
  143. i += FDT_PCI_INT_CELLS;
  144. irq_map[i++] = cpu_to_be32(plic_phandle);
  145. i += FDT_PLIC_ADDR_CELLS;
  146. irq_map[i] = cpu_to_be32(irq_nr);
  147. irq_map += FDT_INT_MAP_WIDTH;
  148. }
  149. }
  150. qemu_fdt_setprop(fdt, nodename, "interrupt-map",
  151. full_irq_map, sizeof(full_irq_map));
  152. qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
  153. 0x1800, 0, 0, 0x7);
  154. }
  155. static void create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap,
  156. uint64_t mem_size, const char *cmdline)
  157. {
  158. void *fdt;
  159. int cpu;
  160. uint32_t *cells;
  161. char *nodename;
  162. uint32_t plic_phandle, phandle = 1;
  163. int i;
  164. hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
  165. hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
  166. fdt = s->fdt = create_device_tree(&s->fdt_size);
  167. if (!fdt) {
  168. error_report("create_device_tree() failed");
  169. exit(1);
  170. }
  171. qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu");
  172. qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio");
  173. qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
  174. qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
  175. qemu_fdt_add_subnode(fdt, "/soc");
  176. qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
  177. qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
  178. qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
  179. qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
  180. nodename = g_strdup_printf("/memory@%lx",
  181. (long)memmap[VIRT_DRAM].base);
  182. qemu_fdt_add_subnode(fdt, nodename);
  183. qemu_fdt_setprop_cells(fdt, nodename, "reg",
  184. memmap[VIRT_DRAM].base >> 32, memmap[VIRT_DRAM].base,
  185. mem_size >> 32, mem_size);
  186. qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
  187. g_free(nodename);
  188. qemu_fdt_add_subnode(fdt, "/cpus");
  189. qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
  190. SIFIVE_CLINT_TIMEBASE_FREQ);
  191. qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
  192. qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
  193. for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
  194. int cpu_phandle = phandle++;
  195. int intc_phandle;
  196. nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
  197. char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
  198. char *isa = riscv_isa_string(&s->soc.harts[cpu]);
  199. qemu_fdt_add_subnode(fdt, nodename);
  200. qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
  201. qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
  202. qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
  203. qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
  204. qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
  205. qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
  206. qemu_fdt_setprop_cell(fdt, nodename, "phandle", cpu_phandle);
  207. intc_phandle = phandle++;
  208. qemu_fdt_add_subnode(fdt, intc);
  209. qemu_fdt_setprop_cell(fdt, intc, "phandle", intc_phandle);
  210. qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
  211. qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
  212. qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
  213. g_free(isa);
  214. g_free(intc);
  215. g_free(nodename);
  216. }
  217. /* Add cpu-topology node */
  218. qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
  219. qemu_fdt_add_subnode(fdt, "/cpus/cpu-map/cluster0");
  220. for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
  221. char *core_nodename = g_strdup_printf("/cpus/cpu-map/cluster0/core%d",
  222. cpu);
  223. char *cpu_nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
  224. uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, cpu_nodename);
  225. qemu_fdt_add_subnode(fdt, core_nodename);
  226. qemu_fdt_setprop_cell(fdt, core_nodename, "cpu", intc_phandle);
  227. g_free(core_nodename);
  228. g_free(cpu_nodename);
  229. }
  230. cells = g_new0(uint32_t, s->soc.num_harts * 4);
  231. for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
  232. nodename =
  233. g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
  234. uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
  235. cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
  236. cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
  237. cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
  238. cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
  239. g_free(nodename);
  240. }
  241. nodename = g_strdup_printf("/soc/clint@%lx",
