2
0

virt-acpi-build.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /* Support for generating ACPI tables and passing them to Guests
  2. *
  3. * ARM virt ACPI generation
  4. *
  5. * Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
  6. * Copyright (C) 2006 Fabrice Bellard
  7. * Copyright (C) 2013 Red Hat Inc
  8. *
  9. * Author: Michael S. Tsirkin <mst@redhat.com>
  10. *
  11. * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
  12. *
  13. * Author: Shannon Zhao <zhaoshenglong@huawei.com>
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, see <http://www.gnu.org/licenses/>.
  25. */
  26. #include "qemu/osdep.h"
  27. #include "qapi/error.h"
  28. #include "qemu/bitmap.h"
  29. #include "trace.h"
  30. #include "hw/core/cpu.h"
  31. #include "target/arm/cpu.h"
  32. #include "hw/acpi/acpi-defs.h"
  33. #include "hw/acpi/acpi.h"
  34. #include "hw/nvram/fw_cfg.h"
  35. #include "hw/acpi/bios-linker-loader.h"
  36. #include "hw/acpi/aml-build.h"
  37. #include "hw/acpi/utils.h"
  38. #include "hw/acpi/pci.h"
  39. #include "hw/acpi/memory_hotplug.h"
  40. #include "hw/acpi/generic_event_device.h"
  41. #include "hw/pci/pcie_host.h"
  42. #include "hw/pci/pci.h"
  43. #include "hw/arm/virt.h"
  44. #include "sysemu/numa.h"
  45. #include "sysemu/reset.h"
  46. #include "kvm_arm.h"
  47. #include "migration/vmstate.h"
  48. #define ARM_SPI_BASE 32
  49. static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
  50. {
  51. uint16_t i;
  52. for (i = 0; i < smp_cpus; i++) {
  53. Aml *dev = aml_device("C%.03X", i);
  54. aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
  55. aml_append(dev, aml_name_decl("_UID", aml_int(i)));
  56. aml_append(scope, dev);
  57. }
  58. }
  59. static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
  60. uint32_t uart_irq)
  61. {
  62. Aml *dev = aml_device("COM0");
  63. aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
  64. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  65. Aml *crs = aml_resource_template();
  66. aml_append(crs, aml_memory32_fixed(uart_memmap->base,
  67. uart_memmap->size, AML_READ_WRITE));
  68. aml_append(crs,
  69. aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  70. AML_EXCLUSIVE, &uart_irq, 1));
  71. aml_append(dev, aml_name_decl("_CRS", crs));
  72. /* The _ADR entry is used to link this device to the UART described
  73. * in the SPCR table, i.e. SPCR.base_address.address == _ADR.
  74. */
  75. aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base)));
  76. aml_append(scope, dev);
  77. }
  78. static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
  79. {
  80. Aml *dev = aml_device("FWCF");
  81. aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
  82. /* device present, functioning, decoding, not shown in UI */
  83. aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
  84. aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
  85. Aml *crs = aml_resource_template();
  86. aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
  87. fw_cfg_memmap->size, AML_READ_WRITE));
  88. aml_append(dev, aml_name_decl("_CRS", crs));
  89. aml_append(scope, dev);
  90. }
  91. static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
  92. {
  93. Aml *dev, *crs;
  94. hwaddr base = flash_memmap->base;
  95. hwaddr size = flash_memmap->size / 2;
  96. dev = aml_device("FLS0");
  97. aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
  98. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  99. crs = aml_resource_template();
  100. aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
  101. aml_append(dev, aml_name_decl("_CRS", crs));
  102. aml_append(scope, dev);
  103. dev = aml_device("FLS1");
  104. aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
  105. aml_append(dev, aml_name_decl("_UID", aml_int(1)));
  106. crs = aml_resource_template();
  107. aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
  108. aml_append(dev, aml_name_decl("_CRS", crs));
  109. aml_append(scope, dev);
  110. }
  111. static void acpi_dsdt_add_virtio(Aml *scope,
  112. const MemMapEntry *virtio_mmio_memmap,
  113. uint32_t mmio_irq, int num)
  114. {
  115. hwaddr base = virtio_mmio_memmap->base;
  116. hwaddr size = virtio_mmio_memmap->size;
  117. int i;
  118. for (i = 0; i < num; i++) {
  119. uint32_t irq = mmio_irq + i;
  120. Aml *dev = aml_device("VR%02u", i);
  121. aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
  122. aml_append(dev, aml_name_decl("_UID", aml_int(i)));
  123. aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
  124. Aml *crs = aml_resource_template();
  125. aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
  126. aml_append(crs,
  127. aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  128. AML_EXCLUSIVE, &irq, 1));
  129. aml_append(dev, aml_name_decl("_CRS", crs));
  130. aml_append(scope, dev);
