cpu.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. /* SPDX-License-Identifier: GPL-2.0-or-later */
  2. /*
  3. * QEMU LoongArch CPU
  4. *
  5. * Copyright (c) 2021 Loongson Technology Corporation Limited
  6. */
  7. #include "qemu/osdep.h"
  8. #include "qemu/log.h"
  9. #include "qemu/qemu-print.h"
  10. #include "qapi/error.h"
  11. #include "qemu/module.h"
  12. #include "sysemu/qtest.h"
  13. #include "exec/exec-all.h"
  14. #include "cpu.h"
  15. #include "internals.h"
  16. #include "fpu/softfloat-helpers.h"
  17. #include "cpu-csr.h"
  18. #include "sysemu/reset.h"
  19. #include "tcg/tcg.h"
  20. const char * const regnames[32] = {
  21. "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  22. "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
  23. "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
  24. "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
  25. };
  26. const char * const fregnames[32] = {
  27. "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  28. "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  29. "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  30. "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  31. };
  32. static const char * const excp_names[] = {
  33. [EXCCODE_INT] = "Interrupt",
  34. [EXCCODE_PIL] = "Page invalid exception for load",
  35. [EXCCODE_PIS] = "Page invalid exception for store",
  36. [EXCCODE_PIF] = "Page invalid exception for fetch",
  37. [EXCCODE_PME] = "Page modified exception",
  38. [EXCCODE_PNR] = "Page Not Readable exception",
  39. [EXCCODE_PNX] = "Page Not Executable exception",
  40. [EXCCODE_PPI] = "Page Privilege error",
  41. [EXCCODE_ADEF] = "Address error for instruction fetch",
  42. [EXCCODE_ADEM] = "Address error for Memory access",
  43. [EXCCODE_SYS] = "Syscall",
  44. [EXCCODE_BRK] = "Break",
  45. [EXCCODE_INE] = "Instruction Non-Existent",
  46. [EXCCODE_IPE] = "Instruction privilege error",
  47. [EXCCODE_FPD] = "Floating Point Disabled",
  48. [EXCCODE_FPE] = "Floating Point Exception",
  49. [EXCCODE_DBP] = "Debug breakpoint",
  50. [EXCCODE_BCE] = "Bound Check Exception",
  51. [EXCCODE_SXD] = "128 bit vector instructions Disable exception",
  52. };
  53. const char *loongarch_exception_name(int32_t exception)
  54. {
  55. assert(excp_names[exception]);
  56. return excp_names[exception];
  57. }
  58. void G_NORETURN do_raise_exception(CPULoongArchState *env,
  59. uint32_t exception,
  60. uintptr_t pc)
  61. {
  62. CPUState *cs = env_cpu(env);
  63. qemu_log_mask(CPU_LOG_INT, "%s: %d (%s)\n",
  64. __func__,
  65. exception,
  66. loongarch_exception_name(exception));
  67. cs->exception_index = exception;
  68. cpu_loop_exit_restore(cs, pc);
  69. }
  70. static void loongarch_cpu_set_pc(CPUState *cs, vaddr value)
  71. {
  72. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  73. CPULoongArchState *env = &cpu->env;
