2
0

mcf_uart.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. /*
  2. * ColdFire UART emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licensed under the GPL
  7. */
  8. #include "qemu/osdep.h"
  9. #include "hw/irq.h"
  10. #include "hw/sysbus.h"
  11. #include "qemu/module.h"
  12. #include "hw/m68k/mcf.h"
  13. #include "hw/qdev-properties.h"
  14. #include "chardev/char-fe.h"
  15. typedef struct {
  16. SysBusDevice parent_obj;
  17. MemoryRegion iomem;
  18. uint8_t mr[2];
  19. uint8_t sr;
  20. uint8_t isr;
  21. uint8_t imr;
  22. uint8_t bg1;
  23. uint8_t bg2;
  24. uint8_t fifo[4];
  25. uint8_t tb;
  26. int current_mr;
  27. int fifo_len;
  28. int tx_enabled;
  29. int rx_enabled;
  30. qemu_irq irq;
  31. CharBackend chr;
  32. } mcf_uart_state;
  33. #define TYPE_MCF_UART "mcf-uart"
  34. #define MCF_UART(obj) OBJECT_CHECK(mcf_uart_state, (obj), TYPE_MCF_UART)
  35. /* UART Status Register bits. */
  36. #define MCF_UART_RxRDY 0x01
  37. #define MCF_UART_FFULL 0x02
  38. #define MCF_UART_TxRDY 0x04
  39. #define MCF_UART_TxEMP 0x08
  40. #define MCF_UART_OE 0x10
  41. #define MCF_UART_PE 0x20
  42. #define MCF_UART_FE 0x40
  43. #define MCF_UART_RB 0x80
  44. /* Interrupt flags. */
  45. #define MCF_UART_TxINT 0x01
  46. #define MCF_UART_RxINT 0x02
  47. #define MCF_UART_DBINT 0x04
  48. #define MCF_UART_COSINT 0x80
  49. /* UMR1 flags. */
  50. #define MCF_UART_BC0 0x01
  51. #define MCF_UART_BC1 0x02
  52. #define MCF_UART_PT 0x04
  53. #define MCF_UART_PM0 0x08
  54. #define MCF_UART_PM1 0x10
  55. #define MCF_UART_ERR 0x20
  56. #define MCF_UART_RxIRQ 0x40
  57. #define MCF_UART_RxRTS 0x80
  58. static void mcf_uart_update(mcf_uart_state *s)
  59. {
  60. s->isr &= ~(MCF_UART_TxINT | MCF_UART_RxINT);
  61. if (s->sr & MCF_UART_TxRDY)
  62. s->isr |= MCF_UART_TxINT;
  63. if ((s->sr & ((s->mr[0] & MCF_UART_RxIRQ)
  64. ? MCF_UART_FFULL : MCF_UART_RxRDY)) != 0)
  65. s->isr |= MCF_UART_RxINT;
  66. qemu_set_irq(s->irq, (s->isr & s->imr) != 0);
  67. }
  68. uint64_t mcf_uart_read(void *opaque, hwaddr addr,
  69. unsigned size)
  70. {
  71. mcf_uart_state *s = (mcf_uart_state *)opaque;
  72. switch (addr & 0x3f) {
  73. case 0x00:
  74. return s->mr[s->current_mr];
  75. case 0x04:
  76. return s->sr;
  77. case 0x0c:
  78. {
  79. uint8_t val;
  80. int i;
  81. if (s->fifo_len == 0)
  82. return 0;
  83. val = s->fifo[0];
  84. s->fifo_len--;
  85. for (i = 0; i < s->fifo_len; i++)
  86. s->fifo[i] = s->fifo[i + 1];
  87. s->sr &= ~MCF_UART_FFULL;
  88. if (s->fifo_len == 0)
  89. s->sr &= ~MCF_UART_RxRDY;
  90. mcf_uart_update(s);
  91. qemu_chr_fe_accept_input(&s->chr);
  92. return val;
  93. }
  94. case 0x10:
  95. /* TODO: Implement IPCR. */
  96. return 0;
  97. case 0x14:
  98. return s->isr;
  99. case 0x18:
  100. return s->bg1;
  101. case 0x1c:
  102. return s->bg2;
  103. default:
  104. return 0;
  105. }
  106. }
  107. /* Update TxRDY flag and set data if present and enabled. */
  108. static void mcf_uart_do_tx(mcf_uart_state *s)
  109. {
  110. if (s->tx_enabled && (s->sr & MCF_UART_TxEMP) == 0) {