  131. base += size;
  132. }
  133. }
  134. static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
  135. uint32_t irq, bool use_highmem, bool highmem_ecam)
  136. {
  137. int ecam_id = VIRT_ECAM_ID(highmem_ecam);
  138. Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf;
  139. int i, bus_no;
  140. hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base;
  141. hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size;
  142. hwaddr base_pio = memmap[VIRT_PCIE_PIO].base;
  143. hwaddr size_pio = memmap[VIRT_PCIE_PIO].size;
  144. hwaddr base_ecam = memmap[ecam_id].base;
  145. hwaddr size_ecam = memmap[ecam_id].size;
  146. int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
  147. Aml *dev = aml_device("%s", "PCI0");
  148. aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08")));
  149. aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03")));
  150. aml_append(dev, aml_name_decl("_SEG", aml_int(0)));
  151. aml_append(dev, aml_name_decl("_BBN", aml_int(0)));
  152. aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
  153. aml_append(dev, aml_name_decl("_UID", aml_string("PCI0")));
  154. aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
  155. aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
  156. /* Declare the PCI Routing Table. */
  157. Aml *rt_pkg = aml_varpackage(nr_pcie_buses * PCI_NUM_PINS);
  158. for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) {
  159. for (i = 0; i < PCI_NUM_PINS; i++) {
  160. int gsi = (i + bus_no) % PCI_NUM_PINS;
  161. Aml *pkg = aml_package(4);
  162. aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF));
  163. aml_append(pkg, aml_int(i));
  164. aml_append(pkg, aml_name("GSI%d", gsi));
  165. aml_append(pkg, aml_int(0));
  166. aml_append(rt_pkg, pkg);
  167. }
  168. }
  169. aml_append(dev, aml_name_decl("_PRT", rt_pkg));
  170. /* Create GSI link device */
  171. for (i = 0; i < PCI_NUM_PINS; i++) {
  172. uint32_t irqs = irq + i;
  173. Aml *dev_gsi = aml_device("GSI%d", i);
  174. aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F")));
  175. aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0)));
  176. crs = aml_resource_template();
  177. aml_append(crs,
  178. aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  179. AML_EXCLUSIVE, &irqs, 1));
  180. aml_append(dev_gsi, aml_name_decl("_PRS", crs));
  181. crs = aml_resource_template();
  182. aml_append(crs,
  183. aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  184. AML_EXCLUSIVE, &irqs, 1));
  185. aml_append(dev_gsi, aml_name_decl("_CRS", crs));
  186. method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
  187. aml_append(dev_gsi, method);
  188. aml_append(dev, dev_gsi);
  189. }
  190. method = aml_method("_CBA", 0, AML_NOTSERIALIZED);
  191. aml_append(method, aml_return(aml_int(base_ecam)));
  192. aml_append(dev, method);
  193. method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
  194. Aml *rbuf = aml_resource_template();
  195. aml_append(rbuf,
  196. aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
  197. 0x0000, 0x0000, nr_pcie_buses - 1, 0x0000,
  198. nr_pcie_buses));
  199. aml_append(rbuf,
  200. aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
  201. AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio,
  202. base_mmio + size_mmio - 1, 0x0000, size_mmio));
  203. aml_append(rbuf,
  204. aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
  205. AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio,
  206. size_pio));
  207. if (use_highmem) {
  208. hwaddr base_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].base;
  209. hwaddr size_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].size;
  210. aml_append(rbuf,
  211. aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
  212. AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000,
  213. base_mmio_high,
  214. base_mmio_high + size_mmio_high - 1, 0x0000,
  215. size_mmio_high));
  216. }
  217. aml_append(method, aml_name_decl("RBUF", rbuf));
  218. aml_append(method, aml_return(rbuf));
  219. aml_append(dev, method);
  220. /* Declare an _OSC (OS Control Handoff) method */
  221. aml_append(dev, aml_name_decl("SUPP", aml_int(0)));
  222. aml_append(dev, aml_name_decl("CTRL", aml_int(0)));
  223. method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
  224. aml_append(method,
  225. aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
  226. /* PCI Firmware Specification 3.0
  227. * 4.5.1. _OSC Interface for PCI Host Bridge Devices
  228. * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
  229. * identified by the Universal Unique IDentifier (UUID)
  230. * 33DB4D5B-1FF7-401C-9657-7441C03DD766
  231. */
  232. UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
  233. ifctx = aml_if(aml_equal(aml_arg(0), UUID));
  234. aml_append(ifctx,