  74. env->pc = value;
  75. }
  76. static vaddr loongarch_cpu_get_pc(CPUState *cs)
  77. {
  78. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  79. CPULoongArchState *env = &cpu->env;
  80. return env->pc;
  81. }
  82. #ifndef CONFIG_USER_ONLY
  83. #include "hw/loongarch/virt.h"
  84. void loongarch_cpu_set_irq(void *opaque, int irq, int level)
  85. {
  86. LoongArchCPU *cpu = opaque;
  87. CPULoongArchState *env = &cpu->env;
  88. CPUState *cs = CPU(cpu);
  89. if (irq < 0 || irq >= N_IRQS) {
  90. return;
  91. }
  92. env->CSR_ESTAT = deposit64(env->CSR_ESTAT, irq, 1, level != 0);
  93. if (FIELD_EX64(env->CSR_ESTAT, CSR_ESTAT, IS)) {
  94. cpu_interrupt(cs, CPU_INTERRUPT_HARD);
  95. } else {
  96. cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
  97. }
  98. }
  99. static inline bool cpu_loongarch_hw_interrupts_enabled(CPULoongArchState *env)
  100. {
  101. bool ret = 0;
  102. ret = (FIELD_EX64(env->CSR_CRMD, CSR_CRMD, IE) &&
  103. !(FIELD_EX64(env->CSR_DBG, CSR_DBG, DST)));
  104. return ret;
  105. }
  106. /* Check if there is pending and not masked out interrupt */
  107. static inline bool cpu_loongarch_hw_interrupts_pending(CPULoongArchState *env)
  108. {
  109. uint32_t pending;
  110. uint32_t status;
  111. pending = FIELD_EX64(env->CSR_ESTAT, CSR_ESTAT, IS);
  112. status = FIELD_EX64(env->CSR_ECFG, CSR_ECFG, LIE);
  113. return (pending & status) != 0;
  114. }
  115. static void loongarch_cpu_do_interrupt(CPUState *cs)
  116. {
  117. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  118. CPULoongArchState *env = &cpu->env;
  119. bool update_badinstr = 1;
  120. int cause = -1;
  121. const char *name;
  122. bool tlbfill = FIELD_EX64(env->CSR_TLBRERA, CSR_TLBRERA, ISTLBR);
  123. uint32_t vec_size = FIELD_EX64(env->CSR_ECFG, CSR_ECFG, VS);
  124. if (cs->exception_index != EXCCODE_INT) {
  125. if (cs->exception_index < 0 ||
  126. cs->exception_index >= ARRAY_SIZE(excp_names)) {
  127. name = "unknown";
  128. } else {
  129. name = excp_names[cs->exception_index];
  130. }
  131. qemu_log_mask(CPU_LOG_INT,
  132. "%s enter: pc " TARGET_FMT_lx " ERA " TARGET_FMT_lx
  133. " TLBRERA " TARGET_FMT_lx " %s exception\n", __func__,
  134. env->pc, env->CSR_ERA, env->CSR_TLBRERA, name);
  135. }
  136. switch (cs->exception_index) {
  137. case EXCCODE_DBP:
  138. env->CSR_DBG = FIELD_DP64(env->CSR_DBG, CSR_DBG, DCL, 1);
  139. env->CSR_DBG = FIELD_DP64(env->CSR_DBG, CSR_DBG, ECODE, 0xC);
  140. goto set_DERA;
  141. set_DERA:
  142. env->CSR_DERA = env->pc;
  143. env->CSR_DBG = FIELD_DP64(env->CSR_DBG, CSR_DBG, DST, 1);
  144. env->pc = env->CSR_EENTRY + 0x480;
  145. break;
  146. case EXCCODE_INT:
  147. if (FIELD_EX64(env->CSR_DBG, CSR_DBG, DST)) {
  148. env->CSR_DBG = FIELD_DP64(env->CSR_DBG, CSR_DBG, DEI, 1);
  149. goto set_DERA;
  150. }
  151. QEMU_FALLTHROUGH;
