omap1.c 116 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087
  1. /*
  2. * TI OMAP processors emulation.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/error-report.h"
  21. #include "qemu/main-loop.h"
  22. #include "qapi/error.h"
  23. #include "qemu-common.h"
  24. #include "cpu.h"
  25. #include "exec/address-spaces.h"
  26. #include "hw/boards.h"
  27. #include "hw/hw.h"
  28. #include "hw/irq.h"
  29. #include "hw/qdev-properties.h"
  30. #include "hw/arm/boot.h"
  31. #include "hw/arm/omap.h"
  32. #include "sysemu/blockdev.h"
  33. #include "sysemu/sysemu.h"
  34. #include "hw/arm/soc_dma.h"
  35. #include "sysemu/qtest.h"
  36. #include "sysemu/reset.h"
  37. #include "sysemu/runstate.h"
  38. #include "qemu/range.h"
  39. #include "hw/sysbus.h"
  40. #include "qemu/cutils.h"
  41. #include "qemu/bcd.h"
  42. static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
  43. {
  44. qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
  45. funcname, 8 * sz, addr);
  46. }
  47. /* Should signal the TCMI/GPMC */
  48. uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  49. {
  50. uint8_t ret;
  51. omap_log_badwidth(__func__, addr, 1);
  52. cpu_physical_memory_read(addr, &ret, 1);
  53. return ret;
  54. }
  55. void omap_badwidth_write8(void *opaque, hwaddr addr,
  56. uint32_t value)
  57. {
  58. uint8_t val8 = value;
  59. omap_log_badwidth(__func__, addr, 1);
  60. cpu_physical_memory_write(addr, &val8, 1);
  61. }
  62. uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  63. {
  64. uint16_t ret;
  65. omap_log_badwidth(__func__, addr, 2);
  66. cpu_physical_memory_read(addr, &ret, 2);
  67. return ret;
  68. }
  69. void omap_badwidth_write16(void *opaque, hwaddr addr,
  70. uint32_t value)
  71. {
  72. uint16_t val16 = value;
  73. omap_log_badwidth(__func__, addr, 2);
  74. cpu_physical_memory_write(addr, &val16, 2);
  75. }
  76. uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  77. {
  78. uint32_t ret;
  79. omap_log_badwidth(__func__, addr, 4);
  80. cpu_physical_memory_read(addr, &ret, 4);
  81. return ret;
  82. }
  83. void omap_badwidth_write32(void *opaque, hwaddr addr,
  84. uint32_t value)
  85. {
  86. omap_log_badwidth(__func__, addr, 4);
  87. cpu_physical_memory_write(addr, &value, 4);
  88. }
  89. /* MPU OS timers */
  90. struct omap_mpu_timer_s {
  91. MemoryRegion iomem;
  92. qemu_irq irq;
  93. omap_clk clk;
  94. uint32_t val;
  95. int64_t time;
  96. QEMUTimer *timer;
  97. QEMUBH *tick;
  98. int64_t rate;
  99. int it_ena;
  100. int enable;
  101. int ptv;
  102. int ar;
  103. int st;
  104. uint32_t reset_val;
  105. };
  106. static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
  107. {
  108. uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
  109. if (timer->st && timer->enable && timer->rate)
  110. return timer->val - muldiv64(distance >> (timer->ptv + 1),
  111. timer->rate, NANOSECONDS_PER_SECOND);
  112. else
  113. return timer->val;
  114. }
  115. static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
  116. {
  117. timer->val = omap_timer_read(timer);
  118. timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  119. }
  120. static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
  121. {
  122. int64_t expires;
  123. if (timer->enable && timer->st && timer->rate) {
  124. timer->val = timer->reset_val; /* Should skip this on clk enable */
  125. expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
  126. NANOSECONDS_PER_SECOND, timer->rate);
  127. /* If timer expiry would be sooner than in about 1 ms and
  128. * auto-reload isn't set, then fire immediately. This is a hack
  129. * to make systems like PalmOS run in acceptable time. PalmOS
  130. * sets the interval to a very low value and polls the status bit
  131. * in a busy loop when it wants to sleep just a couple of CPU
  132. * ticks. */
  133. if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
  134. timer_mod(timer->timer, timer->time + expires);
  135. } else {
  136. qemu_bh_schedule(timer->tick);
  137. }
  138. } else
  139. timer_del(timer->timer);
  140. }
  141. static void omap_timer_fire(void *opaque)
  142. {
  143. struct omap_mpu_timer_s *timer = opaque;
  144. if (!timer->ar) {
  145. timer->val = 0;
  146. timer->st = 0;
  147. }
  148. if (timer->it_ena)
  149. /* Edge-triggered irq */
  150. qemu_irq_pulse(timer->irq);
  151. }
  152. static void omap_timer_tick(void *opaque)
  153. {
  154. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  155. omap_timer_sync(timer);
  156. omap_timer_fire(timer);
  157. omap_timer_update(timer);
  158. }
  159. static void omap_timer_clk_update(void *opaque, int line, int on)
  160. {
  161. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  162. omap_timer_sync(timer);
  163. timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
  164. omap_timer_update(timer);
  165. }
  166. static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
  167. {
  168. omap_clk_adduser(timer->clk,
  169. qemu_allocate_irq(omap_timer_clk_update, timer, 0));
  170. timer->rate = omap_clk_getrate(timer->clk);
  171. }
  172. static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
  173. unsigned size)
  174. {
  175. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  176. if (size != 4) {
  177. return omap_badwidth_read32(opaque, addr);
  178. }
  179. switch (addr) {
  180. case 0x00: /* CNTL_TIMER */
  181. return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
  182. case 0x04: /* LOAD_TIM */
  183. break;
  184. case 0x08: /* READ_TIM */
  185. return omap_timer_read(s);
  186. }
  187. OMAP_BAD_REG(addr);
  188. return 0;
  189. }
  190. static void omap_mpu_timer_write(void *opaque, hwaddr addr,
  191. uint64_t value, unsigned size)
  192. {
  193. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  194. if (size != 4) {
  195. omap_badwidth_write32(opaque, addr, value);
  196. return;
  197. }
  198. switch (addr) {
  199. case 0x00: /* CNTL_TIMER */
  200. omap_timer_sync(s);
  201. s->enable = (value >> 5) & 1;
  202. s->ptv = (value >> 2) & 7;
  203. s->ar = (value >> 1) & 1;
  204. s->st = value & 1;
  205. omap_timer_update(s);
  206. return;
  207. case 0x04: /* LOAD_TIM */
  208. s->reset_val = value;
  209. return;
  210. case 0x08: /* READ_TIM */
  211. OMAP_RO_REG(addr);
  212. break;
  213. default:
  214. OMAP_BAD_REG(addr);
  215. }
  216. }
  217. static const MemoryRegionOps omap_mpu_timer_ops = {
  218. .read = omap_mpu_timer_read,
  219. .write = omap_mpu_timer_write,
  220. .endianness = DEVICE_LITTLE_ENDIAN,
  221. };
  222. static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
  223. {
  224. timer_del(s->timer);
  225. s->enable = 0;
  226. s->reset_val = 31337;
  227. s->val = 0;
  228. s->ptv = 0;
  229. s->ar = 0;
  230. s->st = 0;
  231. s->it_ena = 1;
  232. }
  233. static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
  234. hwaddr base,
  235. qemu_irq irq, omap_clk clk)
  236. {
  237. struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
  238. s->irq = irq;
  239. s->clk = clk;
  240. s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
  241. s->tick = qemu_bh_new(omap_timer_fire, s);
  242. omap_mpu_timer_reset(s);
  243. omap_timer_clk_setup(s);
  244. memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
  245. "omap-mpu-timer", 0x100);
  246. memory_region_add_subregion(system_memory, base, &s->iomem);
  247. return s;
  248. }
  249. /* Watchdog timer */
  250. struct omap_watchdog_timer_s {
  251. struct omap_mpu_timer_s timer;
  252. MemoryRegion iomem;
  253. uint8_t last_wr;
  254. int mode;
  255. int free;
  256. int reset;
  257. };
  258. static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
  259. unsigned size)
  260. {
  261. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  262. if (size != 2) {
  263. return omap_badwidth_read16(opaque, addr);
  264. }
  265. switch (addr) {
  266. case 0x00: /* CNTL_TIMER */
  267. return (s->timer.ptv << 9) | (s->timer.ar << 8) |
  268. (s->timer.st << 7) | (s->free << 1);
  269. case 0x04: /* READ_TIMER */
  270. return omap_timer_read(&s->timer);
  271. case 0x08: /* TIMER_MODE */
  272. return s->mode << 15;
  273. }
  274. OMAP_BAD_REG(addr);
  275. return 0;
  276. }
  277. static void omap_wd_timer_write(void *opaque, hwaddr addr,
  278. uint64_t value, unsigned size)
  279. {
  280. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  281. if (size != 2) {
  282. omap_badwidth_write16(opaque, addr, value);
  283. return;
  284. }
  285. switch (addr) {
  286. case 0x00: /* CNTL_TIMER */
  287. omap_timer_sync(&s->timer);
  288. s->timer.ptv = (value >> 9) & 7;
  289. s->timer.ar = (value >> 8) & 1;
  290. s->timer.st = (value >> 7) & 1;
  291. s->free = (value >> 1) & 1;
  292. omap_timer_update(&s->timer);
  293. break;
  294. case 0x04: /* LOAD_TIMER */
  295. s->timer.reset_val = value & 0xffff;
  296. break;
  297. case 0x08: /* TIMER_MODE */
  298. if (!s->mode && ((value >> 15) & 1))
  299. omap_clk_get(s->timer.clk);
  300. s->mode |= (value >> 15) & 1;
  301. if (s->last_wr == 0xf5) {
  302. if ((value & 0xff) == 0xa0) {
  303. if (s->mode) {
  304. s->mode = 0;
  305. omap_clk_put(s->timer.clk);
  306. }
  307. } else {
  308. /* XXX: on T|E hardware somehow this has no effect,
  309. * on Zire 71 it works as specified. */
  310. s->reset = 1;
  311. qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  312. }
  313. }
  314. s->last_wr = value & 0xff;
  315. break;
  316. default:
  317. OMAP_BAD_REG(addr);
  318. }
  319. }
  320. static const MemoryRegionOps omap_wd_timer_ops = {
  321. .read = omap_wd_timer_read,
  322. .write = omap_wd_timer_write,
  323. .endianness = DEVICE_NATIVE_ENDIAN,
  324. };
  325. static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
  326. {
  327. timer_del(s->timer.timer);
  328. if (!s->mode)
  329. omap_clk_get(s->timer.clk);
  330. s->mode = 1;
  331. s->free = 1;
  332. s->reset = 0;
  333. s->timer.enable = 1;
  334. s->timer.it_ena = 1;
  335. s->timer.reset_val = 0xffff;
  336. s->timer.val = 0;
  337. s->timer.st = 0;
  338. s->timer.ptv = 0;
  339. s->timer.ar = 0;
  340. omap_timer_update(&s->timer);
  341. }
  342. static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
  343. hwaddr base,
  344. qemu_irq irq, omap_clk clk)
  345. {
  346. struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
  347. s->timer.irq = irq;
  348. s->timer.clk = clk;
  349. s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
  350. omap_wd_timer_reset(s);
  351. omap_timer_clk_setup(&s->timer);
  352. memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
  353. "omap-wd-timer", 0x100);
  354. memory_region_add_subregion(memory, base, &s->iomem);
  355. return s;
  356. }
  357. /* 32-kHz timer */
  358. struct omap_32khz_timer_s {
  359. struct omap_mpu_timer_s timer;
  360. MemoryRegion iomem;
  361. };
  362. static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
  363. unsigned size)
  364. {
  365. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  366. int offset = addr & OMAP_MPUI_REG_MASK;
  367. if (size != 4) {
  368. return omap_badwidth_read32(opaque, addr);
  369. }
  370. switch (offset) {
  371. case 0x00: /* TVR */
  372. return s->timer.reset_val;
  373. case 0x04: /* TCR */
  374. return omap_timer_read(&s->timer);
  375. case 0x08: /* CR */
  376. return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
  377. default:
  378. break;
  379. }
  380. OMAP_BAD_REG(addr);
  381. return 0;
  382. }
  383. static void omap_os_timer_write(void *opaque, hwaddr addr,
  384. uint64_t value, unsigned size)
  385. {
  386. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  387. int offset = addr & OMAP_MPUI_REG_MASK;
  388. if (size != 4) {
  389. omap_badwidth_write32(opaque, addr, value);
  390. return;
  391. }
  392. switch (offset) {
  393. case 0x00: /* TVR */
  394. s->timer.reset_val = value & 0x00ffffff;
  395. break;
  396. case 0x04: /* TCR */
  397. OMAP_RO_REG(addr);
  398. break;
  399. case 0x08: /* CR */
  400. s->timer.ar = (value >> 3) & 1;
  401. s->timer.it_ena = (value >> 2) & 1;
  402. if (s->timer.st != (value & 1) || (value & 2)) {
  403. omap_timer_sync(&s->timer);
  404. s->timer.enable = value & 1;
  405. s->timer.st = value & 1;
  406. omap_timer_update(&s->timer);
  407. }
  408. break;
  409. default:
  410. OMAP_BAD_REG(addr);
  411. }
  412. }
  413. static const MemoryRegionOps omap_os_timer_ops = {
  414. .read = omap_os_timer_read,
  415. .write = omap_os_timer_write,
  416. .endianness = DEVICE_NATIVE_ENDIAN,
  417. };
  418. static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
  419. {
  420. timer_del(s->timer.timer);
  421. s->timer.enable = 0;
  422. s->timer.it_ena = 0;
  423. s->timer.reset_val = 0x00ffffff;
  424. s->timer.val = 0;
  425. s->timer.st = 0;
  426. s->timer.ptv = 0;
  427. s->timer.ar = 1;
  428. }
  429. static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
  430. hwaddr base,
  431. qemu_irq irq, omap_clk clk)
  432. {
  433. struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
  434. s->timer.irq = irq;
  435. s->timer.clk = clk;
  436. s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
  437. omap_os_timer_reset(s);
  438. omap_timer_clk_setup(&s->timer);
  439. memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
  440. "omap-os-timer", 0x800);
  441. memory_region_add_subregion(memory, base, &s->iomem);
  442. return s;
  443. }
  444. /* Ultra Low-Power Device Module */
  445. static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
  446. unsigned size)
  447. {
  448. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  449. uint16_t ret;
  450. if (size != 2) {
  451. return omap_badwidth_read16(opaque, addr);
  452. }
  453. switch (addr) {
  454. case 0x14: /* IT_STATUS */
  455. ret = s->ulpd_pm_regs[addr >> 2];
  456. s->ulpd_pm_regs[addr >> 2] = 0;
  457. qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  458. return ret;
  459. case 0x18: /* Reserved */
  460. case 0x1c: /* Reserved */
  461. case 0x20: /* Reserved */
  462. case 0x28: /* Reserved */
  463. case 0x2c: /* Reserved */
  464. OMAP_BAD_REG(addr);
  465. /* fall through */
  466. case 0x00: /* COUNTER_32_LSB */
  467. case 0x04: /* COUNTER_32_MSB */
  468. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  469. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  470. case 0x10: /* GAUGING_CTRL */
  471. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  472. case 0x30: /* CLOCK_CTRL */
  473. case 0x34: /* SOFT_REQ */
  474. case 0x38: /* COUNTER_32_FIQ */
  475. case 0x3c: /* DPLL_CTRL */
  476. case 0x40: /* STATUS_REQ */
  477. /* XXX: check clk::usecount state for every clock */
  478. case 0x48: /* LOCL_TIME */
  479. case 0x4c: /* APLL_CTRL */
  480. case 0x50: /* POWER_CTRL */
  481. return s->ulpd_pm_regs[addr >> 2];
  482. }
  483. OMAP_BAD_REG(addr);
  484. return 0;
  485. }
  486. static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
  487. uint16_t diff, uint16_t value)
  488. {
