raspi.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. /*
  2. * Raspberry Pi emulation (c) 2012 Gregory Estrade
  3. * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
  4. *
  5. * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
  6. * Written by Andrew Baumann
  7. *
  8. * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
  9. * Upstream code cleanup (c) 2018 Pekka Enberg
  10. *
  11. * This code is licensed under the GNU GPLv2 and later.
  12. */
  13. #include "qemu/osdep.h"
  14. #include "qemu/units.h"
  15. #include "qapi/error.h"
  16. #include "cpu.h"
  17. #include "hw/arm/bcm2836.h"
  18. #include "qemu/error-report.h"
  19. #include "hw/boards.h"
  20. #include "hw/loader.h"
  21. #include "hw/arm/boot.h"
  22. #include "sysemu/sysemu.h"
  23. #define SMPBOOT_ADDR 0x300 /* this should leave enough space for ATAGS */
  24. #define MVBAR_ADDR 0x400 /* secure vectors */
  25. #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
  26. #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
  27. #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
  28. #define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */
  29. /* Table of Linux board IDs for different Pi versions */
  30. static const int raspi_boardid[] = {[1] = 0xc42, [2] = 0xc43, [3] = 0xc44};
  31. typedef struct RasPiState {
  32. BCM283XState soc;
  33. MemoryRegion ram;
  34. } RasPiState;
  35. static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
  36. {
  37. static const uint32_t smpboot[] = {
  38. 0xe1a0e00f, /* mov lr, pc */
  39. 0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
  40. 0xee100fb0, /* mrc p15, 0, r0, c0, c0, 5;get core ID */
  41. 0xe7e10050, /* ubfx r0, r0, #0, #2 ;extract LSB */
  42. 0xe59f5014, /* ldr r5, =0x400000CC ;load mbox base */
  43. 0xe320f001, /* 1: yield */
  44. 0xe7953200, /* ldr r3, [r5, r0, lsl #4] ;read mbox for our core*/
  45. 0xe3530000, /* cmp r3, #0 ;spin while zero */
  46. 0x0afffffb, /* beq 1b */
  47. 0xe7853200, /* str r3, [r5, r0, lsl #4] ;clear mbox */
  48. 0xe12fff13, /* bx r3 ;jump to target */
  49. 0x400000cc, /* (constant: mailbox 3 read/clear base) */
  50. };
  51. /* check that we don't overrun board setup vectors */
  52. QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
  53. /* check that board setup address is correctly relocated */
  54. QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
  55. || (BOARDSETUP_ADDR >> 4) >= 0x100);
  56. rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
  57. info->smp_loader_start,
  58. arm_boot_address_space(cpu, info));
  59. }
  60. static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
  61. {
  62. AddressSpace *as = arm_boot_address_space(cpu, info);
  63. /* Unlike the AArch32 version we don't need to call the board setup hook.
  64. * The mechanism for doing the spin-table is also entirely different.
  65. * We must have four 64-bit fields at absolute addresses
  66. * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
  67. * our CPUs, and which we must ensure are zero initialized before
  68. * the primary CPU goes into the kernel. We put these variables inside
  69. * a rom blob, so that the reset for ROM contents zeroes them for us.
  70. */
  71. static const uint32_t smpboot[] = {
  72. 0xd2801b05, /* mov x5, 0xd8 */
  73. 0xd53800a6, /* mrs x6, mpidr_el1 */
  74. 0x924004c6, /* and x6, x6, #0x3 */
  75. 0xd503205f, /* spin: wfe */
  76. 0xf86678a4, /* ldr x4, [x5,x6,lsl #3] */
  77. 0xb4ffffc4, /* cbz x4, spin */
  78. 0xd2800000, /* mov x0, #0x0 */
  79. 0xd2800001, /* mov x1, #0x0 */
  80. 0xd2800002, /* mov x2, #0x0 */
  81. 0xd2800003, /* mov x3, #0x0 */
  82. 0xd61f0080, /* br x4 */
  83. };
  84. static const uint64_t spintables[] = {
  85. 0, 0, 0, 0
  86. };
  87. rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
  88. info->smp_loader_start, as);
  89. rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
  90. SPINTABLE_ADDR, as);
  91. }
  92. static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
  93. {
  94. arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
  95. }
  96. static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
  97. {
  98. CPUState *cs = CPU(cpu);
  99. cpu_set_pc(cs, info->smp_loader_start);
  100. }
  101. static void setup_boot(MachineState *machine, int version, size_t ram_size)
  102. {
  103. static struct arm_boot_info binfo;
  104. int r;
  105. binfo.board_id = raspi_boardid[version];
  106. binfo.ram_size = ram_size;
  107. binfo.nb_cpus = machine->smp.cpus;
  108. if (version <= 2) {
  109. /* The rpi1 and 2 require some custom setup code to run in Secure
  110. * mode before booting a kernel (to set up the SMC vectors so
  111. * that we get a no-op SMC; this is used by Linux to call the
  112. * firmware for some cache maintenance operations.
  113. * The rpi3 doesn't need this.