  152. case EXCCODE_PIF:
  153. case EXCCODE_ADEF:
  154. cause = cs->exception_index;
  155. update_badinstr = 0;
  156. break;
  157. case EXCCODE_SYS:
  158. case EXCCODE_BRK:
  159. case EXCCODE_INE:
  160. case EXCCODE_IPE:
  161. case EXCCODE_FPD:
  162. case EXCCODE_FPE:
  163. case EXCCODE_SXD:
  164. env->CSR_BADV = env->pc;
  165. QEMU_FALLTHROUGH;
  166. case EXCCODE_BCE:
  167. case EXCCODE_ADEM:
  168. case EXCCODE_PIL:
  169. case EXCCODE_PIS:
  170. case EXCCODE_PME:
  171. case EXCCODE_PNR:
  172. case EXCCODE_PNX:
  173. case EXCCODE_PPI:
  174. cause = cs->exception_index;
  175. break;
  176. default:
  177. qemu_log("Error: exception(%d) has not been supported\n",
  178. cs->exception_index);
  179. abort();
  180. }
  181. if (update_badinstr) {
  182. env->CSR_BADI = cpu_ldl_code(env, env->pc);
  183. }
  184. /* Save PLV and IE */
  185. if (tlbfill) {
  186. env->CSR_TLBRPRMD = FIELD_DP64(env->CSR_TLBRPRMD, CSR_TLBRPRMD, PPLV,
  187. FIELD_EX64(env->CSR_CRMD,
  188. CSR_CRMD, PLV));
  189. env->CSR_TLBRPRMD = FIELD_DP64(env->CSR_TLBRPRMD, CSR_TLBRPRMD, PIE,
  190. FIELD_EX64(env->CSR_CRMD, CSR_CRMD, IE));
  191. /* set the DA mode */
  192. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, DA, 1);
  193. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, PG, 0);
  194. env->CSR_TLBRERA = FIELD_DP64(env->CSR_TLBRERA, CSR_TLBRERA,
  195. PC, (env->pc >> 2));
  196. } else {
  197. env->CSR_ESTAT = FIELD_DP64(env->CSR_ESTAT, CSR_ESTAT, ECODE,
  198. EXCODE_MCODE(cause));
  199. env->CSR_ESTAT = FIELD_DP64(env->CSR_ESTAT, CSR_ESTAT, ESUBCODE,
  200. EXCODE_SUBCODE(cause));
  201. env->CSR_PRMD = FIELD_DP64(env->CSR_PRMD, CSR_PRMD, PPLV,
  202. FIELD_EX64(env->CSR_CRMD, CSR_CRMD, PLV));
  203. env->CSR_PRMD = FIELD_DP64(env->CSR_PRMD, CSR_PRMD, PIE,
  204. FIELD_EX64(env->CSR_CRMD, CSR_CRMD, IE));
  205. env->CSR_ERA = env->pc;
  206. }
  207. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, PLV, 0);
  208. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, IE, 0);
  209. if (vec_size) {
  210. vec_size = (1 << vec_size) * 4;
  211. }
  212. if (cs->exception_index == EXCCODE_INT) {
  213. /* Interrupt */
  214. uint32_t vector = 0;
  215. uint32_t pending = FIELD_EX64(env->CSR_ESTAT, CSR_ESTAT, IS);
  216. pending &= FIELD_EX64(env->CSR_ECFG, CSR_ECFG, LIE);
  217. /* Find the highest-priority interrupt. */
  218. vector = 31 - clz32(pending);
  219. env->pc = env->CSR_EENTRY + (EXCCODE_EXTERNAL_INT + vector) * vec_size;
  220. qemu_log_mask(CPU_LOG_INT,
  221. "%s: PC " TARGET_FMT_lx " ERA " TARGET_FMT_lx
  222. " cause %d\n" " A " TARGET_FMT_lx " D "
  223. TARGET_FMT_lx " vector = %d ExC " TARGET_FMT_lx "ExS"
  224. TARGET_FMT_lx "\n",
  225. __func__, env->pc, env->CSR_ERA,
  226. cause, env->CSR_BADV, env->CSR_DERA, vector,
  227. env->CSR_ECFG, env->CSR_ESTAT);
  228. } else {