  235. aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
  236. aml_append(ifctx,
  237. aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
  238. aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP")));
  239. aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL")));
  240. aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL),
  241. aml_name("CTRL")));
  242. ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
  243. aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL),
  244. aml_name("CDW1")));
  245. aml_append(ifctx, ifctx1);
  246. ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
  247. aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL),
  248. aml_name("CDW1")));
  249. aml_append(ifctx, ifctx1);
  250. aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3")));
  251. aml_append(ifctx, aml_return(aml_arg(3)));
  252. aml_append(method, ifctx);
  253. elsectx = aml_else();
  254. aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL),
  255. aml_name("CDW1")));
  256. aml_append(elsectx, aml_return(aml_arg(3)));
  257. aml_append(method, elsectx);
  258. aml_append(dev, method);
  259. method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
  260. /* PCI Firmware Specification 3.0
  261. * 4.6.1. _DSM for PCI Express Slot Information
  262. * The UUID in _DSM in this context is
  263. * {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
  264. */
  265. UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
  266. ifctx = aml_if(aml_equal(aml_arg(0), UUID));
  267. ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0)));
  268. uint8_t byte_list[1] = {1};
  269. buf = aml_buffer(1, byte_list);
  270. aml_append(ifctx1, aml_return(buf));
  271. aml_append(ifctx, ifctx1);
  272. aml_append(method, ifctx);
  273. byte_list[0] = 0;
  274. buf = aml_buffer(1, byte_list);
  275. aml_append(method, aml_return(buf));
  276. aml_append(dev, method);
  277. Aml *dev_rp0 = aml_device("%s", "RP0");
  278. aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0)));
  279. aml_append(dev, dev_rp0);
  280. Aml *dev_res0 = aml_device("%s", "RES0");
  281. aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02")));
  282. crs = aml_resource_template();
  283. aml_append(crs,
  284. aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
  285. AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam,
  286. base_ecam + size_ecam - 1, 0x0000, size_ecam));
  287. aml_append(dev_res0, aml_name_decl("_CRS", crs));
  288. aml_append(dev, dev_res0);
  289. aml_append(scope, dev);
  290. }
  291. static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
  292. uint32_t gpio_irq)
  293. {
  294. Aml *dev = aml_device("GPO0");
  295. aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
  296. aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
  297. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  298. Aml *crs = aml_resource_template();
  299. aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
  300. AML_READ_WRITE));
  301. aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  302. AML_EXCLUSIVE, &gpio_irq, 1));
  303. aml_append(dev, aml_name_decl("_CRS", crs));
  304. Aml *aei = aml_resource_template();
  305. /* Pin 3 for power button */
  306. const uint32_t pin_list[1] = {3};
  307. aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
  308. AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
  309. "GPO0", NULL, 0));
  310. aml_append(dev, aml_name_decl("_AEI", aei));
  311. /* _E03 is handle for power button */
  312. Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
  313. aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
  314. aml_int(0x80)));
  315. aml_append(dev, method);
  316. aml_append(scope, dev);
  317. }
  318. static void acpi_dsdt_add_power_button(Aml *scope)
  319. {
  320. Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE);
  321. aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C")));
  322. aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
  323. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  324. aml_append(scope, dev);
  325. }
  326. static void
  327. build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  328. {
  329. int nb_nodes, iort_start = table_data->len;
  330. AcpiIortIdMapping *idmap;
  331. AcpiIortItsGroup *its;
  332. AcpiIortTable *iort;
  333. AcpiIortSmmu3 *smmu;
  334. size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
  335. AcpiIortRC *rc;
  336. iort = acpi_data_push(table_data, sizeof(*iort));
  337. if (vms->iommu == VIRT_IOMMU_SMMUV3) {
  338. nb_nodes = 3; /* RC, ITS, SMMUv3 */
  339. } else {
  340. nb_nodes = 2; /* RC, ITS */
  341. }
  342. iort_length = sizeof(*iort);
  343. iort->node_count = cpu_to_le32(nb_nodes);
  344. /*
  345. * Use a copy in case table_data->data moves during acpi_data_push
  346. * operations.