  489. if (diff & (1 << 4)) /* USB_MCLK_EN */
  490. omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
  491. if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
  492. omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
  493. }
  494. static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
  495. uint16_t diff, uint16_t value)
  496. {
  497. if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
  498. omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
  499. if (diff & (1 << 1)) /* SOFT_COM_REQ */
  500. omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
  501. if (diff & (1 << 2)) /* SOFT_SDW_REQ */
  502. omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
  503. if (diff & (1 << 3)) /* SOFT_USB_REQ */
  504. omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
  505. }
  506. static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
  507. uint64_t value, unsigned size)
  508. {
  509. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  510. int64_t now, ticks;
  511. int div, mult;
  512. static const int bypass_div[4] = { 1, 2, 4, 4 };
  513. uint16_t diff;
  514. if (size != 2) {
  515. omap_badwidth_write16(opaque, addr, value);
  516. return;
  517. }
  518. switch (addr) {
  519. case 0x00: /* COUNTER_32_LSB */
  520. case 0x04: /* COUNTER_32_MSB */
  521. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  522. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  523. case 0x14: /* IT_STATUS */
  524. case 0x40: /* STATUS_REQ */
  525. OMAP_RO_REG(addr);
  526. break;
  527. case 0x10: /* GAUGING_CTRL */
  528. /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
  529. if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
  530. now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  531. if (value & 1)
  532. s->ulpd_gauge_start = now;
  533. else {
  534. now -= s->ulpd_gauge_start;
  535. /* 32-kHz ticks */
  536. ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
  537. s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
  538. s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
  539. if (ticks >> 32) /* OVERFLOW_32K */
  540. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
  541. /* High frequency ticks */
  542. ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
  543. s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
  544. s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
  545. if (ticks >> 32) /* OVERFLOW_HI_FREQ */
  546. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
  547. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
  548. qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  549. }
  550. }
  551. s->ulpd_pm_regs[addr >> 2] = value;
  552. break;
  553. case 0x18: /* Reserved */
  554. case 0x1c: /* Reserved */
  555. case 0x20: /* Reserved */
  556. case 0x28: /* Reserved */
  557. case 0x2c: /* Reserved */
  558. OMAP_BAD_REG(addr);
  559. /* fall through */
  560. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  561. case 0x38: /* COUNTER_32_FIQ */
  562. case 0x48: /* LOCL_TIME */
  563. case 0x50: /* POWER_CTRL */
  564. s->ulpd_pm_regs[addr >> 2] = value;
  565. break;
  566. case 0x30: /* CLOCK_CTRL */
  567. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  568. s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
  569. omap_ulpd_clk_update(s, diff, value);
  570. break;
  571. case 0x34: /* SOFT_REQ */
  572. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  573. s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
  574. omap_ulpd_req_update(s, diff, value);
  575. break;
  576. case 0x3c: /* DPLL_CTRL */
  577. /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
  578. * omitted altogether, probably a typo. */
  579. /* This register has identical semantics with DPLL(1:3) control
  580. * registers, see omap_dpll_write() */
  581. diff = s->ulpd_pm_regs[addr >> 2] & value;
  582. s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
  583. if (diff & (0x3ff << 2)) {
  584. if (value & (1 << 4)) { /* PLL_ENABLE */
  585. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  586. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  587. } else {
  588. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  589. mult = 1;
  590. }
  591. omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
  592. }
  593. /* Enter the desired mode. */
  594. s->ulpd_pm_regs[addr >> 2] =
  595. (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
  596. ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
  597. /* Act as if the lock is restored. */
  598. s->ulpd_pm_regs[addr >> 2] |= 2;
  599. break;
  600. case 0x4c: /* APLL_CTRL */
  601. diff = s->ulpd_pm_regs[addr >> 2] & value;
  602. s->ulpd_pm_regs[addr >> 2] = value & 0xf;
  603. if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
  604. omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
  605. (value & (1 << 0)) ? "apll" : "dpll4"));
  606. break;
  607. default:
  608. OMAP_BAD_REG(addr);
  609. }
  610. }
  611. static const MemoryRegionOps omap_ulpd_pm_ops = {
  612. .read = omap_ulpd_pm_read,
  613. .write = omap_ulpd_pm_write,
  614. .endianness = DEVICE_NATIVE_ENDIAN,
  615. };
  616. static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
  617. {
  618. mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
  619. mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
  620. mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
  621. mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
  622. mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
  623. mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
  624. mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
  625. mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
  626. mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
  627. mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
  628. mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
  629. omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
  630. mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
  631. omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
  632. mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
  633. mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
  634. mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
  635. mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
  636. mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
  637. mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
  638. mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
  639. omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
  640. omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
  641. }
  642. static void omap_ulpd_pm_init(MemoryRegion *system_memory,
  643. hwaddr base,
  644. struct omap_mpu_state_s *mpu)
  645. {
  646. memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
  647. "omap-ulpd-pm", 0x800);
  648. memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
  649. omap_ulpd_pm_reset(mpu);
  650. }
  651. /* OMAP Pin Configuration */
  652. static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
  653. unsigned size)
  654. {
  655. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  656. if (size != 4) {
  657. return omap_badwidth_read32(opaque, addr);
  658. }
  659. switch (addr) {
  660. case 0x00: /* FUNC_MUX_CTRL_0 */
  661. case 0x04: /* FUNC_MUX_CTRL_1 */
  662. case 0x08: /* FUNC_MUX_CTRL_2 */
  663. return s->func_mux_ctrl[addr >> 2];
  664. case 0x0c: /* COMP_MODE_CTRL_0 */
  665. return s->comp_mode_ctrl[0];
  666. case 0x10: /* FUNC_MUX_CTRL_3 */
  667. case 0x14: /* FUNC_MUX_CTRL_4 */
  668. case 0x18: /* FUNC_MUX_CTRL_5 */
  669. case 0x1c: /* FUNC_MUX_CTRL_6 */
  670. case 0x20: /* FUNC_MUX_CTRL_7 */
  671. case 0x24: /* FUNC_MUX_CTRL_8 */
  672. case 0x28: /* FUNC_MUX_CTRL_9 */
  673. case 0x2c: /* FUNC_MUX_CTRL_A */
  674. case 0x30: /* FUNC_MUX_CTRL_B */
  675. case 0x34: /* FUNC_MUX_CTRL_C */
  676. case 0x38: /* FUNC_MUX_CTRL_D */
  677. return s->func_mux_ctrl[(addr >> 2) - 1];
  678. case 0x40: /* PULL_DWN_CTRL_0 */
  679. case 0x44: /* PULL_DWN_CTRL_1 */
  680. case 0x48: /* PULL_DWN_CTRL_2 */
  681. case 0x4c: /* PULL_DWN_CTRL_3 */
  682. return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
  683. case 0x50: /* GATE_INH_CTRL_0 */
  684. return s->gate_inh_ctrl[0];
  685. case 0x60: /* VOLTAGE_CTRL_0 */
  686. return s->voltage_ctrl[0];
  687. case 0x70: /* TEST_DBG_CTRL_0 */
  688. return s->test_dbg_ctrl[0];
  689. case 0x80: /* MOD_CONF_CTRL_0 */
  690. return s->mod_conf_ctrl[0];
  691. }
  692. OMAP_BAD_REG(addr);
  693. return 0;
  694. }
  695. static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
  696. uint32_t diff, uint32_t value)
  697. {
  698. if (s->compat1509) {
  699. if (diff & (1 << 9)) /* BLUETOOTH */
  700. omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
  701. (~value >> 9) & 1);
  702. if (diff & (1 << 7)) /* USB.CLKO */
  703. omap_clk_onoff(omap_findclk(s, "usb.clko"),
  704. (value >> 7) & 1);
  705. }
  706. }
  707. static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
  708. uint32_t diff, uint32_t value)
  709. {
  710. if (s->compat1509) {
  711. if (diff & (1U << 31)) {
  712. /* MCBSP3_CLK_HIZ_DI */
  713. omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
  714. }
  715. if (diff & (1 << 1)) {
  716. /* CLK32K */
  717. omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
  718. }
  719. }
  720. }
  721. static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
  722. uint32_t diff, uint32_t value)
  723. {
  724. if (diff & (1U << 31)) {
  725. /* CONF_MOD_UART3_CLK_MODE_R */
  726. omap_clk_reparent(omap_findclk(s, "uart3_ck"),
  727. omap_findclk(s, ((value >> 31) & 1) ?
  728. "ck_48m" : "armper_ck"));
  729. }
  730. if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
  731. omap_clk_reparent(omap_findclk(s, "uart2_ck"),
  732. omap_findclk(s, ((value >> 30) & 1) ?
  733. "ck_48m" : "armper_ck"));
  734. if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
  735. omap_clk_reparent(omap_findclk(s, "uart1_ck"),
  736. omap_findclk(s, ((value >> 29) & 1) ?
  737. "ck_48m" : "armper_ck"));
  738. if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
  739. omap_clk_reparent(omap_findclk(s, "mmc_ck"),
  740. omap_findclk(s, ((value >> 23) & 1) ?
  741. "ck_48m" : "armper_ck"));
  742. if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
  743. omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
  744. omap_findclk(s, ((value >> 12) & 1) ?
  745. "ck_48m" : "armper_ck"));
  746. if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
  747. omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
  748. }
  749. static void omap_pin_cfg_write(void *opaque, hwaddr addr,
  750. uint64_t value, unsigned size)
  751. {
  752. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  753. uint32_t diff;
  754. if (size != 4) {
  755. omap_badwidth_write32(opaque, addr, value);
  756. return;
  757. }
  758. switch (addr) {
  759. case 0x00: /* FUNC_MUX_CTRL_0 */
  760. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  761. s->func_mux_ctrl[addr >> 2] = value;
  762. omap_pin_funcmux0_update(s, diff, value);
  763. return;
  764. case 0x04: /* FUNC_MUX_CTRL_1 */
  765. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  766. s->func_mux_ctrl[addr >> 2] = value;
  767. omap_pin_funcmux1_update(s, diff, value);
  768. return;
  769. case 0x08: /* FUNC_MUX_CTRL_2 */
  770. s->func_mux_ctrl[addr >> 2] = value;
  771. return;
  772. case 0x0c: /* COMP_MODE_CTRL_0 */
  773. s->comp_mode_ctrl[0] = value;
  774. s->compat1509 = (value != 0x0000eaef);
  775. omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
  776. omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
  777. return;
  778. case 0x10: /* FUNC_MUX_CTRL_3 */
  779. case 0x14: /* FUNC_MUX_CTRL_4 */
  780. case 0x18: /* FUNC_MUX_CTRL_5 */
  781. case 0x1c: /* FUNC_MUX_CTRL_6 */
  782. case 0x20: /* FUNC_MUX_CTRL_7 */
  783. case 0x24: /* FUNC_MUX_CTRL_8 */
  784. case 0x28: /* FUNC_MUX_CTRL_9 */
  785. case 0x2c: /* FUNC_MUX_CTRL_A */
  786. case 0x30: /* FUNC_MUX_CTRL_B */
  787. case 0x34: /* FUNC_MUX_CTRL_C */
  788. case 0x38: /* FUNC_MUX_CTRL_D */
  789. s->func_mux_ctrl[(addr >> 2) - 1] = value;
  790. return;
  791. case 0x40: /* PULL_DWN_CTRL_0 */
  792. case 0x44: /* PULL_DWN_CTRL_1 */
  793. case 0x48: /* PULL_DWN_CTRL_2 */
  794. case 0x4c: /* PULL_DWN_CTRL_3 */
  795. s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
  796. return;
  797. case 0x50: /* GATE_INH_CTRL_0 */
  798. s->gate_inh_ctrl[0] = value;
  799. return;
  800. case 0x60: /* VOLTAGE_CTRL_0 */
  801. s->voltage_ctrl[0] = value;
  802. return;
  803. case 0x70: /* TEST_DBG_CTRL_0 */
  804. s->test_dbg_ctrl[0] = value;
  805. return;
  806. case 0x80: /* MOD_CONF_CTRL_0 */
  807. diff = s->mod_conf_ctrl[0] ^ value;
  808. s->mod_conf_ctrl[0] = value;
  809. omap_pin_modconf1_update(s, diff, value);
  810. return;
  811. default:
  812. OMAP_BAD_REG(addr);
  813. }
  814. }
  815. static const MemoryRegionOps omap_pin_cfg_ops = {
  816. .read = omap_pin_cfg_read,
  817. .write = omap_pin_cfg_write,
  818. .endianness = DEVICE_NATIVE_ENDIAN,
  819. };
  820. static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
  821. {
  822. /* Start in Compatibility Mode. */
  823. mpu->compat1509 = 1;
  824. omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
  825. omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
  826. omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
  827. memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
  828. memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
  829. memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
  830. memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
  831. memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
  832. memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
  833. memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
  834. }
  835. static void omap_pin_cfg_init(MemoryRegion *system_memory,
  836. hwaddr base,
  837. struct omap_mpu_state_s *mpu)
  838. {
  839. memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
  840. "omap-pin-cfg", 0x800);
  841. memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
  842. omap_pin_cfg_reset(mpu);
  843. }
  844. /* Device Identification, Die Identification */
  845. static uint64_t omap_id_read(void *opaque, hwaddr addr,
  846. unsigned size)
  847. {
  848. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  849. if (size != 4) {
  850. return omap_badwidth_read32(opaque, addr);
  851. }
  852. switch (addr) {
  853. case 0xfffe1800: /* DIE_ID_LSB */
  854. return 0xc9581f0e;
  855. case 0xfffe1804: /* DIE_ID_MSB */
  856. return 0xa8858bfa;
  857. case 0xfffe2000: /* PRODUCT_ID_LSB */
  858. return 0x00aaaafc;
  859. case 0xfffe2004: /* PRODUCT_ID_MSB */
  860. return 0xcafeb574;
  861. case 0xfffed400: /* JTAG_ID_LSB */
  862. switch (s->mpu_model) {
  863. case omap310:
  864. return 0x03310315;
  865. case omap1510:
  866. return 0x03310115;
  867. default:
  868. hw_error("%s: bad mpu model\n", __func__);
  869. }
  870. break;
  871. case 0xfffed404: /* JTAG_ID_MSB */
  872. switch (s->mpu_model) {
  873. case omap310:
  874. return 0xfb57402f;
  875. case omap1510:
  876. return 0xfb47002f;
  877. default:
  878. hw_error("%s: bad mpu model\n", __func__);
  879. }
  880. break;
  881. }
  882. OMAP_BAD_REG(addr);
  883. return 0;
  884. }
  885. static void omap_id_write(void *opaque, hwaddr addr,
  886. uint64_t value, unsigned size)
  887. {
  888. if (size != 4) {
  889. omap_badwidth_write32(opaque, addr, value);
  890. return;
  891. }
  892. OMAP_BAD_REG(addr);
  893. }
  894. static const MemoryRegionOps omap_id_ops = {
  895. .read = omap_id_read,
  896. .write = omap_id_write,
  897. .endianness = DEVICE_NATIVE_ENDIAN,
  898. };
  899. static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
  900. {
  901. memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
  902. "omap-id", 0x100000000ULL);
  903. memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
  904. 0xfffe1800, 0x800);
  905. memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
  906. memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
  907. 0xfffed400, 0x100);
  908. memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
  909. if (!cpu_is_omap15xx(mpu)) {
  910. memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
  911. &mpu->id_iomem, 0xfffe2000, 0x800);
  912. memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
  913. }
  914. }
  915. /* MPUI Control (Dummy) */
  916. static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
  917. unsigned size)
  918. {
  919. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  920. if (size != 4) {
  921. return omap_badwidth_read32(opaque, addr);
  922. }
  923. switch (addr) {
  924. case 0x00: /* CTRL */
  925. return s->mpui_ctrl;
  926. case 0x04: /* DEBUG_ADDR */
  927. return 0x01ffffff;
  928. case 0x08: /* DEBUG_DATA */
  929. return 0xffffffff;
  930. case 0x0c: /* DEBUG_FLAG */
  931. return 0x00000800;
  932. case 0x10: /* STATUS */
  933. return 0x00000000;
  934. /* Not in OMAP310 */
  935. case 0x14: /* DSP_STATUS */
  936. case 0x18: /* DSP_BOOT_CONFIG */
  937. return 0x00000000;
  938. case 0x1c: /* DSP_MPUI_CONFIG */
  939. return 0x0000ffff;
  940. }
  941. OMAP_BAD_REG(addr);
  942. return 0;
  943. }
  944. static void omap_mpui_write(void *opaque, hwaddr addr,
  945. uint64_t value, unsigned size)
  946. {
  947. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  948. if (size != 4) {
  949. omap_badwidth_write32(opaque, addr, value);
  950. return;
  951. }
  952. switch (addr) {
  953. case 0x00: /* CTRL */
  954. s->mpui_ctrl = value & 0x007fffff;
  955. break;
  956. case 0x04: /* DEBUG_ADDR */
  957. case 0x08: /* DEBUG_DATA */
  958. case 0x0c: /* DEBUG_FLAG */
  959. case 0x10: /* STATUS */
  960. /* Not in OMAP310 */
  961. case 0x14: /* DSP_STATUS */
  962. OMAP_RO_REG(addr);
  963. break;
  964. case 0x18: /* DSP_BOOT_CONFIG */
  965. case 0x1c: /* DSP_MPUI_CONFIG */
  966. break;
  967. default:
  968. OMAP_BAD_REG(addr);
  969. }
  970. }
  971. static const MemoryRegionOps omap_mpui_ops = {
  972. .read = omap_mpui_read,
  973. .write = omap_mpui_write,
  974. .endianness = DEVICE_NATIVE_ENDIAN,
  975. };
  976. static void omap_mpui_reset(struct omap_mpu_state_s *s)
  977. {
  978. s->mpui_ctrl = 0x0003ff1b;
  979. }
  980. static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
  981. struct omap_mpu_state_s *mpu)
  982. {
  983. memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
  984. "omap-mpui", 0x100);
  985. memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
  986. omap_mpui_reset(mpu);
  987. }
  988. /* TIPB Bridges */
  989. struct omap_tipb_bridge_s {
  990. qemu_irq abort;
  991. MemoryRegion iomem;
  992. int width_intr;
  993. uint16_t control;
  994. uint16_t alloc;
  995. uint16_t buffer;
  996. uint16_t enh_control;
  997. };
  998. static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
  999. unsigned size)
  1000. {
  1001. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  1002. if (size < 2) {
  1003. return omap_badwidth_read16(opaque, addr);
  1004. }
  1005. switch (addr) {
  1006. case 0x00: /* TIPB_CNTL */
  1007. return s->control;
  1008. case 0x04: /* TIPB_BUS_ALLOC */
  1009. return s->alloc;
  1010. case 0x08: /* MPU_TIPB_CNTL */
  1011. return s->buffer;
  1012. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1013. return s->enh_control;
  1014. case 0x10: /* ADDRESS_DBG */
  1015. case 0x14: /* DATA_DEBUG_LOW */
  1016. case 0x18: /* DATA_DEBUG_HIGH */
  1017. return 0xffff;
  1018. case 0x1c: /* DEBUG_CNTR_SIG */
  1019. return 0x00f8;
  1020. }
  1021. OMAP_BAD_REG(addr);
  1022. return 0;
  1023. }
  1024. static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
  1025. uint64_t value, unsigned size)
  1026. {
  1027. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  1028. if (size < 2) {
  1029. omap_badwidth_write16(opaque, addr, value);
  1030. return;
  1031. }
  1032. switch (addr) {
  1033. case 0x00: /* TIPB_CNTL */
  1034. s->control = value & 0xffff;
  1035. break;
  1036. case 0x04: /* TIPB_BUS_ALLOC */
  1037. s->alloc = value & 0x003f;
  1038. break;
  1039. case 0x08: /* MPU_TIPB_CNTL */
  1040. s->buffer = value & 0x0003;
  1041. break;
  1042. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1043. s->width_intr = !(value & 2);
  1044. s->enh_control = value & 0x000f;
  1045. break;
  1046. case 0x10: /* ADDRESS_DBG */
  1047. case 0x14: /* DATA_DEBUG_LOW */
  1048. case 0x18: /* DATA_DEBUG_HIGH */
  1049. case 0x1c: /* DEBUG_CNTR_SIG */
  1050. OMAP_RO_REG(addr);
  1051. break;
  1052. default:
  1053. OMAP_BAD_REG(addr);
  1054. }
  1055. }
  1056. static const MemoryRegionOps omap_tipb_bridge_ops = {
  1057. .read = omap_tipb_bridge_read,
  1058. .write = omap_tipb_bridge_write,
  1059. .endianness = DEVICE_NATIVE_ENDIAN,
  1060. };
  1061. static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
  1062. {
  1063. s->control = 0xffff;
  1064. s->alloc = 0x0009;
  1065. s->buffer = 0x0000;
  1066. s->enh_control = 0x000f;
  1067. }
  1068. static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
  1069. MemoryRegion *memory, hwaddr base,
  1070. qemu_irq abort_irq, omap_clk clk)
  1071. {
  1072. struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
  1073. s->abort = abort_irq;
  1074. omap_tipb_bridge_reset(s);
  1075. memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
  1076. "omap-tipb-bridge", 0x100);
  1077. memory_region_add_subregion(memory, base, &s->iomem);
  1078. return s;
  1079. }
  1080. /* Dummy Traffic Controller's Memory Interface */
  1081. static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
  1082. unsigned size)
  1083. {
  1084. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1085. uint32_t ret;
  1086. if (size != 4) {
  1087. return omap_badwidth_read32(opaque, addr);
  1088. }
  1089. switch (addr) {
  1090. case 0x00: /* IMIF_PRIO */
  1091. case 0x04: /* EMIFS_PRIO */
  1092. case 0x08: /* EMIFF_PRIO */
  1093. case 0x0c: /* EMIFS_CONFIG */
  1094. case 0x10: /* EMIFS_CS0_CONFIG */
  1095. case 0x14: /* EMIFS_CS1_CONFIG */
  1096. case 0x18: /* EMIFS_CS2_CONFIG */
  1097. case 0x1c: /* EMIFS_CS3_CONFIG */
  1098. case 0x24: /* EMIFF_MRS */
  1099. case 0x28: /* TIMEOUT1 */
  1100. case 0x2c: /* TIMEOUT2 */
  1101. case 0x30: /* TIMEOUT3 */
  1102. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1103. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1104. return s->tcmi_regs[addr >> 2];
  1105. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1106. ret = s->tcmi_regs[addr >> 2];
  1107. s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
  1108. /* XXX: We can try using the VGA_DIRTY flag for this */
  1109. return ret;
  1110. }
  1111. OMAP_BAD_REG(addr);
  1112. return 0;
  1113. }
  1114. static void omap_tcmi_write(void *opaque, hwaddr addr,
  1115. uint64_t value, unsigned size)
  1116. {
  1117. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1118. if (size != 4) {
  1119. omap_badwidth_write32(opaque, addr, value);
  1120. return;
  1121. }
  1122. switch (addr) {
  1123. case 0x00: /* IMIF_PRIO */
  1124. case 0x04: /* EMIFS_PRIO */
  1125. case 0x08: /* EMIFF_PRIO */
  1126. case 0x10: /* EMIFS_CS0_CONFIG */
  1127. case 0x14: /* EMIFS_CS1_CONFIG */
  1128. case 0x18: /* EMIFS_CS2_CONFIG */
  1129. case 0x1c: /* EMIFS_CS3_CONFIG */
  1130. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1131. case 0x24: /* EMIFF_MRS */
  1132. case 0x28: /* TIMEOUT1 */
  1133. case 0x2c: /* TIMEOUT2 */
  1134. case 0x30: /* TIMEOUT3 */
  1135. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1136. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1137. s->tcmi_regs[addr >> 2] = value;
  1138. break;
  1139. case 0x0c: /* EMIFS_CONFIG */
  1140. s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
  1141. break;
  1142. default:
  1143. OMAP_BAD_REG(addr);
  1144. }
  1145. }
  1146. static const MemoryRegionOps omap_tcmi_ops = {
  1147. .read = omap_tcmi_read,
  1148. .write = omap_tcmi_write,
  1149. .endianness = DEVICE_NATIVE_ENDIAN,
  1150. };
  1151. static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
  1152. {
  1153. mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
  1154. mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
  1155. mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
  1156. mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
  1157. mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
  1158. mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
  1159. mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
  1160. mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
  1161. mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
  1162. mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
  1163. mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
  1164. mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
  1165. mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
  1166. mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
  1167. mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
  1168. }
  1169. static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
  1170. struct omap_mpu_state_s *mpu)
  1171. {
  1172. memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
  1173. "omap-tcmi", 0x100);
  1174. memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
  1175. omap_tcmi_reset(mpu);
  1176. }
  1177. /* Digital phase-locked loops control */
  1178. struct dpll_ctl_s {
  1179. MemoryRegion iomem;
  1180. uint16_t mode;
  1181. omap_clk dpll;
  1182. };
  1183. static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
  1184. unsigned size)
  1185. {
  1186. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1187. if (size != 2) {
  1188. return omap_badwidth_read16(opaque, addr);
  1189. }
  1190. if (addr == 0x00) /* CTL_REG */
  1191. return s->mode;
  1192. OMAP_BAD_REG(addr);
  1193. return 0;
  1194. }
  1195. static void omap_dpll_write(void *opaque, hwaddr addr,
  1196. uint64_t value, unsigned size)
  1197. {
  1198. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1199. uint16_t diff;
  1200. static const int bypass_div[4] = { 1, 2, 4, 4 };
  1201. int div, mult;
  1202. if (size != 2) {
  1203. omap_badwidth_write16(opaque, addr, value);
  1204. return;
  1205. }
  1206. if (addr == 0x00) { /* CTL_REG */
  1207. /* See omap_ulpd_pm_write() too */
  1208. diff = s->mode & value;
  1209. s->mode = value & 0x2fff;
  1210. if (diff & (0x3ff << 2)) {
  1211. if (value & (1 << 4)) { /* PLL_ENABLE */
  1212. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1213. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1214. } else {
  1215. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1216. mult = 1;
  1217. }
  1218. omap_clk_setrate(s->dpll, div, mult);
  1219. }
  1220. /* Enter the desired mode. */
  1221. s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
  1222. /* Act as if the lock is restored. */
  1223. s->mode |= 2;
  1224. } else {
  1225. OMAP_BAD_REG(addr);
  1226. }
  1227. }
  1228. static const MemoryRegionOps omap_dpll_ops = {
  1229. .read = omap_dpll_read,
  1230. .write = omap_dpll_write,
  1231. .endianness = DEVICE_NATIVE_ENDIAN,
  1232. };
  1233. static void omap_dpll_reset(struct dpll_ctl_s *s)
  1234. {
  1235. s->mode = 0x2002;
  1236. omap_clk_setrate(s->dpll, 1, 1);
  1237. }
  1238. static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
  1239. hwaddr base, omap_clk clk)
  1240. {
  1241. struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
  1242. memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
  1243. s->dpll = clk;
  1244. omap_dpll_reset(s);
  1245. memory_region_add_subregion(memory, base, &s->iomem);
  1246. return s;
  1247. }
  1248. /* MPU Clock/Reset/Power Mode Control */
  1249. static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
  1250. unsigned size)
  1251. {
  1252. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1253. if (size != 2) {
  1254. return omap_badwidth_read16(opaque, addr);
  1255. }
  1256. switch (addr) {
  1257. case 0x00: /* ARM_CKCTL */
  1258. return s->clkm.arm_ckctl;
  1259. case 0x04: /* ARM_IDLECT1 */
  1260. return s->clkm.arm_idlect1;
  1261. case 0x08: /* ARM_IDLECT2 */
  1262. return s->clkm.arm_idlect2;
  1263. case 0x0c: /* ARM_EWUPCT */
  1264. return s->clkm.arm_ewupct;
  1265. case 0x10: /* ARM_RSTCT1 */
  1266. return s->clkm.arm_rstct1;
  1267. case 0x14: /* ARM_RSTCT2 */
  1268. return s->clkm.arm_rstct2;
  1269. case 0x18: /* ARM_SYSST */
  1270. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
  1271. case 0x1c: /* ARM_CKOUT1 */
  1272. return s->clkm.arm_ckout1;
  1273. case 0x20: /* ARM_CKOUT2 */
  1274. break;
  1275. }
  1276. OMAP_BAD_REG(addr);
  1277. return 0;
  1278. }
  1279. static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
  1280. uint16_t diff, uint16_t value)
  1281. {
  1282. omap_clk clk;
  1283. if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
  1284. if (value & (1 << 14))
  1285. /* Reserved */;
  1286. else {
  1287. clk = omap_findclk(s, "arminth_ck");
  1288. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1289. }
  1290. }
  1291. if (diff & (1 << 12)) { /* ARM_TIMXO */
  1292. clk = omap_findclk(s, "armtim_ck");
  1293. if (value & (1 << 12))
  1294. omap_clk_reparent(clk, omap_findclk(s, "clkin"));
  1295. else
  1296. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1297. }
  1298. /* XXX: en_dspck */
  1299. if (diff & (3 << 10)) { /* DSPMMUDIV */
  1300. clk = omap_findclk(s, "dspmmu_ck");
  1301. omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
  1302. }
  1303. if (diff & (3 << 8)) { /* TCDIV */
  1304. clk = omap_findclk(s, "tc_ck");
  1305. omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
  1306. }
  1307. if (diff & (3 << 6)) { /* DSPDIV */
  1308. clk = omap_findclk(s, "dsp_ck");