  111. /* XXX this blocks entire thread. Rewrite to use
  112. * qemu_chr_fe_write and background I/O callbacks */
  113. qemu_chr_fe_write_all(&s->chr, (unsigned char *)&s->tb, 1);
  114. s->sr |= MCF_UART_TxEMP;
  115. }
  116. if (s->tx_enabled) {
  117. s->sr |= MCF_UART_TxRDY;
  118. } else {
  119. s->sr &= ~MCF_UART_TxRDY;
  120. }
  121. }
  122. static void mcf_do_command(mcf_uart_state *s, uint8_t cmd)
  123. {
  124. /* Misc command. */
  125. switch ((cmd >> 4) & 7) {
  126. case 0: /* No-op. */
  127. break;
  128. case 1: /* Reset mode register pointer. */
  129. s->current_mr = 0;
  130. break;
  131. case 2: /* Reset receiver. */
  132. s->rx_enabled = 0;
  133. s->fifo_len = 0;
  134. s->sr &= ~(MCF_UART_RxRDY | MCF_UART_FFULL);
  135. break;
  136. case 3: /* Reset transmitter. */
  137. s->tx_enabled = 0;
  138. s->sr |= MCF_UART_TxEMP;
  139. s->sr &= ~MCF_UART_TxRDY;
  140. break;
  141. case 4: /* Reset error status. */
  142. break;
  143. case 5: /* Reset break-change interrupt. */
  144. s->isr &= ~MCF_UART_DBINT;
  145. break;
  146. case 6: /* Start break. */
  147. case 7: /* Stop break. */
  148. break;
  149. }
  150. /* Transmitter command. */
  151. switch ((cmd >> 2) & 3) {
  152. case 0: /* No-op. */
  153. break;
  154. case 1: /* Enable. */
  155. s->tx_enabled = 1;
  156. mcf_uart_do_tx(s);
  157. break;
  158. case 2: /* Disable. */
  159. s->tx_enabled = 0;
  160. mcf_uart_do_tx(s);
  161. break;
  162. case 3: /* Reserved. */
  163. fprintf(stderr, "mcf_uart: Bad TX command\n");
  164. break;
  165. }
  166. /* Receiver command. */
  167. switch (cmd & 3) {
  168. case 0: /* No-op. */
  169. break;
  170. case 1: /* Enable. */
  171. s->rx_enabled = 1;
  172. break;
  173. case 2:
  174. s->rx_enabled = 0;
  175. break;
  176. case 3: /* Reserved. */
  177. fprintf(stderr, "mcf_uart: Bad RX command\n");
  178. break;
  179. }
  180. }
  181. void mcf_uart_write(void *opaque, hwaddr addr,
  182. uint64_t val, unsigned size)
  183. {
  184. mcf_uart_state *s = (mcf_uart_state *)opaque;
  185. switch (addr & 0x3f) {
  186. case 0x00:
  187. s->mr[s->current_mr] = val;
  188. s->current_mr = 1;
  189. break;
  190. case 0x04:
  191. /* CSR is ignored. */
  192. break;
  193. case 0x08: /* Command Register. */
  194. mcf_do_command(s, val);
  195. break;
  196. case 0x0c: /* Transmit Buffer. */
  197. s->sr &= ~MCF_UART_TxEMP;
  198. s->tb = val;
  199. mcf_uart_do_tx(s);
  200. break;
  201. case 0x10:
  202. /* ACR is ignored. */
  203. break;
  204. case 0x14:
  205. s->imr = val;
  206. break;
  207. default:
  208. break;
  209. }
  210. mcf_uart_update(s);
  211. }
  212. static void mcf_uart_reset(DeviceState *dev)
  213. {
  214. mcf_uart_state *s = MCF_UART(dev);
  215. s->fifo_len = 0;
  216. s->mr[0] = 0;
  217. s->mr[1] = 0;
  218. s->sr = MCF_UART_TxEMP;
  219. s->tx_enabled = 0;
  220. s->rx_enabled = 0;
  221. s->isr = 0;
  222. s->imr = 0;
  223. }
  224. static void mcf_uart_push_byte(mcf_uart_state *s, uint8_t data)
  225. {
  226. /* Break events overwrite the last byte if the fifo is full. */
