serial.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /*
  2. * QEMU 16550A UART emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2008 Citrix Systems, Inc.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a copy
  8. * of this software and associated documentation files (the "Software"), to deal
  9. * in the Software without restriction, including without limitation the rights
  10. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. * copies of the Software, and to permit persons to whom the Software is
  12. * furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice shall be included in
  15. * all copies or substantial portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23. * THE SOFTWARE.
  24. */
  25. #include "qemu/osdep.h"
  26. #include "hw/char/serial.h"
  27. #include "hw/irq.h"
  28. #include "migration/vmstate.h"
  29. #include "chardev/char-serial.h"
  30. #include "qapi/error.h"
  31. #include "qemu/timer.h"
  32. #include "sysemu/reset.h"
  33. #include "sysemu/runstate.h"
  34. #include "qemu/error-report.h"
  35. #include "trace.h"
  36. //#define DEBUG_SERIAL
  37. #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
  38. #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
  39. #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
  40. #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
  41. #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
  42. #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
  43. #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
  44. #define UART_IIR_MSI 0x00 /* Modem status interrupt */
  45. #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
  46. #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
  47. #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
  48. #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
  49. #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
  50. #define UART_IIR_FE 0xC0 /* Fifo enabled */
  51. /*
  52. * These are the definitions for the Modem Control Register
  53. */
  54. #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
  55. #define UART_MCR_OUT2 0x08 /* Out2 complement */
  56. #define UART_MCR_OUT1 0x04 /* Out1 complement */
  57. #define UART_MCR_RTS 0x02 /* RTS complement */
  58. #define UART_MCR_DTR 0x01 /* DTR complement */
  59. /*
  60. * These are the definitions for the Modem Status Register
  61. */
  62. #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
  63. #define UART_MSR_RI 0x40 /* Ring Indicator */
  64. #define UART_MSR_DSR 0x20 /* Data Set Ready */
  65. #define UART_MSR_CTS 0x10 /* Clear to Send */
  66. #define UART_MSR_DDCD 0x08 /* Delta DCD */
  67. #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
  68. #define UART_MSR_DDSR 0x02 /* Delta DSR */
  69. #define UART_MSR_DCTS 0x01 /* Delta CTS */
  70. #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
  71. #define UART_LSR_TEMT 0x40 /* Transmitter empty */
  72. #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
  73. #define UART_LSR_BI 0x10 /* Break interrupt indicator */
  74. #define UART_LSR_FE 0x08 /* Frame error indicator */
  75. #define UART_LSR_PE 0x04 /* Parity error indicator */
  76. #define UART_LSR_OE 0x02 /* Overrun error indicator */
  77. #define UART_LSR_DR 0x01 /* Receiver data ready */
  78. #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
  79. /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
  80. #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
  81. #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
  82. #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
  83. #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
  84. #define UART_FCR_DMS 0x08 /* DMA Mode Select */
  85. #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
  86. #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
  87. #define UART_FCR_FE 0x01 /* FIFO Enable */
  88. #define MAX_XMIT_RETRY 4
  89. #ifdef DEBUG_SERIAL
  90. #define DPRINTF(fmt, ...) \
  91. do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
  92. #else
  93. #define DPRINTF(fmt, ...) \
  94. do {} while (0)
  95. #endif
  96. static void serial_receive1(void *opaque, const uint8_t *buf, int size);
  97. static void serial_xmit(SerialState *s);
  98. static inline void recv_fifo_put(SerialState *s, uint8_t chr)
  99. {
  100. /* Receive overruns do not overwrite FIFO contents. */
  101. if (!fifo8_is_full(&s->recv_fifo)) {
  102. fifo8_push(&s->recv_fifo, chr);
  103. } else {
  104. s->lsr |= UART_LSR_OE;
  105. }
  106. }
  107. static void serial_update_irq(SerialState *s)
  108. {
  109. uint8_t tmp_iir = UART_IIR_NO_INT;
  110. if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
  111. tmp_iir = UART_IIR_RLSI;