  1309. omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
  1310. }
  1311. if (diff & (3 << 4)) { /* ARMDIV */
  1312. clk = omap_findclk(s, "arm_ck");
  1313. omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
  1314. }
  1315. if (diff & (3 << 2)) { /* LCDDIV */
  1316. clk = omap_findclk(s, "lcd_ck");
  1317. omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
  1318. }
  1319. if (diff & (3 << 0)) { /* PERDIV */
  1320. clk = omap_findclk(s, "armper_ck");
  1321. omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
  1322. }
  1323. }
  1324. static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
  1325. uint16_t diff, uint16_t value)
  1326. {
  1327. omap_clk clk;
  1328. if (value & (1 << 11)) { /* SETARM_IDLE */
  1329. cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
  1330. }
  1331. if (!(value & (1 << 10))) { /* WKUP_MODE */
  1332. /* XXX: disable wakeup from IRQ */
  1333. qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
  1334. }
  1335. #define SET_CANIDLE(clock, bit) \
  1336. if (diff & (1 << bit)) { \
  1337. clk = omap_findclk(s, clock); \
  1338. omap_clk_canidle(clk, (value >> bit) & 1); \
  1339. }
  1340. SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
  1341. SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
  1342. SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
  1343. SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
  1344. SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
  1345. SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
  1346. SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
  1347. SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
  1348. SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
  1349. SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
  1350. SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
  1351. SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
  1352. SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
  1353. SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
  1354. }
  1355. static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
  1356. uint16_t diff, uint16_t value)
  1357. {
  1358. omap_clk clk;
  1359. #define SET_ONOFF(clock, bit) \
  1360. if (diff & (1 << bit)) { \
  1361. clk = omap_findclk(s, clock); \
  1362. omap_clk_onoff(clk, (value >> bit) & 1); \
  1363. }
  1364. SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
  1365. SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
  1366. SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
  1367. SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
  1368. SET_ONOFF("lb_ck", 4) /* EN_LBCK */
  1369. SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
  1370. SET_ONOFF("mpui_ck", 6) /* EN_APICK */
  1371. SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
  1372. SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
  1373. SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
  1374. SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
  1375. }
  1376. static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
  1377. uint16_t diff, uint16_t value)
  1378. {
  1379. omap_clk clk;
  1380. if (diff & (3 << 4)) { /* TCLKOUT */
  1381. clk = omap_findclk(s, "tclk_out");
  1382. switch ((value >> 4) & 3) {
  1383. case 1:
  1384. omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
  1385. omap_clk_onoff(clk, 1);
  1386. break;
  1387. case 2:
  1388. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1389. omap_clk_onoff(clk, 1);
  1390. break;
  1391. default:
  1392. omap_clk_onoff(clk, 0);
  1393. }
  1394. }
  1395. if (diff & (3 << 2)) { /* DCLKOUT */
  1396. clk = omap_findclk(s, "dclk_out");
  1397. switch ((value >> 2) & 3) {
  1398. case 0:
  1399. omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
  1400. break;
  1401. case 1:
  1402. omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
  1403. break;
  1404. case 2:
  1405. omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
  1406. break;
  1407. case 3:
  1408. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1409. break;
  1410. }
  1411. }
  1412. if (diff & (3 << 0)) { /* ACLKOUT */
  1413. clk = omap_findclk(s, "aclk_out");
  1414. switch ((value >> 0) & 3) {
  1415. case 1:
  1416. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1417. omap_clk_onoff(clk, 1);
  1418. break;
  1419. case 2:
  1420. omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
  1421. omap_clk_onoff(clk, 1);
  1422. break;
  1423. case 3:
  1424. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1425. omap_clk_onoff(clk, 1);
  1426. break;
  1427. default:
  1428. omap_clk_onoff(clk, 0);
  1429. }
  1430. }
  1431. }
  1432. static void omap_clkm_write(void *opaque, hwaddr addr,
  1433. uint64_t value, unsigned size)
  1434. {
  1435. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1436. uint16_t diff;
  1437. omap_clk clk;
  1438. static const char *clkschemename[8] = {
  1439. "fully synchronous", "fully asynchronous", "synchronous scalable",
  1440. "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
  1441. };
  1442. if (size != 2) {
  1443. omap_badwidth_write16(opaque, addr, value);
  1444. return;
  1445. }
  1446. switch (addr) {
  1447. case 0x00: /* ARM_CKCTL */
  1448. diff = s->clkm.arm_ckctl ^ value;
  1449. s->clkm.arm_ckctl = value & 0x7fff;
  1450. omap_clkm_ckctl_update(s, diff, value);
  1451. return;
  1452. case 0x04: /* ARM_IDLECT1 */
  1453. diff = s->clkm.arm_idlect1 ^ value;
  1454. s->clkm.arm_idlect1 = value & 0x0fff;
  1455. omap_clkm_idlect1_update(s, diff, value);
  1456. return;
  1457. case 0x08: /* ARM_IDLECT2 */
  1458. diff = s->clkm.arm_idlect2 ^ value;
  1459. s->clkm.arm_idlect2 = value & 0x07ff;
  1460. omap_clkm_idlect2_update(s, diff, value);
  1461. return;
  1462. case 0x0c: /* ARM_EWUPCT */
  1463. s->clkm.arm_ewupct = value & 0x003f;
  1464. return;
  1465. case 0x10: /* ARM_RSTCT1 */
  1466. diff = s->clkm.arm_rstct1 ^ value;
  1467. s->clkm.arm_rstct1 = value & 0x0007;
  1468. if (value & 9) {
  1469. qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  1470. s->clkm.cold_start = 0xa;
  1471. }
  1472. if (diff & ~value & 4) { /* DSP_RST */
  1473. omap_mpui_reset(s);
  1474. omap_tipb_bridge_reset(s->private_tipb);
  1475. omap_tipb_bridge_reset(s->public_tipb);
  1476. }
  1477. if (diff & 2) { /* DSP_EN */
  1478. clk = omap_findclk(s, "dsp_ck");
  1479. omap_clk_canidle(clk, (~value >> 1) & 1);
  1480. }
  1481. return;
  1482. case 0x14: /* ARM_RSTCT2 */
  1483. s->clkm.arm_rstct2 = value & 0x0001;
  1484. return;
  1485. case 0x18: /* ARM_SYSST */
  1486. if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
  1487. s->clkm.clocking_scheme = (value >> 11) & 7;
  1488. printf("%s: clocking scheme set to %s\n", __func__,
  1489. clkschemename[s->clkm.clocking_scheme]);
  1490. }
  1491. s->clkm.cold_start &= value & 0x3f;
  1492. return;
  1493. case 0x1c: /* ARM_CKOUT1 */
  1494. diff = s->clkm.arm_ckout1 ^ value;
  1495. s->clkm.arm_ckout1 = value & 0x003f;
  1496. omap_clkm_ckout1_update(s, diff, value);
  1497. return;
  1498. case 0x20: /* ARM_CKOUT2 */
  1499. default:
  1500. OMAP_BAD_REG(addr);
  1501. }
  1502. }
  1503. static const MemoryRegionOps omap_clkm_ops = {
  1504. .read = omap_clkm_read,
  1505. .write = omap_clkm_write,
  1506. .endianness = DEVICE_NATIVE_ENDIAN,
  1507. };
  1508. static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
  1509. unsigned size)
  1510. {
  1511. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1512. CPUState *cpu = CPU(s->cpu);
  1513. if (size != 2) {
  1514. return omap_badwidth_read16(opaque, addr);
  1515. }
  1516. switch (addr) {
  1517. case 0x04: /* DSP_IDLECT1 */
  1518. return s->clkm.dsp_idlect1;
  1519. case 0x08: /* DSP_IDLECT2 */
  1520. return s->clkm.dsp_idlect2;
  1521. case 0x14: /* DSP_RSTCT2 */
  1522. return s->clkm.dsp_rstct2;
  1523. case 0x18: /* DSP_SYSST */
  1524. cpu = CPU(s->cpu);
  1525. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
  1526. (cpu->halted << 6); /* Quite useless... */
  1527. }
  1528. OMAP_BAD_REG(addr);
  1529. return 0;
  1530. }
  1531. static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
  1532. uint16_t diff, uint16_t value)
  1533. {
  1534. omap_clk clk;
  1535. SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
  1536. }
  1537. static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
  1538. uint16_t diff, uint16_t value)
  1539. {
  1540. omap_clk clk;
  1541. SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
  1542. }
  1543. static void omap_clkdsp_write(void *opaque, hwaddr addr,
  1544. uint64_t value, unsigned size)
  1545. {
  1546. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1547. uint16_t diff;
  1548. if (size != 2) {
  1549. omap_badwidth_write16(opaque, addr, value);
  1550. return;
  1551. }
  1552. switch (addr) {
  1553. case 0x04: /* DSP_IDLECT1 */
  1554. diff = s->clkm.dsp_idlect1 ^ value;
  1555. s->clkm.dsp_idlect1 = value & 0x01f7;
  1556. omap_clkdsp_idlect1_update(s, diff, value);
  1557. break;
  1558. case 0x08: /* DSP_IDLECT2 */
  1559. s->clkm.dsp_idlect2 = value & 0x0037;
  1560. diff = s->clkm.dsp_idlect1 ^ value;
  1561. omap_clkdsp_idlect2_update(s, diff, value);
  1562. break;
  1563. case 0x14: /* DSP_RSTCT2 */
  1564. s->clkm.dsp_rstct2 = value & 0x0001;
  1565. break;
  1566. case 0x18: /* DSP_SYSST */
  1567. s->clkm.cold_start &= value & 0x3f;
  1568. break;
  1569. default:
  1570. OMAP_BAD_REG(addr);
  1571. }
  1572. }
  1573. static const MemoryRegionOps omap_clkdsp_ops = {
  1574. .read = omap_clkdsp_read,
  1575. .write = omap_clkdsp_write,
  1576. .endianness = DEVICE_NATIVE_ENDIAN,
  1577. };
  1578. static void omap_clkm_reset(struct omap_mpu_state_s *s)
  1579. {
  1580. if (s->wdt && s->wdt->reset)
  1581. s->clkm.cold_start = 0x6;
  1582. s->clkm.clocking_scheme = 0;
  1583. omap_clkm_ckctl_update(s, ~0, 0x3000);
  1584. s->clkm.arm_ckctl = 0x3000;
  1585. omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
  1586. s->clkm.arm_idlect1 = 0x0400;
  1587. omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
  1588. s->clkm.arm_idlect2 = 0x0100;
  1589. s->clkm.arm_ewupct = 0x003f;
  1590. s->clkm.arm_rstct1 = 0x0000;
  1591. s->clkm.arm_rstct2 = 0x0000;
  1592. s->clkm.arm_ckout1 = 0x0015;
  1593. s->clkm.dpll1_mode = 0x2002;
  1594. omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
  1595. s->clkm.dsp_idlect1 = 0x0040;
  1596. omap_clkdsp_idlect2_update(s, ~0, 0x0000);
  1597. s->clkm.dsp_idlect2 = 0x0000;
  1598. s->clkm.dsp_rstct2 = 0x0000;
  1599. }
  1600. static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
  1601. hwaddr dsp_base, struct omap_mpu_state_s *s)
  1602. {
  1603. memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
  1604. "omap-clkm", 0x100);
  1605. memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
  1606. "omap-clkdsp", 0x1000);
  1607. s->clkm.arm_idlect1 = 0x03ff;
  1608. s->clkm.arm_idlect2 = 0x0100;
  1609. s->clkm.dsp_idlect1 = 0x0002;
  1610. omap_clkm_reset(s);
  1611. s->clkm.cold_start = 0x3a;
  1612. memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
  1613. memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
  1614. }
  1615. /* MPU I/O */
  1616. struct omap_mpuio_s {
  1617. qemu_irq irq;
  1618. qemu_irq kbd_irq;
  1619. qemu_irq *in;
  1620. qemu_irq handler[16];
  1621. qemu_irq wakeup;
  1622. MemoryRegion iomem;
  1623. uint16_t inputs;
  1624. uint16_t outputs;
  1625. uint16_t dir;
  1626. uint16_t edge;
  1627. uint16_t mask;
  1628. uint16_t ints;
  1629. uint16_t debounce;
  1630. uint16_t latch;
  1631. uint8_t event;
  1632. uint8_t buttons[5];
  1633. uint8_t row_latch;
  1634. uint8_t cols;
  1635. int kbd_mask;
  1636. int clk;
  1637. };
  1638. static void omap_mpuio_set(void *opaque, int line, int level)
  1639. {
  1640. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1641. uint16_t prev = s->inputs;
  1642. if (level)
  1643. s->inputs |= 1 << line;
  1644. else
  1645. s->inputs &= ~(1 << line);
  1646. if (((1 << line) & s->dir & ~s->mask) && s->clk) {
  1647. if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
  1648. s->ints |= 1 << line;
  1649. qemu_irq_raise(s->irq);
  1650. /* TODO: wakeup */
  1651. }
  1652. if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
  1653. (s->event >> 1) == line) /* PIN_SELECT */
  1654. s->latch = s->inputs;
  1655. }
  1656. }
  1657. static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
  1658. {
  1659. int i;
  1660. uint8_t *row, rows = 0, cols = ~s->cols;
  1661. for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
  1662. if (*row & cols)
  1663. rows |= i;
  1664. qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
  1665. s->row_latch = ~rows;
  1666. }
  1667. static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
  1668. unsigned size)
  1669. {
  1670. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1671. int offset = addr & OMAP_MPUI_REG_MASK;
  1672. uint16_t ret;
  1673. if (size != 2) {
  1674. return omap_badwidth_read16(opaque, addr);
  1675. }
  1676. switch (offset) {
  1677. case 0x00: /* INPUT_LATCH */
  1678. return s->inputs;
  1679. case 0x04: /* OUTPUT_REG */
  1680. return s->outputs;
  1681. case 0x08: /* IO_CNTL */
  1682. return s->dir;
  1683. case 0x10: /* KBR_LATCH */
  1684. return s->row_latch;
  1685. case 0x14: /* KBC_REG */
  1686. return s->cols;
  1687. case 0x18: /* GPIO_EVENT_MODE_REG */
  1688. return s->event;
  1689. case 0x1c: /* GPIO_INT_EDGE_REG */
  1690. return s->edge;
  1691. case 0x20: /* KBD_INT */
  1692. return (~s->row_latch & 0x1f) && !s->kbd_mask;
  1693. case 0x24: /* GPIO_INT */
  1694. ret = s->ints;
  1695. s->ints &= s->mask;
  1696. if (ret)
  1697. qemu_irq_lower(s->irq);
  1698. return ret;
  1699. case 0x28: /* KBD_MASKIT */
  1700. return s->kbd_mask;
  1701. case 0x2c: /* GPIO_MASKIT */
  1702. return s->mask;
  1703. case 0x30: /* GPIO_DEBOUNCING_REG */
  1704. return s->debounce;
  1705. case 0x34: /* GPIO_LATCH_REG */
  1706. return s->latch;
  1707. }
  1708. OMAP_BAD_REG(addr);
  1709. return 0;
  1710. }
  1711. static void omap_mpuio_write(void *opaque, hwaddr addr,
  1712. uint64_t value, unsigned size)
  1713. {
  1714. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1715. int offset = addr & OMAP_MPUI_REG_MASK;
  1716. uint16_t diff;
  1717. int ln;
  1718. if (size != 2) {
  1719. omap_badwidth_write16(opaque, addr, value);
  1720. return;
  1721. }
  1722. switch (offset) {
  1723. case 0x04: /* OUTPUT_REG */
  1724. diff = (s->outputs ^ value) & ~s->dir;
  1725. s->outputs = value;
  1726. while ((ln = ctz32(diff)) != 32) {
  1727. if (s->handler[ln])
  1728. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1729. diff &= ~(1 << ln);
  1730. }
  1731. break;
  1732. case 0x08: /* IO_CNTL */
  1733. diff = s->outputs & (s->dir ^ value);
  1734. s->dir = value;
  1735. value = s->outputs & ~s->dir;
  1736. while ((ln = ctz32(diff)) != 32) {
  1737. if (s->handler[ln])
  1738. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1739. diff &= ~(1 << ln);
