2
0

cadence_uart.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. /*
  2. * Device model for Cadence UART
  3. *
  4. * Reference: Xilinx Zynq 7000 reference manual
  5. * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
  6. * - Chapter 19 UART Controller
  7. * - Appendix B for Register details
  8. *
  9. * Copyright (c) 2010 Xilinx Inc.
  10. * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
  11. * Copyright (c) 2012 PetaLogix Pty Ltd.
  12. * Written by Haibing Ma
  13. * M.Habib
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. * You should have received a copy of the GNU General Public License along
  21. * with this program; if not, see <http://www.gnu.org/licenses/>.
  22. */
  23. #include "qemu/osdep.h"
  24. #include "hw/sysbus.h"
  25. #include "migration/vmstate.h"
  26. #include "chardev/char-fe.h"
  27. #include "chardev/char-serial.h"
  28. #include "qemu/timer.h"
  29. #include "qemu/log.h"
  30. #include "qemu/module.h"
  31. #include "hw/char/cadence_uart.h"
  32. #include "hw/irq.h"
  33. #ifdef CADENCE_UART_ERR_DEBUG
  34. #define DB_PRINT(...) do { \
  35. fprintf(stderr, ": %s: ", __func__); \
  36. fprintf(stderr, ## __VA_ARGS__); \
  37. } while (0)
  38. #else
  39. #define DB_PRINT(...)
  40. #endif
  41. #define UART_SR_INTR_RTRIG 0x00000001
  42. #define UART_SR_INTR_REMPTY 0x00000002
  43. #define UART_SR_INTR_RFUL 0x00000004
  44. #define UART_SR_INTR_TEMPTY 0x00000008
  45. #define UART_SR_INTR_TFUL 0x00000010
  46. /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  47. #define UART_SR_TTRIG 0x00002000
  48. #define UART_INTR_TTRIG 0x00000400
  49. /* bits fields in CSR that correlate to CISR. If any of these bits are set in
  50. * SR, then the same bit in CISR is set high too */
  51. #define UART_SR_TO_CISR_MASK 0x0000001F
  52. #define UART_INTR_ROVR 0x00000020
  53. #define UART_INTR_FRAME 0x00000040
  54. #define UART_INTR_PARE 0x00000080
  55. #define UART_INTR_TIMEOUT 0x00000100
  56. #define UART_INTR_DMSI 0x00000200
  57. #define UART_INTR_TOVR 0x00001000
  58. #define UART_SR_RACTIVE 0x00000400
  59. #define UART_SR_TACTIVE 0x00000800
  60. #define UART_SR_FDELT 0x00001000
  61. #define UART_CR_RXRST 0x00000001
  62. #define UART_CR_TXRST 0x00000002
  63. #define UART_CR_RX_EN 0x00000004
  64. #define UART_CR_RX_DIS 0x00000008
  65. #define UART_CR_TX_EN 0x00000010
  66. #define UART_CR_TX_DIS 0x00000020
  67. #define UART_CR_RST_TO 0x00000040
  68. #define UART_CR_STARTBRK 0x00000080
  69. #define UART_CR_STOPBRK 0x00000100
  70. #define UART_MR_CLKS 0x00000001
  71. #define UART_MR_CHRL 0x00000006
  72. #define UART_MR_CHRL_SH 1
  73. #define UART_MR_PAR 0x00000038
  74. #define UART_MR_PAR_SH 3
  75. #define UART_MR_NBSTOP 0x000000C0
  76. #define UART_MR_NBSTOP_SH 6
  77. #define UART_MR_CHMODE 0x00000300
  78. #define UART_MR_CHMODE_SH 8
  79. #define UART_MR_UCLKEN 0x00000400
  80. #define UART_MR_IRMODE 0x00000800
  81. #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
  82. #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
  83. #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
  84. #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
  85. #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
  86. #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
  87. #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
  88. #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
  89. #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
  90. #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
  91. #define UART_INPUT_CLK 50000000
  92. #define R_CR (0x00/4)
  93. #define R_MR (0x04/4)
  94. #define R_IER (0x08/4)
  95. #define R_IDR (0x0C/4)
  96. #define R_IMR (0x10/4)
  97. #define R_CISR (0x14/4)
  98. #define R_BRGR (0x18/4)
  99. #define R_RTOR (0x1C/4)
  100. #define R_RTRIG (0x20/4)
  101. #define R_MCR (0x24/4)
  102. #define R_MSR (0x28/4)
  103. #define R_SR (0x2C/4)
  104. #define R_TX_RX (0x30/4)
  105. #define R_BDIV (0x34/4)
  106. #define R_FDEL (0x38/4)
  107. #define R_PMIN (0x3C/4)
  108. #define R_PWID (0x40/4)
  109. #define R_TTRIG (0x44/4)
  110. static void uart_update_status(CadenceUARTState *s)
  111. {
  112. s->r[R_SR] = 0;
  113. s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
  114. : 0;
  115. s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
  116. s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
  117. s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
  118. : 0;
  119. s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
  120. s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
  121. s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
  122. s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
  123. qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