  112. } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
  113. /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
  114. * this is not in the specification but is observed on existing
  115. * hardware. */
  116. tmp_iir = UART_IIR_CTI;
  117. } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
  118. (!(s->fcr & UART_FCR_FE) ||
  119. s->recv_fifo.num >= s->recv_fifo_itl)) {
  120. tmp_iir = UART_IIR_RDI;
  121. } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
  122. tmp_iir = UART_IIR_THRI;
  123. } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
  124. tmp_iir = UART_IIR_MSI;
  125. }
  126. s->iir = tmp_iir | (s->iir & 0xF0);
  127. if (tmp_iir != UART_IIR_NO_INT) {
  128. qemu_irq_raise(s->irq);
  129. } else {
  130. qemu_irq_lower(s->irq);
  131. }
  132. }
  133. static void serial_update_parameters(SerialState *s)
  134. {
  135. float speed;
  136. int parity, data_bits, stop_bits, frame_size;
  137. QEMUSerialSetParams ssp;
  138. /* Start bit. */
  139. frame_size = 1;
  140. if (s->lcr & 0x08) {
  141. /* Parity bit. */
  142. frame_size++;
  143. if (s->lcr & 0x10)
  144. parity = 'E';
  145. else
  146. parity = 'O';
  147. } else {
  148. parity = 'N';
  149. }
  150. if (s->lcr & 0x04) {
  151. stop_bits = 2;
  152. } else {
  153. stop_bits = 1;
  154. }
  155. data_bits = (s->lcr & 0x03) + 5;
  156. frame_size += data_bits + stop_bits;
  157. /* Zero divisor should give about 3500 baud */
  158. speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
  159. ssp.speed = speed;
  160. ssp.parity = parity;
  161. ssp.data_bits = data_bits;
  162. ssp.stop_bits = stop_bits;
  163. s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
  164. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  165. DPRINTF("speed=%.2f parity=%c data=%d stop=%d\n",
  166. speed, parity, data_bits, stop_bits);
  167. }
  168. static void serial_update_msl(SerialState *s)
  169. {
  170. uint8_t omsr;
  171. int flags;
  172. timer_del(s->modem_status_poll);
  173. if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
  174. &flags) == -ENOTSUP) {
  175. s->poll_msl = -1;
  176. return;
  177. }
  178. omsr = s->msr;
  179. s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
  180. s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
  181. s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
  182. s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
  183. if (s->msr != omsr) {
  184. /* Set delta bits */
  185. s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
  186. /* UART_MSR_TERI only if change was from 1 -> 0 */
  187. if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
  188. s->msr &= ~UART_MSR_TERI;
  189. serial_update_irq(s);
  190. }
  191. /* The real 16550A apparently has a 250ns response latency to line status changes.
  192. We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
  193. if (s->poll_msl) {
  194. timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  195. NANOSECONDS_PER_SECOND / 100);
  196. }
  197. }
  198. static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
  199. void *opaque)
  200. {
  201. SerialState *s = opaque;
  202. s->watch_tag = 0;
  203. serial_xmit(s);
  204. return FALSE;
  205. }
  206. static void serial_xmit(SerialState *s)
  207. {
  208. do {
  209. assert(!(s->lsr & UART_LSR_TEMT));
  210. if (s->tsr_retry == 0) {
  211. assert(!(s->lsr & UART_LSR_THRE));
  212. if (s->fcr & UART_FCR_FE) {
  213. assert(!fifo8_is_empty(&s->xmit_fifo));
  214. s->tsr = fifo8_pop(&s->xmit_fifo);
  215. if (!s->xmit_fifo.num) {
  216. s->lsr |= UART_LSR_THRE;
  217. }
  218. } else {
  219. s->tsr = s->thr;
  220. s->lsr |= UART_LSR_THRE;
  221. }
  222. if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
  223. s->thr_ipending = 1;
  224. serial_update_irq(s);
  225. }
  226. }
  227. if (s->mcr & UART_MCR_LOOP) {
  228. /* in loopback mode, say that we just received a char */
  229. serial_receive1(s, &s->tsr, 1);
  230. } else {
  231. int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
  232. if ((rc == 0 ||
  233. (rc == -1 && errno == EAGAIN)) &&
  234. s->tsr_retry < MAX_XMIT_RETRY) {
  235. assert(s->watch_tag == 0);
  236. s->watch_tag =
  237. qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  238. serial_watch_cb, s);
  239. if (s->watch_tag > 0) {
  240. s->tsr_retry++;
  241. return;
  242. }
  243. }
  244. }
  245. s->tsr_retry = 0;
  246. /* Transmit another byte if it is already available. It is only
  247. possible when FIFO is enabled and not empty. */
  248. } while (!(s->lsr & UART_LSR_THRE));
  249. s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  250. s->lsr |= UART_LSR_TEMT;
  251. }
  252. /* Setter for FCR.