  1740. }
  1741. break;
  1742. case 0x14: /* KBC_REG */
  1743. s->cols = value;
  1744. omap_mpuio_kbd_update(s);
  1745. break;
  1746. case 0x18: /* GPIO_EVENT_MODE_REG */
  1747. s->event = value & 0x1f;
  1748. break;
  1749. case 0x1c: /* GPIO_INT_EDGE_REG */
  1750. s->edge = value;
  1751. break;
  1752. case 0x28: /* KBD_MASKIT */
  1753. s->kbd_mask = value & 1;
  1754. omap_mpuio_kbd_update(s);
  1755. break;
  1756. case 0x2c: /* GPIO_MASKIT */
  1757. s->mask = value;
  1758. break;
  1759. case 0x30: /* GPIO_DEBOUNCING_REG */
  1760. s->debounce = value & 0x1ff;
  1761. break;
  1762. case 0x00: /* INPUT_LATCH */
  1763. case 0x10: /* KBR_LATCH */
  1764. case 0x20: /* KBD_INT */
  1765. case 0x24: /* GPIO_INT */
  1766. case 0x34: /* GPIO_LATCH_REG */
  1767. OMAP_RO_REG(addr);
  1768. return;
  1769. default:
  1770. OMAP_BAD_REG(addr);
  1771. return;
  1772. }
  1773. }
  1774. static const MemoryRegionOps omap_mpuio_ops = {
  1775. .read = omap_mpuio_read,
  1776. .write = omap_mpuio_write,
  1777. .endianness = DEVICE_NATIVE_ENDIAN,
  1778. };
  1779. static void omap_mpuio_reset(struct omap_mpuio_s *s)
  1780. {
  1781. s->inputs = 0;
  1782. s->outputs = 0;
  1783. s->dir = ~0;
  1784. s->event = 0;
  1785. s->edge = 0;
  1786. s->kbd_mask = 0;
  1787. s->mask = 0;
  1788. s->debounce = 0;
  1789. s->latch = 0;
  1790. s->ints = 0;
  1791. s->row_latch = 0x1f;
  1792. s->clk = 1;
  1793. }
  1794. static void omap_mpuio_onoff(void *opaque, int line, int on)
  1795. {
  1796. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1797. s->clk = on;
  1798. if (on)
  1799. omap_mpuio_kbd_update(s);
  1800. }
  1801. static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
  1802. hwaddr base,
  1803. qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
  1804. omap_clk clk)
  1805. {
  1806. struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
  1807. s->irq = gpio_int;
  1808. s->kbd_irq = kbd_int;
  1809. s->wakeup = wakeup;
  1810. s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
  1811. omap_mpuio_reset(s);
  1812. memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
  1813. "omap-mpuio", 0x800);
  1814. memory_region_add_subregion(memory, base, &s->iomem);
  1815. omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
  1816. return s;
  1817. }
  1818. qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
  1819. {
  1820. return s->in;
  1821. }
  1822. void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
  1823. {
  1824. if (line >= 16 || line < 0)
  1825. hw_error("%s: No GPIO line %i\n", __func__, line);
  1826. s->handler[line] = handler;
  1827. }
  1828. void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
  1829. {
  1830. if (row >= 5 || row < 0)
  1831. hw_error("%s: No key %i-%i\n", __func__, col, row);
  1832. if (down)
  1833. s->buttons[row] |= 1 << col;
  1834. else
  1835. s->buttons[row] &= ~(1 << col);
  1836. omap_mpuio_kbd_update(s);
  1837. }
  1838. /* MicroWire Interface */
  1839. struct omap_uwire_s {
  1840. MemoryRegion iomem;
  1841. qemu_irq txirq;
  1842. qemu_irq rxirq;
  1843. qemu_irq txdrq;
  1844. uint16_t txbuf;
  1845. uint16_t rxbuf;
  1846. uint16_t control;
  1847. uint16_t setup[5];
  1848. uWireSlave *chip[4];
  1849. };
  1850. static void omap_uwire_transfer_start(struct omap_uwire_s *s)
  1851. {
  1852. int chipselect = (s->control >> 10) & 3; /* INDEX */
  1853. uWireSlave *slave = s->chip[chipselect];
  1854. if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
  1855. if (s->control & (1 << 12)) /* CS_CMD */
  1856. if (slave && slave->send)
  1857. slave->send(slave->opaque,
  1858. s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
  1859. s->control &= ~(1 << 14); /* CSRB */
  1860. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1861. * a DRQ. When is the level IRQ supposed to be reset? */
  1862. }
  1863. if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
  1864. if (s->control & (1 << 12)) /* CS_CMD */
  1865. if (slave && slave->receive)
  1866. s->rxbuf = slave->receive(slave->opaque);
  1867. s->control |= 1 << 15; /* RDRB */
  1868. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1869. * a DRQ. When is the level IRQ supposed to be reset? */
  1870. }
  1871. }
  1872. static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
  1873. unsigned size)
  1874. {
  1875. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1876. int offset = addr & OMAP_MPUI_REG_MASK;
  1877. if (size != 2) {
  1878. return omap_badwidth_read16(opaque, addr);
  1879. }
  1880. switch (offset) {
  1881. case 0x00: /* RDR */
  1882. s->control &= ~(1 << 15); /* RDRB */
  1883. return s->rxbuf;
  1884. case 0x04: /* CSR */
  1885. return s->control;
  1886. case 0x08: /* SR1 */
  1887. return s->setup[0];
  1888. case 0x0c: /* SR2 */
  1889. return s->setup[1];
  1890. case 0x10: /* SR3 */
  1891. return s->setup[2];
  1892. case 0x14: /* SR4 */
  1893. return s->setup[3];
  1894. case 0x18: /* SR5 */
  1895. return s->setup[4];
  1896. }
  1897. OMAP_BAD_REG(addr);
  1898. return 0;
  1899. }
  1900. static void omap_uwire_write(void *opaque, hwaddr addr,
  1901. uint64_t value, unsigned size)
  1902. {
  1903. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1904. int offset = addr & OMAP_MPUI_REG_MASK;
  1905. if (size != 2) {
  1906. omap_badwidth_write16(opaque, addr, value);
  1907. return;
  1908. }
  1909. switch (offset) {
  1910. case 0x00: /* TDR */
  1911. s->txbuf = value; /* TD */
  1912. if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
  1913. ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
  1914. (s->control & (1 << 12)))) { /* CS_CMD */
  1915. s->control |= 1 << 14; /* CSRB */
  1916. omap_uwire_transfer_start(s);
  1917. }
  1918. break;
  1919. case 0x04: /* CSR */
  1920. s->control = value & 0x1fff;
  1921. if (value & (1 << 13)) /* START */
  1922. omap_uwire_transfer_start(s);
  1923. break;
  1924. case 0x08: /* SR1 */
  1925. s->setup[0] = value & 0x003f;
  1926. break;
  1927. case 0x0c: /* SR2 */
  1928. s->setup[1] = value & 0x0fc0;
  1929. break;
  1930. case 0x10: /* SR3 */
  1931. s->setup[2] = value & 0x0003;
  1932. break;
  1933. case 0x14: /* SR4 */
  1934. s->setup[3] = value & 0x0001;
  1935. break;
  1936. case 0x18: /* SR5 */
  1937. s->setup[4] = value & 0x000f;
  1938. break;
  1939. default:
  1940. OMAP_BAD_REG(addr);
  1941. return;
  1942. }
  1943. }
  1944. static const MemoryRegionOps omap_uwire_ops = {
  1945. .read = omap_uwire_read,
  1946. .write = omap_uwire_write,
  1947. .endianness = DEVICE_NATIVE_ENDIAN,
  1948. };
  1949. static void omap_uwire_reset(struct omap_uwire_s *s)
  1950. {
  1951. s->control = 0;
  1952. s->setup[0] = 0;
  1953. s->setup[1] = 0;
  1954. s->setup[2] = 0;
  1955. s->setup[3] = 0;
  1956. s->setup[4] = 0;
  1957. }
  1958. static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
  1959. hwaddr base,
  1960. qemu_irq txirq, qemu_irq rxirq,
  1961. qemu_irq dma,
  1962. omap_clk clk)
  1963. {
  1964. struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
  1965. s->txirq = txirq;
  1966. s->rxirq = rxirq;
  1967. s->txdrq = dma;
  1968. omap_uwire_reset(s);
  1969. memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
  1970. memory_region_add_subregion(system_memory, base, &s->iomem);
  1971. return s;
  1972. }
  1973. void omap_uwire_attach(struct omap_uwire_s *s,
  1974. uWireSlave *slave, int chipselect)
  1975. {
  1976. if (chipselect < 0 || chipselect > 3) {
  1977. error_report("%s: Bad chipselect %i", __func__, chipselect);
  1978. exit(-1);
  1979. }
  1980. s->chip[chipselect] = slave;
  1981. }
  1982. /* Pseudonoise Pulse-Width Light Modulator */
  1983. struct omap_pwl_s {
  1984. MemoryRegion iomem;
  1985. uint8_t output;
  1986. uint8_t level;
  1987. uint8_t enable;
  1988. int clk;
  1989. };
  1990. static void omap_pwl_update(struct omap_pwl_s *s)
  1991. {
  1992. int output = (s->clk && s->enable) ? s->level : 0;
  1993. if (output != s->output) {
  1994. s->output = output;
  1995. printf("%s: Backlight now at %i/256\n", __func__, output);
  1996. }
  1997. }
  1998. static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
  1999. unsigned size)
  2000. {
  2001. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  2002. int offset = addr & OMAP_MPUI_REG_MASK;
  2003. if (size != 1) {
  2004. return omap_badwidth_read8(opaque, addr);
  2005. }
  2006. switch (offset) {
  2007. case 0x00: /* PWL_LEVEL */
  2008. return s->level;
  2009. case 0x04: /* PWL_CTRL */
  2010. return s->enable;
  2011. }
  2012. OMAP_BAD_REG(addr);
  2013. return 0;
  2014. }
  2015. static void omap_pwl_write(void *opaque, hwaddr addr,
  2016. uint64_t value, unsigned size)
  2017. {
  2018. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  2019. int offset = addr & OMAP_MPUI_REG_MASK;
  2020. if (size != 1) {
  2021. omap_badwidth_write8(opaque, addr, value);
  2022. return;
  2023. }
  2024. switch (offset) {
  2025. case 0x00: /* PWL_LEVEL */
  2026. s->level = value;
  2027. omap_pwl_update(s);
  2028. break;
  2029. case 0x04: /* PWL_CTRL */
  2030. s->enable = value & 1;
  2031. omap_pwl_update(s);
  2032. break;
  2033. default:
  2034. OMAP_BAD_REG(addr);
  2035. return;
  2036. }
  2037. }
  2038. static const MemoryRegionOps omap_pwl_ops = {
  2039. .read = omap_pwl_read,
  2040. .write = omap_pwl_write,
  2041. .endianness = DEVICE_NATIVE_ENDIAN,
  2042. };
  2043. static void omap_pwl_reset(struct omap_pwl_s *s)
  2044. {
  2045. s->output = 0;
  2046. s->level = 0;
  2047. s->enable = 0;
  2048. s->clk = 1;
  2049. omap_pwl_update(s);
  2050. }
  2051. static void omap_pwl_clk_update(void *opaque, int line, int on)
  2052. {
  2053. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  2054. s->clk = on;
  2055. omap_pwl_update(s);
  2056. }
  2057. static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
  2058. hwaddr base,
  2059. omap_clk clk)
  2060. {
  2061. struct omap_pwl_s *s = g_malloc0(sizeof(*s));
  2062. omap_pwl_reset(s);
  2063. memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
  2064. "omap-pwl", 0x800);
  2065. memory_region_add_subregion(system_memory, base, &s->iomem);
  2066. omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
  2067. return s;
  2068. }
  2069. /* Pulse-Width Tone module */
  2070. struct omap_pwt_s {
  2071. MemoryRegion iomem;
  2072. uint8_t frc;
  2073. uint8_t vrc;
  2074. uint8_t gcr;
  2075. omap_clk clk;
  2076. };
  2077. static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
  2078. unsigned size)
  2079. {
  2080. struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
  2081. int offset = addr & OMAP_MPUI_REG_MASK;
  2082. if (size != 1) {
  2083. return omap_badwidth_read8(opaque, addr);
  2084. }
  2085. switch (offset) {
  2086. case 0x00: /* FRC */
  2087. return s->frc;
  2088. case 0x04: /* VCR */
  2089. return s->vrc;
  2090. case 0x08: /* GCR */
  2091. return s->gcr;
  2092. }
  2093. OMAP_BAD_REG(addr);
  2094. return 0;
  2095. }
  2096. static void omap_pwt_write(void *opaque, hwaddr addr,
  2097. uint64_t value, unsigned size)
  2098. {
  2099. struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
  2100. int offset = addr & OMAP_MPUI_REG_MASK;
  2101. if (size != 1) {
  2102. omap_badwidth_write8(opaque, addr, value);
  2103. return;
  2104. }
  2105. switch (offset) {
  2106. case 0x00: /* FRC */
  2107. s->frc = value & 0x3f;
  2108. break;
  2109. case 0x04: /* VRC */
  2110. if ((value ^ s->vrc) & 1) {
  2111. if (value & 1)
  2112. printf("%s: %iHz buzz on\n", __func__, (int)
  2113. /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
  2114. ((omap_clk_getrate(s->clk) >> 3) /
  2115. /* Pre-multiplexer divider */
  2116. ((s->gcr & 2) ? 1 : 154) /
  2117. /* Octave multiplexer */
  2118. (2 << (value & 3)) *
  2119. /* 101/107 divider */
  2120. ((value & (1 << 2)) ? 101 : 107) *
  2121. /* 49/55 divider */
  2122. ((value & (1 << 3)) ? 49 : 55) *
  2123. /* 50/63 divider */
  2124. ((value & (1 << 4)) ? 50 : 63) *
  2125. /* 80/127 divider */
  2126. ((value & (1 << 5)) ? 80 : 127) /
  2127. (107 * 55 * 63 * 127)));
  2128. else
  2129. printf("%s: silence!\n", __func__);
  2130. }
  2131. s->vrc = value & 0x7f;
  2132. break;
  2133. case 0x08: /* GCR */
  2134. s->gcr = value & 3;
  2135. break;
  2136. default:
  2137. OMAP_BAD_REG(addr);
  2138. return;
  2139. }
  2140. }
  2141. static const MemoryRegionOps omap_pwt_ops = {
  2142. .read =omap_pwt_read,
  2143. .write = omap_pwt_write,
  2144. .endianness = DEVICE_NATIVE_ENDIAN,
  2145. };
  2146. static void omap_pwt_reset(struct omap_pwt_s *s)
  2147. {
  2148. s->frc = 0;
  2149. s->vrc = 0;
  2150. s->gcr = 0;
  2151. }
  2152. static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
  2153. hwaddr base,
  2154. omap_clk clk)
  2155. {
  2156. struct omap_pwt_s *s = g_malloc0(sizeof(*s));
  2157. s->clk = clk;
  2158. omap_pwt_reset(s);
  2159. memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
  2160. "omap-pwt", 0x800);
  2161. memory_region_add_subregion(system_memory, base, &s->iomem);
  2162. return s;
  2163. }
  2164. /* Real-time Clock module */
  2165. struct omap_rtc_s {
  2166. MemoryRegion iomem;
  2167. qemu_irq irq;
  2168. qemu_irq alarm;
  2169. QEMUTimer *clk;
  2170. uint8_t interrupts;
  2171. uint8_t status;
  2172. int16_t comp_reg;
  2173. int running;
  2174. int pm_am;
  2175. int auto_comp;
  2176. int round;
  2177. struct tm alarm_tm;
  2178. time_t alarm_ti;
  2179. struct tm current_tm;
  2180. time_t ti;
  2181. uint64_t tick;
  2182. };
  2183. static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
  2184. {
  2185. /* s->alarm is level-triggered */
  2186. qemu_set_irq(s->alarm, (s->status >> 6) & 1);
  2187. }
  2188. static void omap_rtc_alarm_update(struct omap_rtc_s *s)
  2189. {
  2190. s->alarm_ti = mktimegm(&s->alarm_tm);
  2191. if (s->alarm_ti == -1)
  2192. printf("%s: conversion failed\n", __func__);
  2193. }
  2194. static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
  2195. unsigned size)
  2196. {
  2197. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2198. int offset = addr & OMAP_MPUI_REG_MASK;
  2199. uint8_t i;
  2200. if (size != 1) {
  2201. return omap_badwidth_read8(opaque, addr);
  2202. }
  2203. switch (offset) {
  2204. case 0x00: /* SECONDS_REG */
  2205. return to_bcd(s->current_tm.tm_sec);
  2206. case 0x04: /* MINUTES_REG */
  2207. return to_bcd(s->current_tm.tm_min);
  2208. case 0x08: /* HOURS_REG */
  2209. if (s->pm_am)
  2210. return ((s->current_tm.tm_hour > 11) << 7) |
  2211. to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
  2212. else
  2213. return to_bcd(s->current_tm.tm_hour);
  2214. case 0x0c: /* DAYS_REG */
  2215. return to_bcd(s->current_tm.tm_mday);
  2216. case 0x10: /* MONTHS_REG */
  2217. return to_bcd(s->current_tm.tm_mon + 1);
  2218. case 0x14: /* YEARS_REG */
  2219. return to_bcd(s->current_tm.tm_year % 100);
  2220. case 0x18: /* WEEK_REG */