  124. }
  125. static void fifo_trigger_update(void *opaque)
  126. {
  127. CadenceUARTState *s = opaque;
  128. if (s->r[R_RTOR]) {
  129. s->r[R_CISR] |= UART_INTR_TIMEOUT;
  130. uart_update_status(s);
  131. }
  132. }
  133. static void uart_rx_reset(CadenceUARTState *s)
  134. {
  135. s->rx_wpos = 0;
  136. s->rx_count = 0;
  137. qemu_chr_fe_accept_input(&s->chr);
  138. }
  139. static void uart_tx_reset(CadenceUARTState *s)
  140. {
  141. s->tx_count = 0;
  142. }
  143. static void uart_send_breaks(CadenceUARTState *s)
  144. {
  145. int break_enabled = 1;
  146. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  147. &break_enabled);
  148. }
  149. static void uart_parameters_setup(CadenceUARTState *s)
  150. {
  151. QEMUSerialSetParams ssp;
  152. unsigned int baud_rate, packet_size;
  153. baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
  154. UART_INPUT_CLK / 8 : UART_INPUT_CLK;
  155. ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
  156. packet_size = 1;
  157. switch (s->r[R_MR] & UART_MR_PAR) {
  158. case UART_PARITY_EVEN:
  159. ssp.parity = 'E';
  160. packet_size++;
  161. break;
  162. case UART_PARITY_ODD:
  163. ssp.parity = 'O';
  164. packet_size++;
  165. break;
  166. default:
  167. ssp.parity = 'N';
  168. break;
  169. }
  170. switch (s->r[R_MR] & UART_MR_CHRL) {
  171. case UART_DATA_BITS_6:
  172. ssp.data_bits = 6;
  173. break;
  174. case UART_DATA_BITS_7:
  175. ssp.data_bits = 7;
  176. break;
  177. default:
  178. ssp.data_bits = 8;
  179. break;
  180. }
  181. switch (s->r[R_MR] & UART_MR_NBSTOP) {
  182. case UART_STOP_BITS_1:
  183. ssp.stop_bits = 1;
  184. break;
  185. default:
  186. ssp.stop_bits = 2;
  187. break;
  188. }
  189. packet_size += ssp.data_bits + ssp.stop_bits;
  190. s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
  191. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  192. }
  193. static int uart_can_receive(void *opaque)
  194. {
  195. CadenceUARTState *s = opaque;
  196. int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
  197. uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
  198. if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
  199. ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
  200. }
  201. if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
  202. ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
  203. }
  204. return ret;
  205. }
  206. static void uart_ctrl_update(CadenceUARTState *s)
  207. {
  208. if (s->r[R_CR] & UART_CR_TXRST) {
  209. uart_tx_reset(s);
  210. }
  211. if (s->r[R_CR] & UART_CR_RXRST) {
  212. uart_rx_reset(s);
  213. }
  214. s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
  215. if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
  216. uart_send_breaks(s);
  217. }
  218. }
  219. static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
  220. {
  221. CadenceUARTState *s = opaque;
  222. uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  223. int i;
  224. if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
  225. return;
  226. }
  227. if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
  228. s->r[R_CISR] |= UART_INTR_ROVR;
  229. } else {
  230. for (i = 0; i < size; i++) {
  231. s->rx_fifo[s->rx_wpos] = buf[i];
  232. s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
  233. s->rx_count++;
  234. }
  235. timer_mod(s->fifo_trigger_handle, new_rx_time +
  236. (s->char_tx_time * 4));
  237. }
  238. uart_update_status(s);
  239. }
  240. static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
  241. void *opaque)
  242. {
  243. CadenceUARTState *s = opaque;
  244. int ret;
  245. /* instant drain the fifo when there's no back-end */
  246. if (!qemu_chr_fe_backend_connected(&s->chr)) {
  247. s->tx_count = 0;
  248. return FALSE;
  249. }
  250. if (!s->tx_count) {
  251. return FALSE;
  252. }
  253. ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
  254. if (ret >= 0) {
  255. s->tx_count -= ret;
  256. memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
  257. }
  258. if (s->tx_count) {
  259. guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  260. cadence_uart_xmit, s);
  261. if (!r) {
  262. s->tx_count = 0;
  263. return FALSE;
  264. }
  265. }
  266. uart_update_status(s);
  267. return FALSE;
  268. }
  269. static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
  270. int size)
  271. {
  272. if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
  273. return;
  274. }
  275. if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
  276. size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
  277. /*
  278. * This can only be a guest error via a bad tx fifo register push,
  279. * as can_receive() should stop remote loop and echo modes ever getting
  280. * us to here.