  253. is_load flag means, that value is set while loading VM state
  254. and interrupt should not be invoked */
  255. static void serial_write_fcr(SerialState *s, uint8_t val)
  256. {
  257. /* Set fcr - val only has the bits that are supposed to "stick" */
  258. s->fcr = val;
  259. if (val & UART_FCR_FE) {
  260. s->iir |= UART_IIR_FE;
  261. /* Set recv_fifo trigger Level */
  262. switch (val & 0xC0) {
  263. case UART_FCR_ITL_1:
  264. s->recv_fifo_itl = 1;
  265. break;
  266. case UART_FCR_ITL_2:
  267. s->recv_fifo_itl = 4;
  268. break;
  269. case UART_FCR_ITL_3:
  270. s->recv_fifo_itl = 8;
  271. break;
  272. case UART_FCR_ITL_4:
  273. s->recv_fifo_itl = 14;
  274. break;
  275. }
  276. } else {
  277. s->iir &= ~UART_IIR_FE;
  278. }
  279. }
  280. static void serial_update_tiocm(SerialState *s)
  281. {
  282. int flags;
  283. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
  284. flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
  285. if (s->mcr & UART_MCR_RTS) {
  286. flags |= CHR_TIOCM_RTS;
  287. }
  288. if (s->mcr & UART_MCR_DTR) {
  289. flags |= CHR_TIOCM_DTR;
  290. }
  291. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
  292. }
  293. static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
  294. unsigned size)
  295. {
  296. SerialState *s = opaque;
  297. addr &= 7;
  298. trace_serial_ioport_write(addr, val);
  299. switch(addr) {
  300. default:
  301. case 0:
  302. if (s->lcr & UART_LCR_DLAB) {
  303. if (size == 1) {
  304. s->divider = (s->divider & 0xff00) | val;
  305. } else {
  306. s->divider = val;
  307. }
  308. serial_update_parameters(s);
  309. } else {
  310. s->thr = (uint8_t) val;
  311. if(s->fcr & UART_FCR_FE) {
  312. /* xmit overruns overwrite data, so make space if needed */
  313. if (fifo8_is_full(&s->xmit_fifo)) {
  314. fifo8_pop(&s->xmit_fifo);
  315. }
  316. fifo8_push(&s->xmit_fifo, s->thr);
  317. }
  318. s->thr_ipending = 0;
  319. s->lsr &= ~UART_LSR_THRE;
  320. s->lsr &= ~UART_LSR_TEMT;
  321. serial_update_irq(s);
  322. if (s->tsr_retry == 0) {
  323. serial_xmit(s);
  324. }
  325. }
  326. break;
  327. case 1:
  328. if (s->lcr & UART_LCR_DLAB) {
  329. s->divider = (s->divider & 0x00ff) | (val << 8);
  330. serial_update_parameters(s);
  331. } else {
  332. uint8_t changed = (s->ier ^ val) & 0x0f;
  333. s->ier = val & 0x0f;
  334. /* If the backend device is a real serial port, turn polling of the modem
  335. * status lines on physical port on or off depending on UART_IER_MSI state.
  336. */
  337. if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
  338. if (s->ier & UART_IER_MSI) {
  339. s->poll_msl = 1;
  340. serial_update_msl(s);
  341. } else {
  342. timer_del(s->modem_status_poll);
  343. s->poll_msl = 0;
  344. }
  345. }
  346. /* Turning on the THRE interrupt on IER can trigger the interrupt
  347. * if LSR.THRE=1, even if it had been masked before by reading IIR.
  348. * This is not in the datasheet, but Windows relies on it. It is
  349. * unclear if THRE has to be resampled every time THRI becomes
  350. * 1, or only on the rising edge. Bochs does the latter, and Windows
  351. * always toggles IER to all zeroes and back to all ones, so do the
  352. * same.