  227. if (s->fifo_len == 4)
  228. s->fifo_len--;
  229. s->fifo[s->fifo_len] = data;
  230. s->fifo_len++;
  231. s->sr |= MCF_UART_RxRDY;
  232. if (s->fifo_len == 4)
  233. s->sr |= MCF_UART_FFULL;
  234. mcf_uart_update(s);
  235. }
  236. static void mcf_uart_event(void *opaque, int event)
  237. {
  238. mcf_uart_state *s = (mcf_uart_state *)opaque;
  239. switch (event) {
  240. case CHR_EVENT_BREAK:
  241. s->isr |= MCF_UART_DBINT;
  242. mcf_uart_push_byte(s, 0);
  243. break;
  244. default:
  245. break;
  246. }
  247. }
  248. static int mcf_uart_can_receive(void *opaque)
  249. {
  250. mcf_uart_state *s = (mcf_uart_state *)opaque;
  251. return s->rx_enabled && (s->sr & MCF_UART_FFULL) == 0;
  252. }
  253. static void mcf_uart_receive(void *opaque, const uint8_t *buf, int size)
  254. {
  255. mcf_uart_state *s = (mcf_uart_state *)opaque;
  256. mcf_uart_push_byte(s, buf[0]);
  257. }
  258. static const MemoryRegionOps mcf_uart_ops = {
  259. .read = mcf_uart_read,
  260. .write = mcf_uart_write,
  261. .endianness = DEVICE_NATIVE_ENDIAN,
  262. };
  263. static void mcf_uart_instance_init(Object *obj)
  264. {
  265. SysBusDevice *dev = SYS_BUS_DEVICE(obj);
  266. mcf_uart_state *s = MCF_UART(dev);
  267. memory_region_init_io(&s->iomem, obj, &mcf_uart_ops, s, "uart", 0x40);
  268. sysbus_init_mmio(dev, &s->iomem);
  269. sysbus_init_irq(dev, &s->irq);
  270. }
  271. static void mcf_uart_realize(DeviceState *dev, Error **errp)
  272. {
  273. mcf_uart_state *s = MCF_UART(dev);
  274. qemu_chr_fe_set_handlers(&s->chr, mcf_uart_can_receive, mcf_uart_receive,
  275. mcf_uart_event, NULL, s, NULL, true);
  276. }
  277. static Property mcf_uart_properties[] = {
  278. DEFINE_PROP_CHR("chardev", mcf_uart_state, chr),
  279. DEFINE_PROP_END_OF_LIST(),
  280. };
  281. static void mcf_uart_class_init(ObjectClass *oc, void *data)
  282. {
  283. DeviceClass *dc = DEVICE_CLASS(oc);
  284. dc->realize = mcf_uart_realize;
  285. dc->reset = mcf_uart_reset;
  286. dc->props = mcf_uart_properties;
  287. set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
  288. }
  289. static const TypeInfo mcf_uart_info = {
  290. .name = TYPE_MCF_UART,
  291. .parent = TYPE_SYS_BUS_DEVICE,
  292. .instance_size = sizeof(mcf_uart_state),
  293. .instance_init = mcf_uart_instance_init,
  294. .class_init = mcf_uart_class_init,
  295. };
  296. static void mcf_uart_register(void)
  297. {
  298. type_register_static(&mcf_uart_info);
  299. }
  300. type_init(mcf_uart_register)
  301. void *mcf_uart_init(qemu_irq irq, Chardev *chrdrv)
  302. {
  303. DeviceState *dev;
  304. dev = qdev_create(NULL, TYPE_MCF_UART);
  305. if (chrdrv) {
  306. qdev_prop_set_chr(dev, "chardev", chrdrv);
  307. }
  308. qdev_init_nofail(dev);
  309. sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq);
  310. return dev;
  311. }
  312. void mcf_uart_mm_init(hwaddr base, qemu_irq irq, Chardev *chrdrv)
  313. {
  314. DeviceState *dev;
  315. dev = mcf_uart_init(irq, chrdrv);
  316. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
  317. }