  2221. return s->current_tm.tm_wday;
  2222. case 0x20: /* ALARM_SECONDS_REG */
  2223. return to_bcd(s->alarm_tm.tm_sec);
  2224. case 0x24: /* ALARM_MINUTES_REG */
  2225. return to_bcd(s->alarm_tm.tm_min);
  2226. case 0x28: /* ALARM_HOURS_REG */
  2227. if (s->pm_am)
  2228. return ((s->alarm_tm.tm_hour > 11) << 7) |
  2229. to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
  2230. else
  2231. return to_bcd(s->alarm_tm.tm_hour);
  2232. case 0x2c: /* ALARM_DAYS_REG */
  2233. return to_bcd(s->alarm_tm.tm_mday);
  2234. case 0x30: /* ALARM_MONTHS_REG */
  2235. return to_bcd(s->alarm_tm.tm_mon + 1);
  2236. case 0x34: /* ALARM_YEARS_REG */
  2237. return to_bcd(s->alarm_tm.tm_year % 100);
  2238. case 0x40: /* RTC_CTRL_REG */
  2239. return (s->pm_am << 3) | (s->auto_comp << 2) |
  2240. (s->round << 1) | s->running;
  2241. case 0x44: /* RTC_STATUS_REG */
  2242. i = s->status;
  2243. s->status &= ~0x3d;
  2244. return i;
  2245. case 0x48: /* RTC_INTERRUPTS_REG */
  2246. return s->interrupts;
  2247. case 0x4c: /* RTC_COMP_LSB_REG */
  2248. return ((uint16_t) s->comp_reg) & 0xff;
  2249. case 0x50: /* RTC_COMP_MSB_REG */
  2250. return ((uint16_t) s->comp_reg) >> 8;
  2251. }
  2252. OMAP_BAD_REG(addr);
  2253. return 0;
  2254. }
  2255. static void omap_rtc_write(void *opaque, hwaddr addr,
  2256. uint64_t value, unsigned size)
  2257. {
  2258. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2259. int offset = addr & OMAP_MPUI_REG_MASK;
  2260. struct tm new_tm;
  2261. time_t ti[2];
  2262. if (size != 1) {
  2263. omap_badwidth_write8(opaque, addr, value);
  2264. return;
  2265. }
  2266. switch (offset) {
  2267. case 0x00: /* SECONDS_REG */
  2268. #ifdef ALMDEBUG
  2269. printf("RTC SEC_REG <-- %02x\n", value);
  2270. #endif
  2271. s->ti -= s->current_tm.tm_sec;
  2272. s->ti += from_bcd(value);
  2273. return;
  2274. case 0x04: /* MINUTES_REG */
  2275. #ifdef ALMDEBUG
  2276. printf("RTC MIN_REG <-- %02x\n", value);
  2277. #endif
  2278. s->ti -= s->current_tm.tm_min * 60;
  2279. s->ti += from_bcd(value) * 60;
  2280. return;
  2281. case 0x08: /* HOURS_REG */
  2282. #ifdef ALMDEBUG
  2283. printf("RTC HRS_REG <-- %02x\n", value);
  2284. #endif
  2285. s->ti -= s->current_tm.tm_hour * 3600;
  2286. if (s->pm_am) {
  2287. s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
  2288. s->ti += ((value >> 7) & 1) * 43200;
  2289. } else
  2290. s->ti += from_bcd(value & 0x3f) * 3600;
  2291. return;
  2292. case 0x0c: /* DAYS_REG */
  2293. #ifdef ALMDEBUG
  2294. printf("RTC DAY_REG <-- %02x\n", value);
  2295. #endif
  2296. s->ti -= s->current_tm.tm_mday * 86400;
  2297. s->ti += from_bcd(value) * 86400;
  2298. return;
  2299. case 0x10: /* MONTHS_REG */
  2300. #ifdef ALMDEBUG
  2301. printf("RTC MTH_REG <-- %02x\n", value);
  2302. #endif
  2303. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2304. new_tm.tm_mon = from_bcd(value);
  2305. ti[0] = mktimegm(&s->current_tm);
  2306. ti[1] = mktimegm(&new_tm);
  2307. if (ti[0] != -1 && ti[1] != -1) {
  2308. s->ti -= ti[0];
  2309. s->ti += ti[1];
  2310. } else {
  2311. /* A less accurate version */
  2312. s->ti -= s->current_tm.tm_mon * 2592000;
  2313. s->ti += from_bcd(value) * 2592000;
  2314. }
  2315. return;
  2316. case 0x14: /* YEARS_REG */
  2317. #ifdef ALMDEBUG
  2318. printf("RTC YRS_REG <-- %02x\n", value);
  2319. #endif
  2320. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2321. new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
  2322. ti[0] = mktimegm(&s->current_tm);
  2323. ti[1] = mktimegm(&new_tm);
  2324. if (ti[0] != -1 && ti[1] != -1) {
  2325. s->ti -= ti[0];
  2326. s->ti += ti[1];
  2327. } else {
  2328. /* A less accurate version */
  2329. s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
  2330. s->ti += (time_t)from_bcd(value) * 31536000;
  2331. }
  2332. return;
  2333. case 0x18: /* WEEK_REG */
  2334. return; /* Ignored */
  2335. case 0x20: /* ALARM_SECONDS_REG */
  2336. #ifdef ALMDEBUG
  2337. printf("ALM SEC_REG <-- %02x\n", value);
  2338. #endif
  2339. s->alarm_tm.tm_sec = from_bcd(value);
  2340. omap_rtc_alarm_update(s);
  2341. return;
  2342. case 0x24: /* ALARM_MINUTES_REG */
  2343. #ifdef ALMDEBUG
  2344. printf("ALM MIN_REG <-- %02x\n", value);
  2345. #endif
  2346. s->alarm_tm.tm_min = from_bcd(value);
  2347. omap_rtc_alarm_update(s);
  2348. return;
  2349. case 0x28: /* ALARM_HOURS_REG */
  2350. #ifdef ALMDEBUG
  2351. printf("ALM HRS_REG <-- %02x\n", value);
  2352. #endif
  2353. if (s->pm_am)
  2354. s->alarm_tm.tm_hour =
  2355. ((from_bcd(value & 0x3f)) % 12) +
  2356. ((value >> 7) & 1) * 12;
  2357. else
  2358. s->alarm_tm.tm_hour = from_bcd(value);
  2359. omap_rtc_alarm_update(s);
  2360. return;
  2361. case 0x2c: /* ALARM_DAYS_REG */
  2362. #ifdef ALMDEBUG
  2363. printf("ALM DAY_REG <-- %02x\n", value);
  2364. #endif
  2365. s->alarm_tm.tm_mday = from_bcd(value);
  2366. omap_rtc_alarm_update(s);
  2367. return;
  2368. case 0x30: /* ALARM_MONTHS_REG */
  2369. #ifdef ALMDEBUG
  2370. printf("ALM MON_REG <-- %02x\n", value);
  2371. #endif
  2372. s->alarm_tm.tm_mon = from_bcd(value);
  2373. omap_rtc_alarm_update(s);
  2374. return;
  2375. case 0x34: /* ALARM_YEARS_REG */
  2376. #ifdef ALMDEBUG
  2377. printf("ALM YRS_REG <-- %02x\n", value);
  2378. #endif
  2379. s->alarm_tm.tm_year = from_bcd(value);
  2380. omap_rtc_alarm_update(s);
  2381. return;
  2382. case 0x40: /* RTC_CTRL_REG */
  2383. #ifdef ALMDEBUG
  2384. printf("RTC CONTROL <-- %02x\n", value);
  2385. #endif
  2386. s->pm_am = (value >> 3) & 1;
  2387. s->auto_comp = (value >> 2) & 1;
  2388. s->round = (value >> 1) & 1;
  2389. s->running = value & 1;
  2390. s->status &= 0xfd;
  2391. s->status |= s->running << 1;
  2392. return;
  2393. case 0x44: /* RTC_STATUS_REG */
  2394. #ifdef ALMDEBUG
  2395. printf("RTC STATUSL <-- %02x\n", value);
  2396. #endif
  2397. s->status &= ~((value & 0xc0) ^ 0x80);
  2398. omap_rtc_interrupts_update(s);
  2399. return;
  2400. case 0x48: /* RTC_INTERRUPTS_REG */
  2401. #ifdef ALMDEBUG
  2402. printf("RTC INTRS <-- %02x\n", value);
  2403. #endif
  2404. s->interrupts = value;
  2405. return;
  2406. case 0x4c: /* RTC_COMP_LSB_REG */
  2407. #ifdef ALMDEBUG
  2408. printf("RTC COMPLSB <-- %02x\n", value);
  2409. #endif
  2410. s->comp_reg &= 0xff00;
  2411. s->comp_reg |= 0x00ff & value;
  2412. return;
  2413. case 0x50: /* RTC_COMP_MSB_REG */
  2414. #ifdef ALMDEBUG
  2415. printf("RTC COMPMSB <-- %02x\n", value);
  2416. #endif
  2417. s->comp_reg &= 0x00ff;
  2418. s->comp_reg |= 0xff00 & (value << 8);
  2419. return;
  2420. default:
  2421. OMAP_BAD_REG(addr);
  2422. return;
  2423. }
  2424. }
  2425. static const MemoryRegionOps omap_rtc_ops = {
  2426. .read = omap_rtc_read,
  2427. .write = omap_rtc_write,
  2428. .endianness = DEVICE_NATIVE_ENDIAN,
  2429. };
  2430. static void omap_rtc_tick(void *opaque)
  2431. {
  2432. struct omap_rtc_s *s = opaque;
  2433. if (s->round) {
  2434. /* Round to nearest full minute. */
  2435. if (s->current_tm.tm_sec < 30)
  2436. s->ti -= s->current_tm.tm_sec;
  2437. else
  2438. s->ti += 60 - s->current_tm.tm_sec;
  2439. s->round = 0;
  2440. }
  2441. localtime_r(&s->ti, &s->current_tm);
  2442. if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
  2443. s->status |= 0x40;
  2444. omap_rtc_interrupts_update(s);
  2445. }
  2446. if (s->interrupts & 0x04)
  2447. switch (s->interrupts & 3) {
  2448. case 0:
  2449. s->status |= 0x04;
  2450. qemu_irq_pulse(s->irq);
  2451. break;
  2452. case 1:
  2453. if (s->current_tm.tm_sec)
  2454. break;
  2455. s->status |= 0x08;
  2456. qemu_irq_pulse(s->irq);
  2457. break;
  2458. case 2:
  2459. if (s->current_tm.tm_sec || s->current_tm.tm_min)
  2460. break;
  2461. s->status |= 0x10;
  2462. qemu_irq_pulse(s->irq);
  2463. break;
  2464. case 3:
  2465. if (s->current_tm.tm_sec ||
  2466. s->current_tm.tm_min || s->current_tm.tm_hour)
  2467. break;
  2468. s->status |= 0x20;
  2469. qemu_irq_pulse(s->irq);
  2470. break;
  2471. }
  2472. /* Move on */
  2473. if (s->running)
  2474. s->ti ++;
  2475. s->tick += 1000;
  2476. /*
  2477. * Every full hour add a rough approximation of the compensation
  2478. * register to the 32kHz Timer (which drives the RTC) value.
  2479. */
  2480. if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
  2481. s->tick += s->comp_reg * 1000 / 32768;
  2482. timer_mod(s->clk, s->tick);
  2483. }
  2484. static void omap_rtc_reset(struct omap_rtc_s *s)
  2485. {
  2486. struct tm tm;
  2487. s->interrupts = 0;
  2488. s->comp_reg = 0;
  2489. s->running = 0;
  2490. s->pm_am = 0;
  2491. s->auto_comp = 0;
  2492. s->round = 0;
  2493. s->tick = qemu_clock_get_ms(rtc_clock);
  2494. memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
  2495. s->alarm_tm.tm_mday = 0x01;
  2496. s->status = 1 << 7;
  2497. qemu_get_timedate(&tm, 0);
  2498. s->ti = mktimegm(&tm);
  2499. omap_rtc_alarm_update(s);
  2500. omap_rtc_tick(s);
  2501. }
  2502. static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
  2503. hwaddr base,
  2504. qemu_irq timerirq, qemu_irq alarmirq,
  2505. omap_clk clk)
  2506. {
  2507. struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
  2508. s->irq = timerirq;
  2509. s->alarm = alarmirq;
  2510. s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
  2511. omap_rtc_reset(s);
  2512. memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
  2513. "omap-rtc", 0x800);
  2514. memory_region_add_subregion(system_memory, base, &s->iomem);
  2515. return s;
  2516. }
  2517. /* Multi-channel Buffered Serial Port interfaces */
  2518. struct omap_mcbsp_s {
  2519. MemoryRegion iomem;
  2520. qemu_irq txirq;
  2521. qemu_irq rxirq;
  2522. qemu_irq txdrq;
  2523. qemu_irq rxdrq;
  2524. uint16_t spcr[2];
  2525. uint16_t rcr[2];
  2526. uint16_t xcr[2];
  2527. uint16_t srgr[2];
  2528. uint16_t mcr[2];
  2529. uint16_t pcr;
  2530. uint16_t rcer[8];
  2531. uint16_t xcer[8];
  2532. int tx_rate;
  2533. int rx_rate;
  2534. int tx_req;
  2535. int rx_req;
  2536. I2SCodec *codec;
  2537. QEMUTimer *source_timer;
  2538. QEMUTimer *sink_timer;
  2539. };
  2540. static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
  2541. {
  2542. int irq;
  2543. switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
  2544. case 0:
  2545. irq = (s->spcr[0] >> 1) & 1; /* RRDY */
  2546. break;
  2547. case 3:
  2548. irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
  2549. break;
  2550. default:
  2551. irq = 0;
  2552. break;
  2553. }
  2554. if (irq)
  2555. qemu_irq_pulse(s->rxirq);
  2556. switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
  2557. case 0:
  2558. irq = (s->spcr[1] >> 1) & 1; /* XRDY */
  2559. break;
  2560. case 3:
  2561. irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
  2562. break;
  2563. default:
  2564. irq = 0;
  2565. break;
  2566. }
  2567. if (irq)
  2568. qemu_irq_pulse(s->txirq);
  2569. }
  2570. static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
  2571. {
  2572. if ((s->spcr[0] >> 1) & 1) /* RRDY */
  2573. s->spcr[0] |= 1 << 2; /* RFULL */
  2574. s->spcr[0] |= 1 << 1; /* RRDY */
  2575. qemu_irq_raise(s->rxdrq);
  2576. omap_mcbsp_intr_update(s);
  2577. }
  2578. static void omap_mcbsp_source_tick(void *opaque)
  2579. {
  2580. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2581. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2582. if (!s->rx_rate)
  2583. return;
  2584. if (s->rx_req)
  2585. printf("%s: Rx FIFO overrun\n", __func__);
  2586. s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
  2587. omap_mcbsp_rx_newdata(s);
  2588. timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  2589. NANOSECONDS_PER_SECOND);
  2590. }
  2591. static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
  2592. {
  2593. if (!s->codec || !s->codec->rts)
  2594. omap_mcbsp_source_tick(s);
  2595. else if (s->codec->in.len) {
  2596. s->rx_req = s->codec->in.len;
  2597. omap_mcbsp_rx_newdata(s);
  2598. }
  2599. }
  2600. static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
  2601. {
  2602. timer_del(s->source_timer);
  2603. }
  2604. static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
  2605. {
  2606. s->spcr[0] &= ~(1 << 1); /* RRDY */
  2607. qemu_irq_lower(s->rxdrq);
  2608. omap_mcbsp_intr_update(s);
  2609. }
  2610. static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
  2611. {
  2612. s->spcr[1] |= 1 << 1; /* XRDY */
  2613. qemu_irq_raise(s->txdrq);
  2614. omap_mcbsp_intr_update(s);
  2615. }
  2616. static void omap_mcbsp_sink_tick(void *opaque)
  2617. {
  2618. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2619. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2620. if (!s->tx_rate)
  2621. return;
  2622. if (s->tx_req)
  2623. printf("%s: Tx FIFO underrun\n", __func__);
  2624. s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
  2625. omap_mcbsp_tx_newdata(s);
  2626. timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  2627. NANOSECONDS_PER_SECOND);
  2628. }
  2629. static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
  2630. {
  2631. if (!s->codec || !s->codec->cts)
  2632. omap_mcbsp_sink_tick(s);
  2633. else if (s->codec->out.size) {
  2634. s->tx_req = s->codec->out.size;
  2635. omap_mcbsp_tx_newdata(s);
  2636. }
  2637. }
  2638. static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
  2639. {
  2640. s->spcr[1] &= ~(1 << 1); /* XRDY */
  2641. qemu_irq_lower(s->txdrq);
  2642. omap_mcbsp_intr_update(s);
  2643. if (s->codec && s->codec->cts)
  2644. s->codec->tx_swallow(s->codec->opaque);
  2645. }
  2646. static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
  2647. {
  2648. s->tx_req = 0;
  2649. omap_mcbsp_tx_done(s);
  2650. timer_del(s->sink_timer);
  2651. }
  2652. static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
  2653. {
  2654. int prev_rx_rate, prev_tx_rate;
  2655. int rx_rate = 0, tx_rate = 0;
  2656. int cpu_rate = 1500000; /* XXX */
  2657. /* TODO: check CLKSTP bit */
  2658. if (s->spcr[1] & (1 << 6)) { /* GRST */
  2659. if (s->spcr[0] & (1 << 0)) { /* RRST */
  2660. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2661. (s->pcr & (1 << 8))) { /* CLKRM */
  2662. if (~s->pcr & (1 << 7)) /* SCLKME */
  2663. rx_rate = cpu_rate /
  2664. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2665. } else
  2666. if (s->codec)
  2667. rx_rate = s->codec->rx_rate;
  2668. }
  2669. if (s->spcr[1] & (1 << 0)) { /* XRST */
  2670. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2671. (s->pcr & (1 << 9))) { /* CLKXM */
  2672. if (~s->pcr & (1 << 7)) /* SCLKME */
  2673. tx_rate = cpu_rate /
  2674. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2675. } else
  2676. if (s->codec)
  2677. tx_rate = s->codec->tx_rate;
  2678. }
  2679. }
  2680. prev_tx_rate = s->tx_rate;
  2681. prev_rx_rate = s->rx_rate;
  2682. s->tx_rate = tx_rate;
  2683. s->rx_rate = rx_rate;
  2684. if (s->codec)
  2685. s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
  2686. if (!prev_tx_rate && tx_rate)