  229. if (tlbfill) {
  230. env->pc = env->CSR_TLBRENTRY;
  231. } else {
  232. env->pc = env->CSR_EENTRY;
  233. env->pc += EXCODE_MCODE(cause) * vec_size;
  234. }
  235. qemu_log_mask(CPU_LOG_INT,
  236. "%s: PC " TARGET_FMT_lx " ERA " TARGET_FMT_lx
  237. " cause %d%s\n, ESTAT " TARGET_FMT_lx
  238. " EXCFG " TARGET_FMT_lx " BADVA " TARGET_FMT_lx
  239. "BADI " TARGET_FMT_lx " SYS_NUM " TARGET_FMT_lu
  240. " cpu %d asid " TARGET_FMT_lx "\n", __func__, env->pc,
  241. tlbfill ? env->CSR_TLBRERA : env->CSR_ERA,
  242. cause, tlbfill ? "(refill)" : "", env->CSR_ESTAT,
  243. env->CSR_ECFG,
  244. tlbfill ? env->CSR_TLBRBADV : env->CSR_BADV,
  245. env->CSR_BADI, env->gpr[11], cs->cpu_index,
  246. env->CSR_ASID);
  247. }
  248. cs->exception_index = -1;
  249. }
  250. static void loongarch_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
  251. vaddr addr, unsigned size,
  252. MMUAccessType access_type,
  253. int mmu_idx, MemTxAttrs attrs,
  254. MemTxResult response,
  255. uintptr_t retaddr)
  256. {
  257. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  258. CPULoongArchState *env = &cpu->env;
  259. if (access_type == MMU_INST_FETCH) {
  260. do_raise_exception(env, EXCCODE_ADEF, retaddr);
  261. } else {
  262. do_raise_exception(env, EXCCODE_ADEM, retaddr);
  263. }
  264. }
  265. static bool loongarch_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
  266. {
  267. if (interrupt_request & CPU_INTERRUPT_HARD) {
  268. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  269. CPULoongArchState *env = &cpu->env;
  270. if (cpu_loongarch_hw_interrupts_enabled(env) &&
  271. cpu_loongarch_hw_interrupts_pending(env)) {
  272. /* Raise it */
  273. cs->exception_index = EXCCODE_INT;
  274. loongarch_cpu_do_interrupt(cs);
  275. return true;
  276. }
  277. }
  278. return false;
  279. }
  280. #endif
  281. #ifdef CONFIG_TCG
  282. static void loongarch_cpu_synchronize_from_tb(CPUState *cs,
  283. const TranslationBlock *tb)
  284. {
  285. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  286. CPULoongArchState *env = &cpu->env;
  287. tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL));
  288. env->pc = tb->pc;
  289. }
  290. static void loongarch_restore_state_to_opc(CPUState *cs,
  291. const TranslationBlock *tb,
  292. const uint64_t *data)
  293. {
  294. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  295. CPULoongArchState *env = &cpu->env;
  296. env->pc = data[0];
  297. }
  298. #endif /* CONFIG_TCG */
  299. static bool loongarch_cpu_has_work(CPUState *cs)
  300. {
  301. #ifdef CONFIG_USER_ONLY
  302. return true;
  303. #else
  304. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  305. CPULoongArchState *env = &cpu->env;
  306. bool has_work = false;
  307. if ((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
  308. cpu_loongarch_hw_interrupts_pending(env)) {