  281. */
  282. qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
  283. s->r[R_CISR] |= UART_INTR_ROVR;
  284. }
  285. memcpy(s->tx_fifo + s->tx_count, buf, size);
  286. s->tx_count += size;
  287. cadence_uart_xmit(NULL, G_IO_OUT, s);
  288. }
  289. static void uart_receive(void *opaque, const uint8_t *buf, int size)
  290. {
  291. CadenceUARTState *s = opaque;
  292. uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
  293. if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
  294. uart_write_rx_fifo(opaque, buf, size);
  295. }
  296. if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
  297. uart_write_tx_fifo(s, buf, size);
  298. }
  299. }
  300. static void uart_event(void *opaque, int event)
  301. {
  302. CadenceUARTState *s = opaque;
  303. uint8_t buf = '\0';
  304. if (event == CHR_EVENT_BREAK) {
  305. uart_write_rx_fifo(opaque, &buf, 1);
  306. }
  307. uart_update_status(s);
  308. }
  309. static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
  310. {
  311. if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
  312. return;
  313. }
  314. if (s->rx_count) {
  315. uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
  316. s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
  317. *c = s->rx_fifo[rx_rpos];
  318. s->rx_count--;
  319. qemu_chr_fe_accept_input(&s->chr);
  320. } else {
  321. *c = 0;
  322. }
  323. uart_update_status(s);
  324. }
  325. static void uart_write(void *opaque, hwaddr offset,
  326. uint64_t value, unsigned size)
  327. {
  328. CadenceUARTState *s = opaque;
  329. DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
  330. offset >>= 2;
  331. if (offset >= CADENCE_UART_R_MAX) {
  332. return;
  333. }
  334. switch (offset) {
  335. case R_IER: /* ier (wts imr) */
  336. s->r[R_IMR] |= value;
  337. break;
  338. case R_IDR: /* idr (wtc imr) */
  339. s->r[R_IMR] &= ~value;
  340. break;
  341. case R_IMR: /* imr (read only) */
  342. break;
  343. case R_CISR: /* cisr (wtc) */
  344. s->r[R_CISR] &= ~value;
  345. break;
  346. case R_TX_RX: /* UARTDR */
  347. switch (s->r[R_MR] & UART_MR_CHMODE) {
  348. case NORMAL_MODE:
  349. uart_write_tx_fifo(s, (uint8_t *) &value, 1);
  350. break;
  351. case LOCAL_LOOPBACK:
  352. uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
  353. break;
  354. }
  355. break;
  356. case R_BRGR: /* Baud rate generator */
  357. if (value >= 0x01) {
  358. s->r[offset] = value & 0xFFFF;
  359. }
  360. break;
  361. case R_BDIV: /* Baud rate divider */
  362. if (value >= 0x04) {
  363. s->r[offset] = value & 0xFF;
  364. }
  365. break;
  366. default:
  367. s->r[offset] = value;
  368. }
  369. switch (offset) {
  370. case R_CR:
  371. uart_ctrl_update(s);
  372. break;
  373. case R_MR:
  374. uart_parameters_setup(s);
  375. break;
  376. }
  377. uart_update_status(s);
  378. }
  379. static uint64_t uart_read(void *opaque, hwaddr offset,
  380. unsigned size)
  381. {
  382. CadenceUARTState *s = opaque;
  383. uint32_t c = 0;
  384. offset >>= 2;
  385. if (offset >= CADENCE_UART_R_MAX) {
  386. c = 0;
  387. } else if (offset == R_TX_RX) {
  388. uart_read_rx_fifo(s, &c);
  389. } else {
  390. c = s->r[offset];
  391. }
  392. DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
  393. return c;
  394. }
  395. static const MemoryRegionOps uart_ops = {