  347. */
  348. iort_node_offset = sizeof(*iort);
  349. iort->node_offset = cpu_to_le32(iort_node_offset);
  350. /* ITS group node */
  351. node_size = sizeof(*its) + sizeof(uint32_t);
  352. iort_length += node_size;
  353. its = acpi_data_push(table_data, node_size);
  354. its->type = ACPI_IORT_NODE_ITS_GROUP;
  355. its->length = cpu_to_le16(node_size);
  356. its->its_count = cpu_to_le32(1);
  357. its->identifiers[0] = 0; /* MADT translation_id */
  358. if (vms->iommu == VIRT_IOMMU_SMMUV3) {
  359. int irq = vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE;
  360. /* SMMUv3 node */
  361. smmu_offset = iort_node_offset + node_size;
  362. node_size = sizeof(*smmu) + sizeof(*idmap);
  363. iort_length += node_size;
  364. smmu = acpi_data_push(table_data, node_size);
  365. smmu->type = ACPI_IORT_NODE_SMMU_V3;
  366. smmu->length = cpu_to_le16(node_size);
  367. smmu->mapping_count = cpu_to_le32(1);
  368. smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
  369. smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
  370. smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
  371. smmu->event_gsiv = cpu_to_le32(irq);
  372. smmu->pri_gsiv = cpu_to_le32(irq + 1);
  373. smmu->gerr_gsiv = cpu_to_le32(irq + 2);
  374. smmu->sync_gsiv = cpu_to_le32(irq + 3);
  375. /* Identity RID mapping covering the whole input RID range */
  376. idmap = &smmu->id_mapping_array[0];
  377. idmap->input_base = 0;
  378. idmap->id_count = cpu_to_le32(0xFFFF);
  379. idmap->output_base = 0;
  380. /* output IORT node is the ITS group node (the first node) */
  381. idmap->output_reference = cpu_to_le32(iort_node_offset);
  382. }
  383. /* Root Complex Node */
  384. node_size = sizeof(*rc) + sizeof(*idmap);
  385. iort_length += node_size;
  386. rc = acpi_data_push(table_data, node_size);
  387. rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
  388. rc->length = cpu_to_le16(node_size);
  389. rc->mapping_count = cpu_to_le32(1);
  390. rc->mapping_offset = cpu_to_le32(sizeof(*rc));
  391. /* fully coherent device */
  392. rc->memory_properties.cache_coherency = cpu_to_le32(1);
  393. rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
  394. rc->pci_segment_number = 0; /* MCFG pci_segment */
  395. /* Identity RID mapping covering the whole input RID range */
  396. idmap = &rc->id_mapping_array[0];
  397. idmap->input_base = 0;
  398. idmap->id_count = cpu_to_le32(0xFFFF);
  399. idmap->output_base = 0;
  400. if (vms->iommu == VIRT_IOMMU_SMMUV3) {
  401. /* output IORT node is the smmuv3 node */
  402. idmap->output_reference = cpu_to_le32(smmu_offset);
  403. } else {
  404. /* output IORT node is the ITS group node (the first node) */
  405. idmap->output_reference = cpu_to_le32(iort_node_offset);
  406. }
  407. /*
  408. * Update the pointer address in case table_data->data moves during above
  409. * acpi_data_push operations.