  353. *
  354. * If IER.THRI is zero, thr_ipending is not used. Set it to zero
  355. * so that the thr_ipending subsection is not migrated.
  356. */
  357. if (changed & UART_IER_THRI) {
  358. if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
  359. s->thr_ipending = 1;
  360. } else {
  361. s->thr_ipending = 0;
  362. }
  363. }
  364. if (changed) {
  365. serial_update_irq(s);
  366. }
  367. }
  368. break;
  369. case 2:
  370. /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
  371. if ((val ^ s->fcr) & UART_FCR_FE) {
  372. val |= UART_FCR_XFR | UART_FCR_RFR;
  373. }
  374. /* FIFO clear */
  375. if (val & UART_FCR_RFR) {
  376. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  377. timer_del(s->fifo_timeout_timer);
  378. s->timeout_ipending = 0;
  379. fifo8_reset(&s->recv_fifo);
  380. }
  381. if (val & UART_FCR_XFR) {
  382. s->lsr |= UART_LSR_THRE;
  383. s->thr_ipending = 1;
  384. fifo8_reset(&s->xmit_fifo);
  385. }
  386. serial_write_fcr(s, val & 0xC9);
  387. serial_update_irq(s);
  388. break;
  389. case 3:
  390. {
  391. int break_enable;
  392. s->lcr = val;
  393. serial_update_parameters(s);
  394. break_enable = (val >> 6) & 1;
  395. if (break_enable != s->last_break_enable) {
  396. s->last_break_enable = break_enable;
  397. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  398. &break_enable);
  399. }
  400. }
  401. break;
  402. case 4:
  403. {
  404. int old_mcr = s->mcr;
  405. s->mcr = val & 0x1f;
  406. if (val & UART_MCR_LOOP)
  407. break;
  408. if (s->poll_msl >= 0 && old_mcr != s->mcr) {
  409. serial_update_tiocm(s);
  410. /* Update the modem status after a one-character-send wait-time, since there may be a response
  411. from the device/computer at the other end of the serial line */
  412. timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
  413. }
  414. }
  415. break;
  416. case 5:
  417. break;
  418. case 6:
  419. break;
  420. case 7:
  421. s->scr = val;
  422. break;
  423. }
  424. }
  425. static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
  426. {
  427. SerialState *s = opaque;
  428. uint32_t ret;
  429. addr &= 7;
  430. switch(addr) {
  431. default:
  432. case 0:
  433. if (s->lcr & UART_LCR_DLAB) {
  434. ret = s->divider & 0xff;
  435. } else {
  436. if(s->fcr & UART_FCR_FE) {
  437. ret = fifo8_is_empty(&s->recv_fifo) ?
  438. 0 : fifo8_pop(&s->recv_fifo);
  439. if (s->recv_fifo.num == 0) {
  440. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  441. } else {
  442. timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
  443. }
  444. s->timeout_ipending = 0;
  445. } else {
  446. ret = s->rbr;
  447. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  448. }
  449. serial_update_irq(s);
  450. if (!(s->mcr & UART_MCR_LOOP)) {
  451. /* in loopback mode, don't receive any data */
  452. qemu_chr_fe_accept_input(&s->chr);
  453. }
  454. }
  455. break;
  456. case 1:
  457. if (s->lcr & UART_LCR_DLAB) {
  458. ret = (s->divider >> 8) & 0xff;
  459. } else {
  460. ret = s->ier;
  461. }
  462. break;
  463. case 2:
  464. ret = s->iir;
  465. if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
  466. s->thr_ipending = 0;
  467. serial_update_irq(s);
  468. }
  469. break;
  470. case 3:
  471. ret = s->lcr;
  472. break;
  473. case 4:
  474. ret = s->mcr;
  475. break;
  476. case 5:
  477. ret = s->lsr;
  478. /* Clear break and overrun interrupts */
  479. if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
  480. s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
  481. serial_update_irq(s);
  482. }
  483. break;
  484. case 6:
  485. if (s->mcr & UART_MCR_LOOP) {
  486. /* in loopback, the modem output pins are connected to the
  487. inputs */
  488. ret = (s->mcr & 0x0c) << 4;
  489. ret |= (s->mcr & 0x02) << 3;
  490. ret |= (s->mcr & 0x01) << 5;
  491. } else {
  492. if (s->poll_msl >= 0)
  493. serial_update_msl(s);
  494. ret = s->msr;
  495. /* Clear delta bits & msr int after read, if they were set */
  496. if (s->msr & UART_MSR_ANY_DELTA) {
  497. s->msr &= 0xF0;
  498. serial_update_irq(s);
  499. }
  500. }
  501. break;
  502. case 7:
  503. ret = s->scr;
  504. break;
  505. }
  506. trace_serial_ioport_read(addr, ret);
  507. return ret;
  508. }
  509. static int serial_can_receive(SerialState *s)
  510. {
  511. if(s->fcr & UART_FCR_FE) {
  512. if (s->recv_fifo.num < UART_FIFO_LENGTH) {
  513. /*
  514. * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
  515. * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
  516. * effect will be to almost always fill the fifo completely before
  517. * the guest has a chance to respond, effectively overriding the ITL
  518. * that the guest has set.