  396. .read = uart_read,
  397. .write = uart_write,
  398. .endianness = DEVICE_NATIVE_ENDIAN,
  399. };
  400. static void cadence_uart_reset(DeviceState *dev)
  401. {
  402. CadenceUARTState *s = CADENCE_UART(dev);
  403. s->r[R_CR] = 0x00000128;
  404. s->r[R_IMR] = 0;
  405. s->r[R_CISR] = 0;
  406. s->r[R_RTRIG] = 0x00000020;
  407. s->r[R_BRGR] = 0x0000028B;
  408. s->r[R_BDIV] = 0x0000000F;
  409. s->r[R_TTRIG] = 0x00000020;
  410. uart_rx_reset(s);
  411. uart_tx_reset(s);
  412. uart_update_status(s);
  413. }
  414. static void cadence_uart_realize(DeviceState *dev, Error **errp)
  415. {
  416. CadenceUARTState *s = CADENCE_UART(dev);
  417. s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
  418. fifo_trigger_update, s);
  419. qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
  420. uart_event, NULL, s, NULL, true);
  421. }
  422. static void cadence_uart_init(Object *obj)
  423. {
  424. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  425. CadenceUARTState *s = CADENCE_UART(obj);
  426. memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
  427. sysbus_init_mmio(sbd, &s->iomem);
  428. sysbus_init_irq(sbd, &s->irq);
  429. s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
  430. }
  431. static int cadence_uart_post_load(void *opaque, int version_id)
  432. {
  433. CadenceUARTState *s = opaque;
  434. /* Ensure these two aren't invalid numbers */
  435. if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
  436. s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
  437. /* Value is invalid, abort */
  438. return 1;
  439. }
  440. uart_parameters_setup(s);
  441. uart_update_status(s);
  442. return 0;
  443. }
  444. static const VMStateDescription vmstate_cadence_uart = {
  445. .name = "cadence_uart",
  446. .version_id = 2,
  447. .minimum_version_id = 2,
  448. .post_load = cadence_uart_post_load,
  449. .fields = (VMStateField[]) {
  450. VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
  451. VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
  452. CADENCE_UART_RX_FIFO_SIZE),
  453. VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
  454. CADENCE_UART_TX_FIFO_SIZE),
  455. VMSTATE_UINT32(rx_count, CadenceUARTState),
  456. VMSTATE_UINT32(tx_count, CadenceUARTState),
  457. VMSTATE_UINT32(rx_wpos, CadenceUARTState),
  458. VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
  459. VMSTATE_END_OF_LIST()
  460. }
  461. };
  462. static Property cadence_uart_properties[] = {
  463. DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
  464. DEFINE_PROP_END_OF_LIST(),
  465. };
  466. static void cadence_uart_class_init(ObjectClass *klass, void *data)
  467. {
  468. DeviceClass *dc = DEVICE_CLASS(klass);
  469. dc->realize = cadence_uart_realize;
  470. dc->vmsd = &vmstate_cadence_uart;
  471. dc->reset = cadence_uart_reset;
  472. dc->props = cadence_uart_properties;
  473. }
  474. static const TypeInfo cadence_uart_info = {
  475. .name = TYPE_CADENCE_UART,
  476. .parent = TYPE_SYS_BUS_DEVICE,
  477. .instance_size = sizeof(CadenceUARTState),
  478. .instance_init = cadence_uart_init,
  479. .class_init = cadence_uart_class_init,
  480. };
  481. static void cadence_uart_register_types(void)
  482. {
  483. type_register_static(&cadence_uart_info);
  484. }
  485. type_init(cadence_uart_register_types)