  2687. omap_mcbsp_tx_start(s);
  2688. else if (s->tx_rate && !tx_rate)
  2689. omap_mcbsp_tx_stop(s);
  2690. if (!prev_rx_rate && rx_rate)
  2691. omap_mcbsp_rx_start(s);
  2692. else if (prev_tx_rate && !tx_rate)
  2693. omap_mcbsp_rx_stop(s);
  2694. }
  2695. static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
  2696. unsigned size)
  2697. {
  2698. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2699. int offset = addr & OMAP_MPUI_REG_MASK;
  2700. uint16_t ret;
  2701. if (size != 2) {
  2702. return omap_badwidth_read16(opaque, addr);
  2703. }
  2704. switch (offset) {
  2705. case 0x00: /* DRR2 */
  2706. if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
  2707. return 0x0000;
  2708. /* Fall through. */
  2709. case 0x02: /* DRR1 */
  2710. if (s->rx_req < 2) {
  2711. printf("%s: Rx FIFO underrun\n", __func__);
  2712. omap_mcbsp_rx_done(s);
  2713. } else {
  2714. s->tx_req -= 2;
  2715. if (s->codec && s->codec->in.len >= 2) {
  2716. ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
  2717. ret |= s->codec->in.fifo[s->codec->in.start ++];
  2718. s->codec->in.len -= 2;
  2719. } else
  2720. ret = 0x0000;
  2721. if (!s->tx_req)
  2722. omap_mcbsp_rx_done(s);
  2723. return ret;
  2724. }
  2725. return 0x0000;
  2726. case 0x04: /* DXR2 */
  2727. case 0x06: /* DXR1 */
  2728. return 0x0000;
  2729. case 0x08: /* SPCR2 */
  2730. return s->spcr[1];
  2731. case 0x0a: /* SPCR1 */
  2732. return s->spcr[0];
  2733. case 0x0c: /* RCR2 */
  2734. return s->rcr[1];
  2735. case 0x0e: /* RCR1 */
  2736. return s->rcr[0];
  2737. case 0x10: /* XCR2 */
  2738. return s->xcr[1];
  2739. case 0x12: /* XCR1 */
  2740. return s->xcr[0];
  2741. case 0x14: /* SRGR2 */
  2742. return s->srgr[1];
  2743. case 0x16: /* SRGR1 */
  2744. return s->srgr[0];
  2745. case 0x18: /* MCR2 */
  2746. return s->mcr[1];
  2747. case 0x1a: /* MCR1 */
  2748. return s->mcr[0];
  2749. case 0x1c: /* RCERA */
  2750. return s->rcer[0];
  2751. case 0x1e: /* RCERB */
  2752. return s->rcer[1];
  2753. case 0x20: /* XCERA */
  2754. return s->xcer[0];
  2755. case 0x22: /* XCERB */
  2756. return s->xcer[1];
  2757. case 0x24: /* PCR0 */
  2758. return s->pcr;
  2759. case 0x26: /* RCERC */
  2760. return s->rcer[2];
  2761. case 0x28: /* RCERD */
  2762. return s->rcer[3];
  2763. case 0x2a: /* XCERC */
  2764. return s->xcer[2];
  2765. case 0x2c: /* XCERD */
  2766. return s->xcer[3];
  2767. case 0x2e: /* RCERE */
  2768. return s->rcer[4];
  2769. case 0x30: /* RCERF */
  2770. return s->rcer[5];
  2771. case 0x32: /* XCERE */
  2772. return s->xcer[4];
  2773. case 0x34: /* XCERF */
  2774. return s->xcer[5];
  2775. case 0x36: /* RCERG */
  2776. return s->rcer[6];
  2777. case 0x38: /* RCERH */
  2778. return s->rcer[7];
  2779. case 0x3a: /* XCERG */
  2780. return s->xcer[6];
  2781. case 0x3c: /* XCERH */
  2782. return s->xcer[7];
  2783. }
  2784. OMAP_BAD_REG(addr);
  2785. return 0;
  2786. }
  2787. static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
  2788. uint32_t value)
  2789. {
  2790. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2791. int offset = addr & OMAP_MPUI_REG_MASK;
  2792. switch (offset) {
  2793. case 0x00: /* DRR2 */
  2794. case 0x02: /* DRR1 */
  2795. OMAP_RO_REG(addr);
  2796. return;
  2797. case 0x04: /* DXR2 */
  2798. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2799. return;
  2800. /* Fall through. */
  2801. case 0x06: /* DXR1 */
  2802. if (s->tx_req > 1) {
  2803. s->tx_req -= 2;
  2804. if (s->codec && s->codec->cts) {
  2805. s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
  2806. s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
  2807. }
  2808. if (s->tx_req < 2)
  2809. omap_mcbsp_tx_done(s);
  2810. } else
  2811. printf("%s: Tx FIFO overrun\n", __func__);
  2812. return;
  2813. case 0x08: /* SPCR2 */
  2814. s->spcr[1] &= 0x0002;
  2815. s->spcr[1] |= 0x03f9 & value;
  2816. s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
  2817. if (~value & 1) /* XRST */
  2818. s->spcr[1] &= ~6;
  2819. omap_mcbsp_req_update(s);
  2820. return;
  2821. case 0x0a: /* SPCR1 */
  2822. s->spcr[0] &= 0x0006;
  2823. s->spcr[0] |= 0xf8f9 & value;
  2824. if (value & (1 << 15)) /* DLB */
  2825. printf("%s: Digital Loopback mode enable attempt\n", __func__);
  2826. if (~value & 1) { /* RRST */
  2827. s->spcr[0] &= ~6;
  2828. s->rx_req = 0;
  2829. omap_mcbsp_rx_done(s);
  2830. }
  2831. omap_mcbsp_req_update(s);
  2832. return;
  2833. case 0x0c: /* RCR2 */
  2834. s->rcr[1] = value & 0xffff;
  2835. return;
  2836. case 0x0e: /* RCR1 */
  2837. s->rcr[0] = value & 0x7fe0;
  2838. return;
  2839. case 0x10: /* XCR2 */
  2840. s->xcr[1] = value & 0xffff;
  2841. return;
  2842. case 0x12: /* XCR1 */
  2843. s->xcr[0] = value & 0x7fe0;
  2844. return;
  2845. case 0x14: /* SRGR2 */
  2846. s->srgr[1] = value & 0xffff;
  2847. omap_mcbsp_req_update(s);
  2848. return;
  2849. case 0x16: /* SRGR1 */
  2850. s->srgr[0] = value & 0xffff;
  2851. omap_mcbsp_req_update(s);
  2852. return;
  2853. case 0x18: /* MCR2 */
  2854. s->mcr[1] = value & 0x03e3;
  2855. if (value & 3) /* XMCM */
  2856. printf("%s: Tx channel selection mode enable attempt\n", __func__);
  2857. return;
  2858. case 0x1a: /* MCR1 */
  2859. s->mcr[0] = value & 0x03e1;
  2860. if (value & 1) /* RMCM */
  2861. printf("%s: Rx channel selection mode enable attempt\n", __func__);
  2862. return;
  2863. case 0x1c: /* RCERA */
  2864. s->rcer[0] = value & 0xffff;
  2865. return;
  2866. case 0x1e: /* RCERB */
  2867. s->rcer[1] = value & 0xffff;
  2868. return;
  2869. case 0x20: /* XCERA */
  2870. s->xcer[0] = value & 0xffff;
  2871. return;
  2872. case 0x22: /* XCERB */
  2873. s->xcer[1] = value & 0xffff;
  2874. return;
  2875. case 0x24: /* PCR0 */
  2876. s->pcr = value & 0x7faf;
  2877. return;
  2878. case 0x26: /* RCERC */
  2879. s->rcer[2] = value & 0xffff;
  2880. return;
  2881. case 0x28: /* RCERD */
  2882. s->rcer[3] = value & 0xffff;
  2883. return;
  2884. case 0x2a: /* XCERC */
  2885. s->xcer[2] = value & 0xffff;
  2886. return;
  2887. case 0x2c: /* XCERD */
  2888. s->xcer[3] = value & 0xffff;
  2889. return;
  2890. case 0x2e: /* RCERE */
  2891. s->rcer[4] = value & 0xffff;
  2892. return;
  2893. case 0x30: /* RCERF */
  2894. s->rcer[5] = value & 0xffff;
  2895. return;
  2896. case 0x32: /* XCERE */
  2897. s->xcer[4] = value & 0xffff;
  2898. return;
  2899. case 0x34: /* XCERF */
  2900. s->xcer[5] = value & 0xffff;
  2901. return;
  2902. case 0x36: /* RCERG */
  2903. s->rcer[6] = value & 0xffff;
  2904. return;
  2905. case 0x38: /* RCERH */
  2906. s->rcer[7] = value & 0xffff;
  2907. return;
  2908. case 0x3a: /* XCERG */
  2909. s->xcer[6] = value & 0xffff;
  2910. return;
  2911. case 0x3c: /* XCERH */
  2912. s->xcer[7] = value & 0xffff;
  2913. return;
  2914. }
  2915. OMAP_BAD_REG(addr);
  2916. }
  2917. static void omap_mcbsp_writew(void *opaque, hwaddr addr,
  2918. uint32_t value)
  2919. {
  2920. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2921. int offset = addr & OMAP_MPUI_REG_MASK;
  2922. if (offset == 0x04) { /* DXR */
  2923. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2924. return;
  2925. if (s->tx_req > 3) {
  2926. s->tx_req -= 4;
  2927. if (s->codec && s->codec->cts) {
  2928. s->codec->out.fifo[s->codec->out.len ++] =
  2929. (value >> 24) & 0xff;
  2930. s->codec->out.fifo[s->codec->out.len ++] =
  2931. (value >> 16) & 0xff;
  2932. s->codec->out.fifo[s->codec->out.len ++] =
  2933. (value >> 8) & 0xff;
  2934. s->codec->out.fifo[s->codec->out.len ++] =
  2935. (value >> 0) & 0xff;
  2936. }
  2937. if (s->tx_req < 4)
  2938. omap_mcbsp_tx_done(s);
  2939. } else
  2940. printf("%s: Tx FIFO overrun\n", __func__);
  2941. return;
  2942. }
  2943. omap_badwidth_write16(opaque, addr, value);
  2944. }
  2945. static void omap_mcbsp_write(void *opaque, hwaddr addr,
  2946. uint64_t value, unsigned size)
  2947. {
  2948. switch (size) {
  2949. case 2:
  2950. omap_mcbsp_writeh(opaque, addr, value);
  2951. break;
  2952. case 4:
  2953. omap_mcbsp_writew(opaque, addr, value);
  2954. break;
  2955. default:
  2956. omap_badwidth_write16(opaque, addr, value);
  2957. }
  2958. }
  2959. static const MemoryRegionOps omap_mcbsp_ops = {
  2960. .read = omap_mcbsp_read,
  2961. .write = omap_mcbsp_write,
  2962. .endianness = DEVICE_NATIVE_ENDIAN,
  2963. };
  2964. static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
  2965. {
  2966. memset(&s->spcr, 0, sizeof(s->spcr));
  2967. memset(&s->rcr, 0, sizeof(s->rcr));
  2968. memset(&s->xcr, 0, sizeof(s->xcr));
  2969. s->srgr[0] = 0x0001;
  2970. s->srgr[1] = 0x2000;
  2971. memset(&s->mcr, 0, sizeof(s->mcr));
  2972. memset(&s->pcr, 0, sizeof(s->pcr));
  2973. memset(&s->rcer, 0, sizeof(s->rcer));
  2974. memset(&s->xcer, 0, sizeof(s->xcer));
  2975. s->tx_req = 0;
  2976. s->rx_req = 0;
  2977. s->tx_rate = 0;
  2978. s->rx_rate = 0;
  2979. timer_del(s->source_timer);
  2980. timer_del(s->sink_timer);
  2981. }
  2982. static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
  2983. hwaddr base,
  2984. qemu_irq txirq, qemu_irq rxirq,
  2985. qemu_irq *dma, omap_clk clk)
  2986. {
  2987. struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
  2988. s->txirq = txirq;
  2989. s->rxirq = rxirq;
  2990. s->txdrq = dma[0];
  2991. s->rxdrq = dma[1];
  2992. s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
  2993. s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
  2994. omap_mcbsp_reset(s);
  2995. memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
  2996. memory_region_add_subregion(system_memory, base, &s->iomem);
  2997. return s;
  2998. }
  2999. static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
  3000. {
  3001. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3002. if (s->rx_rate) {
  3003. s->rx_req = s->codec->in.len;
  3004. omap_mcbsp_rx_newdata(s);
  3005. }
  3006. }
  3007. static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
  3008. {
  3009. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3010. if (s->tx_rate) {
  3011. s->tx_req = s->codec->out.size;
  3012. omap_mcbsp_tx_newdata(s);
  3013. }
  3014. }
  3015. void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
  3016. {
  3017. s->codec = slave;
  3018. slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
  3019. slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
  3020. }
  3021. /* LED Pulse Generators */
  3022. struct omap_lpg_s {
  3023. MemoryRegion iomem;
  3024. QEMUTimer *tm;
  3025. uint8_t control;
  3026. uint8_t power;
  3027. int64_t on;
  3028. int64_t period;
  3029. int clk;
  3030. int cycle;
  3031. };
  3032. static void omap_lpg_tick(void *opaque)
  3033. {
  3034. struct omap_lpg_s *s = opaque;
  3035. if (s->cycle)
  3036. timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
  3037. else
  3038. timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
  3039. s->cycle = !s->cycle;
  3040. printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
  3041. }
  3042. static void omap_lpg_update(struct omap_lpg_s *s)
  3043. {
  3044. int64_t on, period = 1, ticks = 1000;
  3045. static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
  3046. if (~s->control & (1 << 6)) /* LPGRES */
  3047. on = 0;
  3048. else if (s->control & (1 << 7)) /* PERM_ON */
  3049. on = period;
  3050. else {
  3051. period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
  3052. 256 / 32);
  3053. on = (s->clk && s->power) ? muldiv64(ticks,
  3054. per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
  3055. }
  3056. timer_del(s->tm);
  3057. if (on == period && s->on < s->period)
  3058. printf("%s: LED is on\n", __func__);
  3059. else if (on == 0 && s->on)
  3060. printf("%s: LED is off\n", __func__);
  3061. else if (on && (on != s->on || period != s->period)) {
  3062. s->cycle = 0;
  3063. s->on = on;
  3064. s->period = period;
  3065. omap_lpg_tick(s);
  3066. return;
  3067. }
  3068. s->on = on;
  3069. s->period = period;
  3070. }
  3071. static void omap_lpg_reset(struct omap_lpg_s *s)
  3072. {
  3073. s->control = 0x00;
  3074. s->power = 0x00;
  3075. s->clk = 1;
  3076. omap_lpg_update(s);
  3077. }
  3078. static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
  3079. unsigned size)
  3080. {
  3081. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3082. int offset = addr & OMAP_MPUI_REG_MASK;
  3083. if (size != 1) {
  3084. return omap_badwidth_read8(opaque, addr);
  3085. }
  3086. switch (offset) {
  3087. case 0x00: /* LCR */
  3088. return s->control;
  3089. case 0x04: /* PMR */
  3090. return s->power;
  3091. }
  3092. OMAP_BAD_REG(addr);
  3093. return 0;
  3094. }
  3095. static void omap_lpg_write(void *opaque, hwaddr addr,
  3096. uint64_t value, unsigned size)
  3097. {
  3098. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3099. int offset = addr & OMAP_MPUI_REG_MASK;
  3100. if (size != 1) {
  3101. omap_badwidth_write8(opaque, addr, value);
  3102. return;
  3103. }
  3104. switch (offset) {
  3105. case 0x00: /* LCR */
  3106. if (~value & (1 << 6)) /* LPGRES */
  3107. omap_lpg_reset(s);
  3108. s->control = value & 0xff;
  3109. omap_lpg_update(s);
  3110. return;
  3111. case 0x04: /* PMR */
  3112. s->power = value & 0x01;
  3113. omap_lpg_update(s);
  3114. return;
  3115. default:
  3116. OMAP_BAD_REG(addr);
  3117. return;
  3118. }
  3119. }
  3120. static const MemoryRegionOps omap_lpg_ops = {
  3121. .read = omap_lpg_read,
  3122. .write = omap_lpg_write,
  3123. .endianness = DEVICE_NATIVE_ENDIAN,
  3124. };
  3125. static void omap_lpg_clk_update(void *opaque, int line, int on)
  3126. {
  3127. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3128. s->clk = on;
  3129. omap_lpg_update(s);
  3130. }
  3131. static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
  3132. hwaddr base, omap_clk clk)
  3133. {
  3134. struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
  3135. s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
  3136. omap_lpg_reset(s);
  3137. memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
  3138. memory_region_add_subregion(system_memory, base, &s->iomem);
  3139. omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
  3140. return s;
  3141. }
  3142. /* MPUI Peripheral Bridge configuration */
  3143. static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
  3144. unsigned size)
  3145. {
  3146. if (size != 2) {
  3147. return omap_badwidth_read16(opaque, addr);
  3148. }
  3149. if (addr == OMAP_MPUI_BASE) /* CMR */
  3150. return 0xfe4d;
  3151. OMAP_BAD_REG(addr);
  3152. return 0;
  3153. }
  3154. static void omap_mpui_io_write(void *opaque, hwaddr addr,
  3155. uint64_t value, unsigned size)
  3156. {
  3157. /* FIXME: infinite loop */
  3158. omap_badwidth_write16(opaque, addr, value);
  3159. }
  3160. static const MemoryRegionOps omap_mpui_io_ops = {
  3161. .read = omap_mpui_io_read,
  3162. .write = omap_mpui_io_write,
  3163. .endianness = DEVICE_NATIVE_ENDIAN,
  3164. };