  519. */
  520. return (s->recv_fifo.num <= s->recv_fifo_itl) ?
  521. s->recv_fifo_itl - s->recv_fifo.num : 1;
  522. } else {
  523. return 0;
  524. }
  525. } else {
  526. return !(s->lsr & UART_LSR_DR);
  527. }
  528. }
  529. static void serial_receive_break(SerialState *s)
  530. {
  531. s->rbr = 0;
  532. /* When the LSR_DR is set a null byte is pushed into the fifo */
  533. recv_fifo_put(s, '\0');
  534. s->lsr |= UART_LSR_BI | UART_LSR_DR;
  535. serial_update_irq(s);
  536. }
  537. /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
  538. static void fifo_timeout_int (void *opaque) {
  539. SerialState *s = opaque;
  540. if (s->recv_fifo.num) {
  541. s->timeout_ipending = 1;
  542. serial_update_irq(s);
  543. }
  544. }
  545. static int serial_can_receive1(void *opaque)
  546. {
  547. SerialState *s = opaque;
  548. return serial_can_receive(s);
  549. }
  550. static void serial_receive1(void *opaque, const uint8_t *buf, int size)
  551. {
  552. SerialState *s = opaque;
  553. if (s->wakeup) {
  554. qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
  555. }
  556. if(s->fcr & UART_FCR_FE) {
  557. int i;
  558. for (i = 0; i < size; i++) {
  559. recv_fifo_put(s, buf[i]);
  560. }
  561. s->lsr |= UART_LSR_DR;
  562. /* call the timeout receive callback in 4 char transmit time */
  563. timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
  564. } else {
  565. if (s->lsr & UART_LSR_DR)
  566. s->lsr |= UART_LSR_OE;
  567. s->rbr = buf[0];
  568. s->lsr |= UART_LSR_DR;
  569. }
  570. serial_update_irq(s);
  571. }
  572. static void serial_event(void *opaque, int event)
  573. {
  574. SerialState *s = opaque;
  575. DPRINTF("event %x\n", event);
  576. if (event == CHR_EVENT_BREAK)
  577. serial_receive_break(s);
  578. }
  579. static int serial_pre_save(void *opaque)
  580. {
  581. SerialState *s = opaque;
  582. s->fcr_vmstate = s->fcr;
  583. return 0;
  584. }
  585. static int serial_pre_load(void *opaque)
  586. {
  587. SerialState *s = opaque;
  588. s->thr_ipending = -1;
  589. s->poll_msl = -1;
  590. return 0;
  591. }
  592. static int serial_post_load(void *opaque, int version_id)
  593. {
  594. SerialState *s = opaque;
  595. if (version_id < 3) {
  596. s->fcr_vmstate = 0;
  597. }
  598. if (s->thr_ipending == -1) {
  599. s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
  600. }
  601. if (s->tsr_retry > 0) {
  602. /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
  603. if (s->lsr & UART_LSR_TEMT) {
  604. error_report("inconsistent state in serial device "
  605. "(tsr empty, tsr_retry=%d", s->tsr_retry);
  606. return -1;
  607. }
  608. if (s->tsr_retry > MAX_XMIT_RETRY) {
  609. s->tsr_retry = MAX_XMIT_RETRY;
  610. }
  611. assert(s->watch_tag == 0);
  612. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  613. serial_watch_cb, s);
  614. } else {
  615. /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
  616. if (!(s->lsr & UART_LSR_TEMT)) {
  617. error_report("inconsistent state in serial device "
  618. "(tsr not empty, tsr_retry=0");
  619. return -1;
  620. }
  621. }
  622. s->last_break_enable = (s->lcr >> 6) & 1;
  623. /* Initialize fcr via setter to perform essential side-effects */
  624. serial_write_fcr(s, s->fcr_vmstate);
  625. serial_update_parameters(s);
  626. return 0;
  627. }
  628. static bool serial_thr_ipending_needed(void *opaque)
  629. {
  630. SerialState *s = opaque;
  631. if (s->ier & UART_IER_THRI) {
  632. bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
  633. return s->thr_ipending != expected_value;
  634. } else {
  635. /* LSR.THRE will be sampled again when the interrupt is
  636. * enabled. thr_ipending is not used in this case, do
  637. * not migrate it.