  410. */
  411. iort = (AcpiIortTable *)(table_data->data + iort_start);
  412. iort->length = cpu_to_le32(iort_length);
  413. build_header(linker, table_data, (void *)(table_data->data + iort_start),
  414. "IORT", table_data->len - iort_start, 0, NULL, NULL);
  415. }
  416. static void
  417. build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  418. {
  419. AcpiSerialPortConsoleRedirection *spcr;
  420. const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
  421. int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
  422. int spcr_start = table_data->len;
  423. spcr = acpi_data_push(table_data, sizeof(*spcr));
  424. spcr->interface_type = 0x3; /* ARM PL011 UART */
  425. spcr->base_address.space_id = AML_SYSTEM_MEMORY;
  426. spcr->base_address.bit_width = 8;
  427. spcr->base_address.bit_offset = 0;
  428. spcr->base_address.access_width = 1;
  429. spcr->base_address.address = cpu_to_le64(uart_memmap->base);
  430. spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
  431. spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */
  432. spcr->baud = 3; /* Baud Rate: 3 = 9600 */
  433. spcr->parity = 0; /* No Parity */
  434. spcr->stopbits = 1; /* 1 Stop bit */
  435. spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */
  436. spcr->term_type = 0; /* Terminal Type: 0 = VT100 */
  437. spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */
  438. spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */
  439. build_header(linker, table_data, (void *)(table_data->data + spcr_start),
  440. "SPCR", table_data->len - spcr_start, 2, NULL, NULL);
  441. }
  442. static void
  443. build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  444. {
  445. AcpiSystemResourceAffinityTable *srat;
  446. AcpiSratProcessorGiccAffinity *core;
  447. AcpiSratMemoryAffinity *numamem;
  448. int i, srat_start;
  449. uint64_t mem_base;
  450. MachineClass *mc = MACHINE_GET_CLASS(vms);
  451. MachineState *ms = MACHINE(vms);
  452. const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(ms);
  453. srat_start = table_data->len;
  454. srat = acpi_data_push(table_data, sizeof(*srat));
  455. srat->reserved1 = cpu_to_le32(1);
  456. for (i = 0; i < cpu_list->len; ++i) {
  457. core = acpi_data_push(table_data, sizeof(*core));
  458. core->type = ACPI_SRAT_PROCESSOR_GICC;
  459. core->length = sizeof(*core);
  460. core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
  461. core->acpi_processor_uid = cpu_to_le32(i);
  462. core->flags = cpu_to_le32(1);
  463. }
  464. mem_base = vms->memmap[VIRT_MEM].base;
  465. for (i = 0; i < ms->numa_state->num_nodes; ++i) {
  466. if (ms->numa_state->nodes[i].node_mem > 0) {
  467. numamem = acpi_data_push(table_data, sizeof(*numamem));
  468. build_srat_memory(numamem, mem_base,
  469. ms->numa_state->nodes[i].node_mem, i,
  470. MEM_AFFINITY_ENABLED);
  471. mem_base += ms->numa_state->nodes[i].node_mem;
  472. }
  473. }
  474. if (ms->device_memory) {
  475. numamem = acpi_data_push(table_data, sizeof *numamem);
  476. build_srat_memory(numamem, ms->device_memory->base,
  477. memory_region_size(&ms->device_memory->mr),
  478. ms->numa_state->num_nodes - 1,
  479. MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED);
  480. }
  481. build_header(linker, table_data, (void *)(table_data->data + srat_start),
  482. "SRAT", table_data->len - srat_start, 3, NULL, NULL);
  483. }
  484. /* GTDT */
  485. static void
  486. build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  487. {
  488. VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
  489. int gtdt_start = table_data->len;
  490. AcpiGenericTimerTable *gtdt;
  491. uint32_t irqflags;
  492. if (vmc->claim_edge_triggered_timers) {
  493. irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
  494. } else {
  495. irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
  496. }
  497. gtdt = acpi_data_push(table_data, sizeof *gtdt);
  498. /* The interrupt values are the same with the device tree when adding 16 */
  499. gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
  500. gtdt->secure_el1_flags = cpu_to_le32(irqflags);
  501. gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
  502. gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
  503. ACPI_GTDT_CAP_ALWAYS_ON);
  504. gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
  505. gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
  506. gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
  507. gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
  508. build_header(linker, table_data,
  509. (void *)(table_data->data + gtdt_start), "GTDT",
  510. table_data->len - gtdt_start, 2, NULL, NULL);
  511. }
  512. /* MADT */
  513. static void
  514. build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  515. {
  516. VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