  242. (long)memmap[VIRT_CLINT].base);
  243. qemu_fdt_add_subnode(fdt, nodename);
  244. qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
  245. qemu_fdt_setprop_cells(fdt, nodename, "reg",
  246. 0x0, memmap[VIRT_CLINT].base,
  247. 0x0, memmap[VIRT_CLINT].size);
  248. qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
  249. cells, s->soc.num_harts * sizeof(uint32_t) * 4);
  250. g_free(cells);
  251. g_free(nodename);
  252. plic_phandle = phandle++;
  253. cells = g_new0(uint32_t, s->soc.num_harts * 4);
  254. for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
  255. nodename =
  256. g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
  257. uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
  258. cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
  259. cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
  260. cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
  261. cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
  262. g_free(nodename);
  263. }
  264. nodename = g_strdup_printf("/soc/interrupt-controller@%lx",
  265. (long)memmap[VIRT_PLIC].base);
  266. qemu_fdt_add_subnode(fdt, nodename);
  267. qemu_fdt_setprop_cell(fdt, nodename, "#address-cells",
  268. FDT_PLIC_ADDR_CELLS);
  269. qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells",
  270. FDT_PLIC_INT_CELLS);
  271. qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0");
  272. qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
  273. qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
  274. cells, s->soc.num_harts * sizeof(uint32_t) * 4);
  275. qemu_fdt_setprop_cells(fdt, nodename, "reg",
  276. 0x0, memmap[VIRT_PLIC].base,
  277. 0x0, memmap[VIRT_PLIC].size);
  278. qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", VIRTIO_NDEV);
  279. qemu_fdt_setprop_cell(fdt, nodename, "phandle", plic_phandle);
  280. plic_phandle = qemu_fdt_get_phandle(fdt, nodename);
  281. g_free(cells);
  282. g_free(nodename);
  283. for (i = 0; i < VIRTIO_COUNT; i++) {
  284. nodename = g_strdup_printf("/virtio_mmio@%lx",
  285. (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
  286. qemu_fdt_add_subnode(fdt, nodename);
  287. qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio");
  288. qemu_fdt_setprop_cells(fdt, nodename, "reg",
  289. 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
  290. 0x0, memmap[VIRT_VIRTIO].size);
  291. qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
  292. qemu_fdt_setprop_cell(fdt, nodename, "interrupts", VIRTIO_IRQ + i);
  293. g_free(nodename);
  294. }
  295. nodename = g_strdup_printf("/soc/pci@%lx",
  296. (long) memmap[VIRT_PCIE_ECAM].base);
  297. qemu_fdt_add_subnode(fdt, nodename);
  298. qemu_fdt_setprop_cell(fdt, nodename, "#address-cells",
  299. FDT_PCI_ADDR_CELLS);
  300. qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells",
  301. FDT_PCI_INT_CELLS);
  302. qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 0x2);
  303. qemu_fdt_setprop_string(fdt, nodename, "compatible",
  304. "pci-host-ecam-generic");
  305. qemu_fdt_setprop_string(fdt, nodename, "device_type", "pci");
  306. qemu_fdt_setprop_cell(fdt, nodename, "linux,pci-domain", 0);
  307. qemu_fdt_setprop_cells(fdt, nodename, "bus-range", 0,
  308. memmap[VIRT_PCIE_ECAM].size /
  309. PCIE_MMCFG_SIZE_MIN - 1);
  310. qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0);
  311. qemu_fdt_setprop_cells(fdt, nodename, "reg", 0, memmap[VIRT_PCIE_ECAM].base,
  312. 0, memmap[VIRT_PCIE_ECAM].size);
  313. qemu_fdt_setprop_sized_cells(fdt, nodename, "ranges",
  314. 1, FDT_PCI_RANGE_IOPORT, 2, 0,
  315. 2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
  316. 1, FDT_PCI_RANGE_MMIO,
  317. 2, memmap[VIRT_PCIE_MMIO].base,
  318. 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size);
  319. create_pcie_irq_map(fdt, nodename, plic_phandle);
  320. g_free(nodename);
  321. nodename = g_strdup_printf("/test@%lx",
  322. (long)memmap[VIRT_TEST].base);
  323. qemu_fdt_add_subnode(fdt, nodename);
  324. {
  325. const char compat[] = "sifive,test1\0sifive,test0";
  326. qemu_fdt_setprop(fdt, nodename, "compatible", compat, sizeof(compat));
  327. }
  328. qemu_fdt_setprop_cells(fdt, nodename, "reg",
  329. 0x0, memmap[VIRT_TEST].base,
  330. 0x0, memmap[VIRT_TEST].size);
  331. g_free(nodename);
  332. nodename = g_strdup_printf("/uart@%lx",
  333. (long)memmap[VIRT_UART0].base);
  334. qemu_fdt_add_subnode(fdt, nodename);
  335. qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
  336. qemu_fdt_setprop_cells(fdt, nodename, "reg",