  638. */
  639. return false;
  640. }
  641. }
  642. static const VMStateDescription vmstate_serial_thr_ipending = {
  643. .name = "serial/thr_ipending",
  644. .version_id = 1,
  645. .minimum_version_id = 1,
  646. .needed = serial_thr_ipending_needed,
  647. .fields = (VMStateField[]) {
  648. VMSTATE_INT32(thr_ipending, SerialState),
  649. VMSTATE_END_OF_LIST()
  650. }
  651. };
  652. static bool serial_tsr_needed(void *opaque)
  653. {
  654. SerialState *s = (SerialState *)opaque;
  655. return s->tsr_retry != 0;
  656. }
  657. static const VMStateDescription vmstate_serial_tsr = {
  658. .name = "serial/tsr",
  659. .version_id = 1,
  660. .minimum_version_id = 1,
  661. .needed = serial_tsr_needed,
  662. .fields = (VMStateField[]) {
  663. VMSTATE_UINT32(tsr_retry, SerialState),
  664. VMSTATE_UINT8(thr, SerialState),
  665. VMSTATE_UINT8(tsr, SerialState),
  666. VMSTATE_END_OF_LIST()
  667. }
  668. };
  669. static bool serial_recv_fifo_needed(void *opaque)
  670. {
  671. SerialState *s = (SerialState *)opaque;
  672. return !fifo8_is_empty(&s->recv_fifo);
  673. }
  674. static const VMStateDescription vmstate_serial_recv_fifo = {
  675. .name = "serial/recv_fifo",
  676. .version_id = 1,
  677. .minimum_version_id = 1,
  678. .needed = serial_recv_fifo_needed,
  679. .fields = (VMStateField[]) {
  680. VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
  681. VMSTATE_END_OF_LIST()
  682. }
  683. };
  684. static bool serial_xmit_fifo_needed(void *opaque)
  685. {
  686. SerialState *s = (SerialState *)opaque;
  687. return !fifo8_is_empty(&s->xmit_fifo);
  688. }
  689. static const VMStateDescription vmstate_serial_xmit_fifo = {
  690. .name = "serial/xmit_fifo",
  691. .version_id = 1,
  692. .minimum_version_id = 1,
  693. .needed = serial_xmit_fifo_needed,
  694. .fields = (VMStateField[]) {
  695. VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
  696. VMSTATE_END_OF_LIST()
  697. }
  698. };
  699. static bool serial_fifo_timeout_timer_needed(void *opaque)
  700. {
  701. SerialState *s = (SerialState *)opaque;
  702. return timer_pending(s->fifo_timeout_timer);
  703. }
  704. static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
  705. .name = "serial/fifo_timeout_timer",
  706. .version_id = 1,
  707. .minimum_version_id = 1,
  708. .needed = serial_fifo_timeout_timer_needed,
  709. .fields = (VMStateField[]) {
  710. VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
  711. VMSTATE_END_OF_LIST()
  712. }
  713. };
  714. static bool serial_timeout_ipending_needed(void *opaque)
  715. {
  716. SerialState *s = (SerialState *)opaque;
  717. return s->timeout_ipending != 0;
  718. }
  719. static const VMStateDescription vmstate_serial_timeout_ipending = {
  720. .name = "serial/timeout_ipending",
  721. .version_id = 1,
  722. .minimum_version_id = 1,
  723. .needed = serial_timeout_ipending_needed,
  724. .fields = (VMStateField[]) {
  725. VMSTATE_INT32(timeout_ipending, SerialState),
  726. VMSTATE_END_OF_LIST()
  727. }
  728. };
  729. static bool serial_poll_needed(void *opaque)
  730. {
  731. SerialState *s = (SerialState *)opaque;
  732. return s->poll_msl >= 0;
  733. }
  734. static const VMStateDescription vmstate_serial_poll = {
  735. .name = "serial/poll",
  736. .version_id = 1,
  737. .needed = serial_poll_needed,
  738. .minimum_version_id = 1,
  739. .fields = (VMStateField[]) {