  517. int madt_start = table_data->len;
  518. const MemMapEntry *memmap = vms->memmap;
  519. const int *irqmap = vms->irqmap;
  520. AcpiMultipleApicTable *madt;
  521. AcpiMadtGenericDistributor *gicd;
  522. AcpiMadtGenericMsiFrame *gic_msi;
  523. int i;
  524. madt = acpi_data_push(table_data, sizeof *madt);
  525. gicd = acpi_data_push(table_data, sizeof *gicd);
  526. gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
  527. gicd->length = sizeof(*gicd);
  528. gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
  529. gicd->version = vms->gic_version;
  530. for (i = 0; i < vms->smp_cpus; i++) {
  531. AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
  532. sizeof(*gicc));
  533. ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
  534. gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
  535. gicc->length = sizeof(*gicc);
  536. if (vms->gic_version == 2) {
  537. gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
  538. gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
  539. gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
  540. }
  541. gicc->cpu_interface_number = cpu_to_le32(i);
  542. gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
  543. gicc->uid = cpu_to_le32(i);
  544. gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
  545. if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
  546. gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
  547. }
  548. if (vms->virt) {
  549. gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
  550. }
  551. }
  552. if (vms->gic_version == 3) {
  553. AcpiMadtGenericTranslator *gic_its;
  554. int nb_redist_regions = virt_gicv3_redist_region_count(vms);
  555. AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
  556. sizeof *gicr);
  557. gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
  558. gicr->length = sizeof(*gicr);
  559. gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
  560. gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
  561. if (nb_redist_regions == 2) {
  562. gicr = acpi_data_push(table_data, sizeof(*gicr));
  563. gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
  564. gicr->length = sizeof(*gicr);
  565. gicr->base_address =
  566. cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base);
  567. gicr->range_length =
  568. cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size);
  569. }
  570. if (its_class_name() && !vmc->no_its) {
  571. gic_its = acpi_data_push(table_data, sizeof *gic_its);
  572. gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
  573. gic_its->length = sizeof(*gic_its);
  574. gic_its->translation_id = 0;
  575. gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
  576. }
  577. } else {
  578. gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
  579. gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
  580. gic_msi->length = sizeof(*gic_msi);
  581. gic_msi->gic_msi_frame_id = 0;
  582. gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
  583. gic_msi->flags = cpu_to_le32(1);
  584. gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
  585. gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
  586. }
  587. build_header(linker, table_data,
  588. (void *)(table_data->data + madt_start), "APIC",
  589. table_data->len - madt_start, 3, NULL, NULL);
  590. }
  591. /* FADT */
  592. static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
  593. VirtMachineState *vms, unsigned dsdt_tbl_offset)
  594. {
  595. /* ACPI v5.1 */
  596. AcpiFadtData fadt = {
  597. .rev = 5,
  598. .minor_ver = 1,
  599. .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
  600. .xdsdt_tbl_offset = &dsdt_tbl_offset,
  601. };
  602. switch (vms->psci_conduit) {
  603. case QEMU_PSCI_CONDUIT_DISABLED:
  604. fadt.arm_boot_arch = 0;
  605. break;
  606. case QEMU_PSCI_CONDUIT_HVC:
  607. fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
  608. ACPI_FADT_ARM_PSCI_USE_HVC;
  609. break;
  610. case QEMU_PSCI_CONDUIT_SMC:
  611. fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
  612. break;
  613. default:
  614. g_assert_not_reached();
  615. }
  616. build_fadt(table_data, linker, &fadt, NULL, NULL);
  617. }
  618. /* DSDT */
  619. static void
  620. build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  621. {
  622. Aml *scope, *dsdt;
  623. MachineState *ms = MACHINE(vms);
  624. const MemMapEntry *memmap = vms->memmap;
  625. const int *irqmap = vms->irqmap;
  626. dsdt = init_aml_allocator();
  627. /* Reserve space for header */
  628. acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
  629. /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
  630. * While UEFI can use libfdt to disable the RTC device node in the DTB that
  631. * it passes to the OS, it cannot modify AML. Therefore, we won't generate
  632. * the RTC ACPI device at all when using UEFI.