  114. */
  115. binfo.board_setup_addr = BOARDSETUP_ADDR;
  116. binfo.write_board_setup = write_board_setup;
  117. binfo.secure_board_setup = true;
  118. binfo.secure_boot = true;
  119. }
  120. /* Pi2 and Pi3 requires SMP setup */
  121. if (version >= 2) {
  122. binfo.smp_loader_start = SMPBOOT_ADDR;
  123. if (version == 2) {
  124. binfo.write_secondary_boot = write_smpboot;
  125. } else {
  126. binfo.write_secondary_boot = write_smpboot64;
  127. }
  128. binfo.secondary_cpu_reset_hook = reset_secondary;
  129. }
  130. /* If the user specified a "firmware" image (e.g. UEFI), we bypass
  131. * the normal Linux boot process
  132. */
  133. if (machine->firmware) {
  134. hwaddr firmware_addr = version == 3 ? FIRMWARE_ADDR_3 : FIRMWARE_ADDR_2;
  135. /* load the firmware image (typically kernel.img) */
  136. r = load_image_targphys(machine->firmware, firmware_addr,
  137. ram_size - firmware_addr);
  138. if (r < 0) {
  139. error_report("Failed to load firmware from %s", machine->firmware);
  140. exit(1);
  141. }
  142. binfo.entry = firmware_addr;
  143. binfo.firmware_loaded = true;
  144. }
  145. arm_load_kernel(ARM_CPU(first_cpu), machine, &binfo);
  146. }
  147. static void raspi_init(MachineState *machine, int version)
  148. {
  149. RasPiState *s = g_new0(RasPiState, 1);
  150. uint32_t vcram_size;
  151. DriveInfo *di;
  152. BlockBackend *blk;
  153. BusState *bus;
  154. DeviceState *carddev;
  155. if (machine->ram_size > 1 * GiB) {
  156. error_report("Requested ram size is too large for this machine: "
  157. "maximum is 1GB");
  158. exit(1);
  159. }
  160. object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
  161. version == 3 ? TYPE_BCM2837 : TYPE_BCM2836,
  162. &error_abort, NULL);
  163. /* Allocate and map RAM */
  164. memory_region_allocate_system_memory(&s->ram, OBJECT(machine), "ram",
  165. machine->ram_size);
  166. /* FIXME: Remove when we have custom CPU address space support */
  167. memory_region_add_subregion_overlap(get_system_memory(), 0, &s->ram, 0);
  168. /* Setup the SOC */
  169. object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(&s->ram),
  170. &error_abort);
  171. object_property_set_int(OBJECT(&s->soc), machine->smp.cpus, "enabled-cpus",
  172. &error_abort);
  173. int board_rev = version == 3 ? 0xa02082 : 0xa21041;
  174. object_property_set_int(OBJECT(&s->soc), board_rev, "board-rev",
  175. &error_abort);
  176. object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_abort);
  177. /* Create and plug in the SD cards */
  178. di = drive_get_next(IF_SD);
  179. blk = di ? blk_by_legacy_dinfo(di) : NULL;
  180. bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
  181. if (bus == NULL) {
  182. error_report("No SD bus found in SOC object");
  183. exit(1);
  184. }
  185. carddev = qdev_create(bus, TYPE_SD_CARD);
  186. qdev_prop_set_drive(carddev, "drive", blk, &error_fatal);
  187. object_property_set_bool(OBJECT(carddev), true, "realized", &error_fatal);
  188. vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
  189. &error_abort);
  190. setup_boot(machine, version, machine->ram_size - vcram_size);
  191. }
  192. static void raspi2_init(MachineState *machine)
  193. {
  194. raspi_init(machine, 2);
  195. }
  196. static void raspi2_machine_init(MachineClass *mc)
  197. {
  198. mc->desc = "Raspberry Pi 2";
  199. mc->init = raspi2_init;
  200. mc->block_default_type = IF_SD;
  201. mc->no_parallel = 1;
  202. mc->no_floppy = 1;
  203. mc->no_cdrom = 1;
  204. mc->max_cpus = BCM283X_NCPUS;
  205. mc->min_cpus = BCM283X_NCPUS;
  206. mc->default_cpus = BCM283X_NCPUS;
  207. mc->default_ram_size = 1 * GiB;
  208. mc->ignore_memory_transaction_failures = true;
  209. };
  210. DEFINE_MACHINE("raspi2", raspi2_machine_init)
  211. #ifdef TARGET_AARCH64
  212. static void raspi3_init(MachineState *machine)
  213. {
  214. raspi_init(machine, 3);
  215. }
  216. static void raspi3_machine_init(MachineClass *mc)
  217. {
  218. mc->desc = "Raspberry Pi 3";
  219. mc->init = raspi3_init;
  220. mc->block_default_type = IF_SD;
  221. mc->no_parallel = 1;
  222. mc->no_floppy = 1;
  223. mc->no_cdrom = 1;
  224. mc->max_cpus = BCM283X_NCPUS;
  225. mc->min_cpus = BCM283X_NCPUS;
  226. mc->default_cpus = BCM283X_NCPUS;
  227. mc->default_ram_size = 1 * GiB;
  228. }
  229. DEFINE_MACHINE("raspi3", raspi3_machine_init)
  230. #endif