  740. VMSTATE_INT32(poll_msl, SerialState),
  741. VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
  742. VMSTATE_END_OF_LIST()
  743. }
  744. };
  745. const VMStateDescription vmstate_serial = {
  746. .name = "serial",
  747. .version_id = 3,
  748. .minimum_version_id = 2,
  749. .pre_save = serial_pre_save,
  750. .pre_load = serial_pre_load,
  751. .post_load = serial_post_load,
  752. .fields = (VMStateField[]) {
  753. VMSTATE_UINT16_V(divider, SerialState, 2),
  754. VMSTATE_UINT8(rbr, SerialState),
  755. VMSTATE_UINT8(ier, SerialState),
  756. VMSTATE_UINT8(iir, SerialState),
  757. VMSTATE_UINT8(lcr, SerialState),
  758. VMSTATE_UINT8(mcr, SerialState),
  759. VMSTATE_UINT8(lsr, SerialState),
  760. VMSTATE_UINT8(msr, SerialState),
  761. VMSTATE_UINT8(scr, SerialState),
  762. VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
  763. VMSTATE_END_OF_LIST()
  764. },
  765. .subsections = (const VMStateDescription*[]) {
  766. &vmstate_serial_thr_ipending,
  767. &vmstate_serial_tsr,
  768. &vmstate_serial_recv_fifo,
  769. &vmstate_serial_xmit_fifo,
  770. &vmstate_serial_fifo_timeout_timer,
  771. &vmstate_serial_timeout_ipending,
  772. &vmstate_serial_poll,
  773. NULL
  774. }
  775. };
  776. static void serial_reset(void *opaque)
  777. {
  778. SerialState *s = opaque;
  779. if (s->watch_tag > 0) {
  780. g_source_remove(s->watch_tag);
  781. s->watch_tag = 0;
  782. }
  783. s->rbr = 0;
  784. s->ier = 0;
  785. s->iir = UART_IIR_NO_INT;
  786. s->lcr = 0;
  787. s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
  788. s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
  789. /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
  790. s->divider = 0x0C;
  791. s->mcr = UART_MCR_OUT2;
  792. s->scr = 0;
  793. s->tsr_retry = 0;
  794. s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
  795. s->poll_msl = 0;
  796. s->timeout_ipending = 0;
  797. timer_del(s->fifo_timeout_timer);
  798. timer_del(s->modem_status_poll);
  799. fifo8_reset(&s->recv_fifo);
  800. fifo8_reset(&s->xmit_fifo);
  801. s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  802. s->thr_ipending = 0;
  803. s->last_break_enable = 0;
  804. qemu_irq_lower(s->irq);
  805. serial_update_msl(s);
  806. s->msr &= ~UART_MSR_ANY_DELTA;
  807. }
  808. static int serial_be_change(void *opaque)
  809. {
  810. SerialState *s = opaque;
  811. qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
  812. serial_event, serial_be_change, s, NULL, true);
  813. serial_update_parameters(s);
  814. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  815. &s->last_break_enable);
  816. s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
  817. serial_update_msl(s);
  818. if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
  819. serial_update_tiocm(s);
  820. }
  821. if (s->watch_tag > 0) {
  822. g_source_remove(s->watch_tag);
  823. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  824. serial_watch_cb, s);
  825. }
  826. return 0;
  827. }
  828. void serial_realize_core(SerialState *s, Error **errp)
  829. {
  830. s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
  831. s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
  832. qemu_register_reset(serial_reset, s);
  833. qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
  834. serial_event, serial_be_change, s, NULL, true);