  633. */
  634. scope = aml_scope("\\_SB");
  635. acpi_dsdt_add_cpus(scope, vms->smp_cpus);
  636. acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
  637. (irqmap[VIRT_UART] + ARM_SPI_BASE));
  638. acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
  639. acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
  640. acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
  641. (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
  642. acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
  643. vms->highmem, vms->highmem_ecam);
  644. if (vms->acpi_dev) {
  645. build_ged_aml(scope, "\\_SB."GED_DEVICE,
  646. HOTPLUG_HANDLER(vms->acpi_dev),
  647. irqmap[VIRT_ACPI_GED] + ARM_SPI_BASE, AML_SYSTEM_MEMORY,
  648. memmap[VIRT_ACPI_GED].base);
  649. } else {
  650. acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
  651. (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
  652. }
  653. if (vms->acpi_dev) {
  654. uint32_t event = object_property_get_uint(OBJECT(vms->acpi_dev),
  655. "ged-event", &error_abort);
  656. if (event & ACPI_GED_MEM_HOTPLUG_EVT) {
  657. build_memory_hotplug_aml(scope, ms->ram_slots, "\\_SB", NULL,
  658. AML_SYSTEM_MEMORY,
  659. memmap[VIRT_PCDIMM_ACPI].base);
  660. }
  661. }
  662. acpi_dsdt_add_power_button(scope);
  663. aml_append(dsdt, scope);
  664. /* copy AML table into ACPI tables blob and patch header there */
  665. g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
  666. build_header(linker, table_data,
  667. (void *)(table_data->data + table_data->len - dsdt->buf->len),
  668. "DSDT", dsdt->buf->len, 2, NULL, NULL);
  669. free_aml_allocator();
  670. }
  671. typedef
  672. struct AcpiBuildState {
  673. /* Copy of table in RAM (for patching). */
  674. MemoryRegion *table_mr;
  675. MemoryRegion *rsdp_mr;
  676. MemoryRegion *linker_mr;
  677. /* Is table patched? */
  678. bool patched;
  679. } AcpiBuildState;
  680. static
  681. void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
  682. {
  683. VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
  684. GArray *table_offsets;
  685. unsigned dsdt, xsdt;
  686. GArray *tables_blob = tables->table_data;
  687. MachineState *ms = MACHINE(vms);
  688. table_offsets = g_array_new(false, true /* clear */,
  689. sizeof(uint32_t));
  690. bios_linker_loader_alloc(tables->linker,
  691. ACPI_BUILD_TABLE_FILE, tables_blob,
  692. 64, false /* high memory */);
  693. /* DSDT is pointed to by FADT */
  694. dsdt = tables_blob->len;
  695. build_dsdt(tables_blob, tables->linker, vms);
  696. /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
  697. acpi_add_table(table_offsets, tables_blob);
  698. build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
  699. acpi_add_table(table_offsets, tables_blob);
  700. build_madt(tables_blob, tables->linker, vms);
  701. acpi_add_table(table_offsets, tables_blob);
  702. build_gtdt(tables_blob, tables->linker, vms);
  703. acpi_add_table(table_offsets, tables_blob);
  704. {
  705. AcpiMcfgInfo mcfg = {
  706. .base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base,
  707. .size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size,
  708. };
  709. build_mcfg(tables_blob, tables->linker, &mcfg);
  710. }
  711. acpi_add_table(table_offsets, tables_blob);
  712. build_spcr(tables_blob, tables->linker, vms);
  713. if (ms->numa_state->num_nodes > 0) {
  714. acpi_add_table(table_offsets, tables_blob);
  715. build_srat(tables_blob, tables->linker, vms);
  716. if (ms->numa_state->have_numa_distance) {
  717. acpi_add_table(table_offsets, tables_blob);
  718. build_slit(tables_blob, tables->linker, ms);
  719. }