  3165. static void omap_setup_mpui_io(MemoryRegion *system_memory,
  3166. struct omap_mpu_state_s *mpu)
  3167. {
  3168. memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
  3169. "omap-mpui-io", 0x7fff);
  3170. memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
  3171. &mpu->mpui_io_iomem);
  3172. }
  3173. /* General chip reset */
  3174. static void omap1_mpu_reset(void *opaque)
  3175. {
  3176. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3177. omap_dma_reset(mpu->dma);
  3178. omap_mpu_timer_reset(mpu->timer[0]);
  3179. omap_mpu_timer_reset(mpu->timer[1]);
  3180. omap_mpu_timer_reset(mpu->timer[2]);
  3181. omap_wd_timer_reset(mpu->wdt);
  3182. omap_os_timer_reset(mpu->os_timer);
  3183. omap_lcdc_reset(mpu->lcd);
  3184. omap_ulpd_pm_reset(mpu);
  3185. omap_pin_cfg_reset(mpu);
  3186. omap_mpui_reset(mpu);
  3187. omap_tipb_bridge_reset(mpu->private_tipb);
  3188. omap_tipb_bridge_reset(mpu->public_tipb);
  3189. omap_dpll_reset(mpu->dpll[0]);
  3190. omap_dpll_reset(mpu->dpll[1]);
  3191. omap_dpll_reset(mpu->dpll[2]);
  3192. omap_uart_reset(mpu->uart[0]);
  3193. omap_uart_reset(mpu->uart[1]);
  3194. omap_uart_reset(mpu->uart[2]);
  3195. omap_mmc_reset(mpu->mmc);
  3196. omap_mpuio_reset(mpu->mpuio);
  3197. omap_uwire_reset(mpu->microwire);
  3198. omap_pwl_reset(mpu->pwl);
  3199. omap_pwt_reset(mpu->pwt);
  3200. omap_rtc_reset(mpu->rtc);
  3201. omap_mcbsp_reset(mpu->mcbsp1);
  3202. omap_mcbsp_reset(mpu->mcbsp2);
  3203. omap_mcbsp_reset(mpu->mcbsp3);
  3204. omap_lpg_reset(mpu->led[0]);
  3205. omap_lpg_reset(mpu->led[1]);
  3206. omap_clkm_reset(mpu);
  3207. cpu_reset(CPU(mpu->cpu));
  3208. }
  3209. static const struct omap_map_s {
  3210. hwaddr phys_dsp;
  3211. hwaddr phys_mpu;
  3212. uint32_t size;
  3213. const char *name;
  3214. } omap15xx_dsp_mm[] = {
  3215. /* Strobe 0 */
  3216. { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
  3217. { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
  3218. { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
  3219. { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
  3220. { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
  3221. { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
  3222. { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
  3223. { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
  3224. { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
  3225. { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
  3226. { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
  3227. { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
  3228. { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
  3229. { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
  3230. { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
  3231. { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
  3232. { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
  3233. /* Strobe 1 */
  3234. { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
  3235. { 0 }
  3236. };
  3237. static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
  3238. const struct omap_map_s *map)
  3239. {
  3240. MemoryRegion *io;
  3241. for (; map->phys_dsp; map ++) {
  3242. io = g_new(MemoryRegion, 1);
  3243. memory_region_init_alias(io, NULL, map->name,
  3244. system_memory, map->phys_mpu, map->size);
  3245. memory_region_add_subregion(system_memory, map->phys_dsp, io);
  3246. }
  3247. }
  3248. void omap_mpu_wakeup(void *opaque, int irq, int req)
  3249. {
  3250. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3251. CPUState *cpu = CPU(mpu->cpu);
  3252. if (cpu->halted) {
  3253. cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
  3254. }
  3255. }
  3256. static const struct dma_irq_map omap1_dma_irq_map[] = {
  3257. { 0, OMAP_INT_DMA_CH0_6 },
  3258. { 0, OMAP_INT_DMA_CH1_7 },
  3259. { 0, OMAP_INT_DMA_CH2_8 },
  3260. { 0, OMAP_INT_DMA_CH3 },
  3261. { 0, OMAP_INT_DMA_CH4 },
  3262. { 0, OMAP_INT_DMA_CH5 },
  3263. { 1, OMAP_INT_1610_DMA_CH6 },
  3264. { 1, OMAP_INT_1610_DMA_CH7 },
  3265. { 1, OMAP_INT_1610_DMA_CH8 },
  3266. { 1, OMAP_INT_1610_DMA_CH9 },
  3267. { 1, OMAP_INT_1610_DMA_CH10 },
  3268. { 1, OMAP_INT_1610_DMA_CH11 },
  3269. { 1, OMAP_INT_1610_DMA_CH12 },
  3270. { 1, OMAP_INT_1610_DMA_CH13 },
  3271. { 1, OMAP_INT_1610_DMA_CH14 },
  3272. { 1, OMAP_INT_1610_DMA_CH15 }
  3273. };
  3274. /* DMA ports for OMAP1 */
  3275. static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
  3276. hwaddr addr)
  3277. {
  3278. return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
  3279. }
  3280. static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
  3281. hwaddr addr)
  3282. {
  3283. return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
  3284. addr);
  3285. }
  3286. static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
  3287. hwaddr addr)
  3288. {
  3289. return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
  3290. }
  3291. static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
  3292. hwaddr addr)
  3293. {
  3294. return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
  3295. }
  3296. static int omap_validate_local_addr(struct omap_mpu_state_s *s,
  3297. hwaddr addr)
  3298. {
  3299. return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
  3300. }
  3301. static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
  3302. hwaddr addr)
  3303. {
  3304. return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
  3305. }
  3306. struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
  3307. const char *cpu_type)
  3308. {
  3309. int i;
  3310. struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
  3311. qemu_irq dma_irqs[6];
  3312. DriveInfo *dinfo;
  3313. SysBusDevice *busdev;
  3314. MemoryRegion *system_memory = get_system_memory();
  3315. /* Core */
  3316. s->mpu_model = omap310;
  3317. s->cpu = ARM_CPU(cpu_create(cpu_type));
  3318. s->sdram_size = memory_region_size(dram);
  3319. s->sram_size = OMAP15XX_SRAM_SIZE;
  3320. s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
  3321. /* Clocks */
  3322. omap_clk_init(s);
  3323. /* Memory-mapped stuff */
  3324. memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
  3325. &error_fatal);
  3326. memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
  3327. omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
  3328. s->ih[0] = qdev_create(NULL, "omap-intc");
  3329. qdev_prop_set_uint32(s->ih[0], "size", 0x100);
  3330. qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
  3331. qdev_init_nofail(s->ih[0]);
  3332. busdev = SYS_BUS_DEVICE(s->ih[0]);
  3333. sysbus_connect_irq(busdev, 0,
  3334. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
  3335. sysbus_connect_irq(busdev, 1,
  3336. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
  3337. sysbus_mmio_map(busdev, 0, 0xfffecb00);
  3338. s->ih[1] = qdev_create(NULL, "omap-intc");
  3339. qdev_prop_set_uint32(s->ih[1], "size", 0x800);
  3340. qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
  3341. qdev_init_nofail(s->ih[1]);
  3342. busdev = SYS_BUS_DEVICE(s->ih[1]);
  3343. sysbus_connect_irq(busdev, 0,
  3344. qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
  3345. /* The second interrupt controller's FIQ output is not wired up */
  3346. sysbus_mmio_map(busdev, 0, 0xfffe0000);
  3347. for (i = 0; i < 6; i++) {
  3348. dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
  3349. omap1_dma_irq_map[i].intr);
  3350. }
  3351. s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
  3352. qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
  3353. s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
  3354. s->port[emiff ].addr_valid = omap_validate_emiff_addr;
  3355. s->port[emifs ].addr_valid = omap_validate_emifs_addr;
  3356. s->port[imif ].addr_valid = omap_validate_imif_addr;
  3357. s->port[tipb ].addr_valid = omap_validate_tipb_addr;
  3358. s->port[local ].addr_valid = omap_validate_local_addr;
  3359. s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
  3360. /* Register SDRAM and SRAM DMA ports for fast transfers. */
  3361. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
  3362. OMAP_EMIFF_BASE, s->sdram_size);
  3363. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
  3364. OMAP_IMIF_BASE, s->sram_size);
  3365. s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
  3366. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
  3367. omap_findclk(s, "mputim_ck"));
  3368. s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
  3369. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
  3370. omap_findclk(s, "mputim_ck"));
  3371. s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
  3372. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
  3373. omap_findclk(s, "mputim_ck"));
  3374. s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
  3375. qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
  3376. omap_findclk(s, "armwdt_ck"));
  3377. s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
  3378. qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
  3379. omap_findclk(s, "clk32-kHz"));
  3380. s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
  3381. qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
  3382. omap_dma_get_lcdch(s->dma),
  3383. omap_findclk(s, "lcd_ck"));
  3384. omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
  3385. omap_pin_cfg_init(system_memory, 0xfffe1000, s);
  3386. omap_id_init(system_memory, s);
  3387. omap_mpui_init(system_memory, 0xfffec900, s);
  3388. s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
  3389. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
  3390. omap_findclk(s, "tipb_ck"));
  3391. s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
  3392. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
  3393. omap_findclk(s, "tipb_ck"));
  3394. omap_tcmi_init(system_memory, 0xfffecc00, s);
  3395. s->uart[0] = omap_uart_init(0xfffb0000,
  3396. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
  3397. omap_findclk(s, "uart1_ck"),
  3398. omap_findclk(s, "uart1_ck"),
  3399. s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
  3400. "uart1",
  3401. serial_hd(0));
  3402. s->uart[1] = omap_uart_init(0xfffb0800,
  3403. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
  3404. omap_findclk(s, "uart2_ck"),
  3405. omap_findclk(s, "uart2_ck"),
  3406. s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
  3407. "uart2",
  3408. serial_hd(0) ? serial_hd(1) : NULL);
  3409. s->uart[2] = omap_uart_init(0xfffb9800,
  3410. qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
  3411. omap_findclk(s, "uart3_ck"),
  3412. omap_findclk(s, "uart3_ck"),
  3413. s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
  3414. "uart3",
  3415. serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
  3416. s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
  3417. omap_findclk(s, "dpll1"));
  3418. s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
  3419. omap_findclk(s, "dpll2"));
  3420. s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
  3421. omap_findclk(s, "dpll3"));
  3422. dinfo = drive_get(IF_SD, 0, 0);
  3423. if (!dinfo && !qtest_enabled()) {
  3424. warn_report("missing SecureDigital device");
  3425. }
  3426. s->mmc = omap_mmc_init(0xfffb7800, system_memory,
  3427. dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
  3428. qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
  3429. &s->drq[OMAP_DMA_MMC_TX],
  3430. omap_findclk(s, "mmc_ck"));
  3431. s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
  3432. qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
  3433. qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
  3434. s->wakeup, omap_findclk(s, "clk32-kHz"));
  3435. s->gpio = qdev_create(NULL, "omap-gpio");
  3436. qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
  3437. qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
  3438. qdev_init_nofail(s->gpio);
  3439. sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
  3440. qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
  3441. sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
  3442. s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
  3443. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
  3444. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
  3445. s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
  3446. s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
  3447. omap_findclk(s, "armxor_ck"));
  3448. s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
  3449. omap_findclk(s, "armxor_ck"));
  3450. s->i2c[0] = qdev_create(NULL, "omap_i2c");
  3451. qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
  3452. qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
  3453. qdev_init_nofail(s->i2c[0]);
  3454. busdev = SYS_BUS_DEVICE(s->i2c[0]);
  3455. sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
  3456. sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
  3457. sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
  3458. sysbus_mmio_map(busdev, 0, 0xfffb3800);
  3459. s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
  3460. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
  3461. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
  3462. omap_findclk(s, "clk32-kHz"));
  3463. s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
  3464. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
  3465. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
  3466. &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
  3467. s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
  3468. qdev_get_gpio_in(s->ih[0],
  3469. OMAP_INT_310_McBSP2_TX),
  3470. qdev_get_gpio_in(s->ih[0],
  3471. OMAP_INT_310_McBSP2_RX),
  3472. &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
  3473. s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
  3474. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
  3475. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
  3476. &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
  3477. s->led[0] = omap_lpg_init(system_memory,
  3478. 0xfffbd000, omap_findclk(s, "clk32-kHz"));
  3479. s->led[1] = omap_lpg_init(system_memory,
  3480. 0xfffbd800, omap_findclk(s, "clk32-kHz"));
  3481. /* Register mappings not currenlty implemented:
  3482. * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
  3483. * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
  3484. * USB W2FC fffb4000 - fffb47ff
  3485. * Camera Interface fffb6800 - fffb6fff
  3486. * USB Host fffba000 - fffba7ff
  3487. * FAC fffba800 - fffbafff
  3488. * HDQ/1-Wire fffbc000 - fffbc7ff
  3489. * TIPB switches fffbc800 - fffbcfff
  3490. * Mailbox fffcf000 - fffcf7ff
  3491. * Local bus IF fffec100 - fffec1ff
  3492. * Local bus MMU fffec200 - fffec2ff
  3493. * DSP MMU fffed200 - fffed2ff
  3494. */
  3495. omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
  3496. omap_setup_mpui_io(system_memory, s);
  3497. qemu_register_reset(omap1_mpu_reset, s);
  3498. return s;
  3499. }