  835. fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
  836. fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
  837. serial_reset(s);
  838. }
  839. void serial_exit_core(SerialState *s)
  840. {
  841. qemu_chr_fe_deinit(&s->chr, false);
  842. timer_del(s->modem_status_poll);
  843. timer_free(s->modem_status_poll);
  844. timer_del(s->fifo_timeout_timer);
  845. timer_free(s->fifo_timeout_timer);
  846. fifo8_destroy(&s->recv_fifo);
  847. fifo8_destroy(&s->xmit_fifo);
  848. qemu_unregister_reset(serial_reset, s);
  849. }
  850. /* Change the main reference oscillator frequency. */
  851. void serial_set_frequency(SerialState *s, uint32_t frequency)
  852. {
  853. s->baudbase = frequency;
  854. serial_update_parameters(s);
  855. }
  856. const MemoryRegionOps serial_io_ops = {
  857. .read = serial_ioport_read,
  858. .write = serial_ioport_write,
  859. .impl = {
  860. .min_access_size = 1,
  861. .max_access_size = 1,
  862. },
  863. .endianness = DEVICE_LITTLE_ENDIAN,
  864. };
  865. SerialState *serial_init(int base, qemu_irq irq, int baudbase,
  866. Chardev *chr, MemoryRegion *system_io)
  867. {
  868. SerialState *s;
  869. s = g_malloc0(sizeof(SerialState));
  870. s->irq = irq;
  871. s->baudbase = baudbase;
  872. qemu_chr_fe_init(&s->chr, chr, &error_abort);
  873. serial_realize_core(s, &error_fatal);
  874. vmstate_register(NULL, base, &vmstate_serial, s);
  875. memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
  876. memory_region_add_subregion(system_io, base, &s->io);
  877. return s;
  878. }
  879. /* Memory mapped interface */
  880. static uint64_t serial_mm_read(void *opaque, hwaddr addr,
  881. unsigned size)
  882. {
  883. SerialState *s = opaque;
  884. return serial_ioport_read(s, addr >> s->it_shift, 1);
  885. }
  886. static void serial_mm_write(void *opaque, hwaddr addr,
  887. uint64_t value, unsigned size)
  888. {
  889. SerialState *s = opaque;
  890. value &= 255;
  891. serial_ioport_write(s, addr >> s->it_shift, value, 1);
  892. }
  893. static const MemoryRegionOps serial_mm_ops[3] = {
  894. [DEVICE_NATIVE_ENDIAN] = {
  895. .read = serial_mm_read,
  896. .write = serial_mm_write,
  897. .endianness = DEVICE_NATIVE_ENDIAN,
  898. .valid.max_access_size = 8,
  899. .impl.max_access_size = 8,
  900. },
  901. [DEVICE_LITTLE_ENDIAN] = {
  902. .read = serial_mm_read,
  903. .write = serial_mm_write,
  904. .endianness = DEVICE_LITTLE_ENDIAN,
  905. .valid.max_access_size = 8,
  906. .impl.max_access_size = 8,
  907. },
  908. [DEVICE_BIG_ENDIAN] = {
  909. .read = serial_mm_read,
  910. .write = serial_mm_write,
  911. .endianness = DEVICE_BIG_ENDIAN,
  912. .valid.max_access_size = 8,
  913. .impl.max_access_size = 8,
  914. },
  915. };
  916. SerialState *serial_mm_init(MemoryRegion *address_space,
  917. hwaddr base, int it_shift,
  918. qemu_irq irq, int baudbase,
  919. Chardev *chr, enum device_endian end)
  920. {
  921. SerialState *s;
  922. s = g_malloc0(sizeof(SerialState));
  923. s->it_shift = it_shift;
  924. s->irq = irq;
  925. s->baudbase = baudbase;
  926. qemu_chr_fe_init(&s->chr, chr, &error_abort);
  927. serial_realize_core(s, &error_fatal);
  928. vmstate_register(NULL, base, &vmstate_serial, s);
  929. memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
  930. "serial", 8 << it_shift);
  931. memory_region_add_subregion(address_space, base, &s->io);
  932. return s;
  933. }