  720. }
  721. if (its_class_name() && !vmc->no_its) {
  722. acpi_add_table(table_offsets, tables_blob);
  723. build_iort(tables_blob, tables->linker, vms);
  724. }
  725. /* XSDT is pointed to by RSDP */
  726. xsdt = tables_blob->len;
  727. build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
  728. /* RSDP is in FSEG memory, so allocate it separately */
  729. {
  730. AcpiRsdpData rsdp_data = {
  731. .revision = 2,
  732. .oem_id = ACPI_BUILD_APPNAME6,
  733. .xsdt_tbl_offset = &xsdt,
  734. .rsdt_tbl_offset = NULL,
  735. };
  736. build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
  737. }
  738. /* Cleanup memory that's no longer used. */
  739. g_array_free(table_offsets, true);
  740. }
  741. static void acpi_ram_update(MemoryRegion *mr, GArray *data)
  742. {
  743. uint32_t size = acpi_data_len(data);
  744. /* Make sure RAM size is correct - in case it got changed
  745. * e.g. by migration */
  746. memory_region_ram_resize(mr, size, &error_abort);
  747. memcpy(memory_region_get_ram_ptr(mr), data->data, size);
  748. memory_region_set_dirty(mr, 0, size);
  749. }
  750. static void virt_acpi_build_update(void *build_opaque)
  751. {
  752. AcpiBuildState *build_state = build_opaque;
  753. AcpiBuildTables tables;
  754. /* No state to update or already patched? Nothing to do. */
  755. if (!build_state || build_state->patched) {
  756. return;
  757. }
  758. build_state->patched = true;
  759. acpi_build_tables_init(&tables);
  760. virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
  761. acpi_ram_update(build_state->table_mr, tables.table_data);
  762. acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
  763. acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
  764. acpi_build_tables_cleanup(&tables, true);
  765. }
  766. static void virt_acpi_build_reset(void *build_opaque)
  767. {
  768. AcpiBuildState *build_state = build_opaque;
  769. build_state->patched = false;
  770. }
  771. static const VMStateDescription vmstate_virt_acpi_build = {
  772. .name = "virt_acpi_build",
  773. .version_id = 1,
  774. .minimum_version_id = 1,
  775. .fields = (VMStateField[]) {
  776. VMSTATE_BOOL(patched, AcpiBuildState),
  777. VMSTATE_END_OF_LIST()
  778. },
  779. };
  780. void virt_acpi_setup(VirtMachineState *vms)
  781. {
  782. AcpiBuildTables tables;
  783. AcpiBuildState *build_state;
  784. if (!vms->fw_cfg) {
  785. trace_virt_acpi_setup();
  786. return;
  787. }
  788. if (!acpi_enabled) {
  789. trace_virt_acpi_setup();
  790. return;
  791. }
  792. build_state = g_malloc0(sizeof *build_state);
  793. acpi_build_tables_init(&tables);
  794. virt_acpi_build(vms, &tables);
  795. /* Now expose it all to Guest */
  796. build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update,
  797. build_state, tables.table_data,
  798. ACPI_BUILD_TABLE_FILE,
  799. ACPI_BUILD_TABLE_MAX_SIZE);
  800. assert(build_state->table_mr != NULL);
  801. build_state->linker_mr =
  802. acpi_add_rom_blob(virt_acpi_build_update, build_state,
  803. tables.linker->cmd_blob, "etc/table-loader", 0);
  804. fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
  805. acpi_data_len(tables.tcpalog));
  806. build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update,
  807. build_state, tables.rsdp,
  808. ACPI_BUILD_RSDP_FILE, 0);
  809. qemu_register_reset(virt_acpi_build_reset, build_state);
  810. virt_acpi_build_reset(build_state);
  811. vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
  812. /* Cleanup tables but don't free the memory: we track it
  813. * in build_state.
  814. */
  815. acpi_build_tables_cleanup(&tables, false);
  816. }