  337. 0x0, memmap[VIRT_UART0].base,
  338. 0x0, memmap[VIRT_UART0].size);
  339. qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 3686400);
  340. qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
  341. qemu_fdt_setprop_cell(fdt, nodename, "interrupts", UART0_IRQ);
  342. qemu_fdt_add_subnode(fdt, "/chosen");
  343. qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
  344. if (cmdline) {
  345. qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
  346. }
  347. g_free(nodename);
  348. nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
  349. qemu_fdt_add_subnode(s->fdt, nodename);
  350. qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "cfi-flash");
  351. qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg",
  352. 2, flashbase, 2, flashsize,
  353. 2, flashbase + flashsize, 2, flashsize);
  354. qemu_fdt_setprop_cell(s->fdt, nodename, "bank-width", 4);
  355. g_free(nodename);
  356. }
  357. static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
  358. hwaddr ecam_base, hwaddr ecam_size,
  359. hwaddr mmio_base, hwaddr mmio_size,
  360. hwaddr pio_base,
  361. DeviceState *plic, bool link_up)
  362. {
  363. DeviceState *dev;
  364. MemoryRegion *ecam_alias, *ecam_reg;
  365. MemoryRegion *mmio_alias, *mmio_reg;
  366. qemu_irq irq;
  367. int i;
  368. dev = qdev_create(NULL, TYPE_GPEX_HOST);
  369. qdev_init_nofail(dev);
  370. ecam_alias = g_new0(MemoryRegion, 1);
  371. ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
  372. memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
  373. ecam_reg, 0, ecam_size);
  374. memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
  375. mmio_alias = g_new0(MemoryRegion, 1);
  376. mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
  377. memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
  378. mmio_reg, mmio_base, mmio_size);
  379. memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
  380. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
  381. for (i = 0; i < GPEX_NUM_IRQS; i++) {
  382. irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
  383. sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
  384. gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
  385. }
  386. return dev;
  387. }
  388. static void riscv_virt_board_init(MachineState *machine)
  389. {
  390. const struct MemmapEntry *memmap = virt_memmap;
  391. RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
  392. MemoryRegion *system_memory = get_system_memory();
  393. MemoryRegion *main_mem = g_new(MemoryRegion, 1);
  394. MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
  395. char *plic_hart_config;
  396. size_t plic_hart_config_len;
  397. target_ulong start_addr = memmap[VIRT_DRAM].base;
  398. int i;
  399. unsigned int smp_cpus = machine->smp.cpus;
  400. /* Initialize SOC */
  401. object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
  402. TYPE_RISCV_HART_ARRAY, &error_abort, NULL);
  403. object_property_set_str(OBJECT(&s->soc), machine->cpu_type, "cpu-type",
  404. &error_abort);
  405. object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
  406. &error_abort);
  407. object_property_set_bool(OBJECT(&s->soc), true, "realized",
  408. &error_abort);
  409. /* register system main memory (actual RAM) */
  410. memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
  411. machine->ram_size, &error_fatal);
  412. memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
  413. main_mem);
  414. /* create device tree */
  415. create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
  416. /* boot rom */
  417. memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
  418. memmap[VIRT_MROM].size, &error_fatal);
  419. memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
  420. mask_rom);
  421. riscv_find_and_load_firmware(machine, BIOS_FILENAME,
  422. memmap[VIRT_DRAM].base);
  423. if (machine->kernel_filename) {
  424. uint64_t kernel_entry = riscv_load_kernel(machine->kernel_filename,
  425. NULL);
  426. if (machine->initrd_filename) {
  427. hwaddr start;
  428. hwaddr end = riscv_load_initrd(machine->initrd_filename,
  429. machine->ram_size, kernel_entry,
  430. &start);
  431. qemu_fdt_setprop_cell(s->fdt, "/chosen",
  432. "linux,initrd-start", start);
  433. qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
  434. end);
  435. }
  436. }
  437. if (drive_get(IF_PFLASH, 0, 0)) {
  438. /*
  439. * Pflash was supplied, let's overwrite the address we jump to after
  440. * reset to the base of the flash.
  441. */
  442. start_addr = virt_memmap[VIRT_FLASH].base;
  443. }
  444. /* reset vector */
  445. uint32_t reset_vec[8] = {
  446. 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */
  447. 0x02028593, /* addi a1, t0, %pcrel_lo(1b) */
  448. 0xf1402573, /* csrr a0, mhartid */
  449. #if defined(TARGET_RISCV32)
  450. 0x0182a283, /* lw t0, 24(t0) */
  451. #elif defined(TARGET_RISCV64)
  452. 0x0182b283, /* ld t0, 24(t0) */
  453. #endif
  454. 0x00028067, /* jr t0 */
  455. 0x00000000,
  456. start_addr, /* start: .dword */
  457. 0x00000000,
  458. /* dtb: */
  459. };
  460. /* copy in the reset vector in little_endian byte order */
  461. for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
  462. reset_vec[i] = cpu_to_le32(reset_vec[i]);
  463. }
  464. rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
  465. memmap[VIRT_MROM].base, &address_space_memory);
  466. /* copy in the device tree */
  467. if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
  468. memmap[VIRT_MROM].size - sizeof(reset_vec)) {
  469. error_report("not enough space to store device-tree");
  470. exit(1);
  471. }
  472. qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
  473. rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
  474. memmap[VIRT_MROM].base + sizeof(reset_vec),
  475. &address_space_memory);
  476. /* create PLIC hart topology configuration string */
  477. plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus;
  478. plic_hart_config = g_malloc0(plic_hart_config_len);
  479. for (i = 0; i < smp_cpus; i++) {
  480. if (i != 0) {
  481. strncat(plic_hart_config, ",", plic_hart_config_len);
  482. }
  483. strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, plic_hart_config_len);
  484. plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1);
  485. }
  486. /* MMIO */
  487. s->plic = sifive_plic_create(memmap[VIRT_PLIC].base,
  488. plic_hart_config,
  489. VIRT_PLIC_NUM_SOURCES,
  490. VIRT_PLIC_NUM_PRIORITIES,
  491. VIRT_PLIC_PRIORITY_BASE,
  492. VIRT_PLIC_PENDING_BASE,
  493. VIRT_PLIC_ENABLE_BASE,
  494. VIRT_PLIC_ENABLE_STRIDE,
  495. VIRT_PLIC_CONTEXT_BASE,
  496. VIRT_PLIC_CONTEXT_STRIDE,
  497. memmap[VIRT_PLIC].size);
  498. sifive_clint_create(memmap[VIRT_CLINT].base,
  499. memmap[VIRT_CLINT].size, smp_cpus,
  500. SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
  501. sifive_test_create(memmap[VIRT_TEST].base);
  502. for (i = 0; i < VIRTIO_COUNT; i++) {
  503. sysbus_create_simple("virtio-mmio",
  504. memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
  505. qdev_get_gpio_in(DEVICE(s->plic), VIRTIO_IRQ + i));
  506. }
  507. gpex_pcie_init(system_memory,
  508. memmap[VIRT_PCIE_ECAM].base,
  509. memmap[VIRT_PCIE_ECAM].size,
  510. memmap[VIRT_PCIE_MMIO].base,
  511. memmap[VIRT_PCIE_MMIO].size,
  512. memmap[VIRT_PCIE_PIO].base,
  513. DEVICE(s->plic), true);
  514. serial_mm_init(system_memory, memmap[VIRT_UART0].base,
  515. 0, qdev_get_gpio_in(DEVICE(s->plic), UART0_IRQ), 399193,
  516. serial_hd(0), DEVICE_LITTLE_ENDIAN);
  517. virt_flash_create(s);
  518. for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
  519. /* Map legacy -drive if=pflash to machine properties */
  520. pflash_cfi01_legacy_drive(s->flash[i],
  521. drive_get(IF_PFLASH, 0, i));
  522. }
  523. virt_flash_map(s, system_memory);
  524. g_free(plic_hart_config);
  525. }
  526. static void riscv_virt_machine_instance_init(Object *obj)
  527. {
  528. }
  529. static void riscv_virt_machine_class_init(ObjectClass *oc, void *data)
  530. {
  531. MachineClass *mc = MACHINE_CLASS(oc);
  532. mc->desc = "RISC-V VirtIO board";
  533. mc->init = riscv_virt_board_init;
  534. mc->max_cpus = 8;
  535. mc->default_cpu_type = VIRT_CPU;
  536. }
  537. static const TypeInfo riscv_virt_machine_typeinfo = {
  538. .name = MACHINE_TYPE_NAME("virt"),
  539. .parent = TYPE_MACHINE,
  540. .class_init = riscv_virt_machine_class_init,
  541. .instance_init = riscv_virt_machine_instance_init,
  542. .instance_size = sizeof(RISCVVirtState),
  543. };
  544. static void riscv_virt_machine_init_register_types(void)
  545. {
  546. type_register_static(&riscv_virt_machine_typeinfo);
  547. }
  548. type_init(riscv_virt_machine_init_register_types)