  309. has_work = true;
  310. }
  311. return has_work;
  312. #endif
  313. }
  314. static void loongarch_la464_initfn(Object *obj)
  315. {
  316. LoongArchCPU *cpu = LOONGARCH_CPU(obj);
  317. CPULoongArchState *env = &cpu->env;
  318. int i;
  319. for (i = 0; i < 21; i++) {
  320. env->cpucfg[i] = 0x0;
  321. }
  322. cpu->dtb_compatible = "loongarch,Loongson-3A5000";
  323. env->cpucfg[0] = 0x14c010; /* PRID */
  324. uint32_t data = 0;
  325. data = FIELD_DP32(data, CPUCFG1, ARCH, 2);
  326. data = FIELD_DP32(data, CPUCFG1, PGMMU, 1);
  327. data = FIELD_DP32(data, CPUCFG1, IOCSR, 1);
  328. data = FIELD_DP32(data, CPUCFG1, PALEN, 0x2f);
  329. data = FIELD_DP32(data, CPUCFG1, VALEN, 0x2f);
  330. data = FIELD_DP32(data, CPUCFG1, UAL, 1);
  331. data = FIELD_DP32(data, CPUCFG1, RI, 1);
  332. data = FIELD_DP32(data, CPUCFG1, EP, 1);
  333. data = FIELD_DP32(data, CPUCFG1, RPLV, 1);
  334. data = FIELD_DP32(data, CPUCFG1, HP, 1);
  335. data = FIELD_DP32(data, CPUCFG1, IOCSR_BRD, 1);
  336. env->cpucfg[1] = data;
  337. data = 0;
  338. data = FIELD_DP32(data, CPUCFG2, FP, 1);
  339. data = FIELD_DP32(data, CPUCFG2, FP_SP, 1);
  340. data = FIELD_DP32(data, CPUCFG2, FP_DP, 1);
  341. data = FIELD_DP32(data, CPUCFG2, FP_VER, 1);
  342. data = FIELD_DP32(data, CPUCFG2, LSX, 1),
  343. data = FIELD_DP32(data, CPUCFG2, LLFTP, 1);
  344. data = FIELD_DP32(data, CPUCFG2, LLFTP_VER, 1);
  345. data = FIELD_DP32(data, CPUCFG2, LSPW, 1);
  346. data = FIELD_DP32(data, CPUCFG2, LAM, 1);
  347. env->cpucfg[2] = data;
  348. env->cpucfg[4] = 100 * 1000 * 1000; /* Crystal frequency */
  349. data = 0;
  350. data = FIELD_DP32(data, CPUCFG5, CC_MUL, 1);
  351. data = FIELD_DP32(data, CPUCFG5, CC_DIV, 1);
  352. env->cpucfg[5] = data;
  353. data = 0;
  354. data = FIELD_DP32(data, CPUCFG16, L1_IUPRE, 1);
  355. data = FIELD_DP32(data, CPUCFG16, L1_DPRE, 1);
  356. data = FIELD_DP32(data, CPUCFG16, L2_IUPRE, 1);
  357. data = FIELD_DP32(data, CPUCFG16, L2_IUUNIFY, 1);
  358. data = FIELD_DP32(data, CPUCFG16, L2_IUPRIV, 1);
  359. data = FIELD_DP32(data, CPUCFG16, L3_IUPRE, 1);
  360. data = FIELD_DP32(data, CPUCFG16, L3_IUUNIFY, 1);
  361. data = FIELD_DP32(data, CPUCFG16, L3_IUINCL, 1);
  362. env->cpucfg[16] = data;
  363. data = 0;
  364. data = FIELD_DP32(data, CPUCFG17, L1IU_WAYS, 3);
  365. data = FIELD_DP32(data, CPUCFG17, L1IU_SETS, 8);
  366. data = FIELD_DP32(data, CPUCFG17, L1IU_SIZE, 6);
  367. env->cpucfg[17] = data;
  368. data = 0;
  369. data = FIELD_DP32(data, CPUCFG18, L1D_WAYS, 3);
  370. data = FIELD_DP32(data, CPUCFG18, L1D_SETS, 8);
  371. data = FIELD_DP32(data, CPUCFG18, L1D_SIZE, 6);
  372. env->cpucfg[18] = data;
  373. data = 0;
  374. data = FIELD_DP32(data, CPUCFG19, L2IU_WAYS, 15);
  375. data = FIELD_DP32(data, CPUCFG19, L2IU_SETS, 8);
  376. data = FIELD_DP32(data, CPUCFG19, L2IU_SIZE, 6);
  377. env->cpucfg[19] = data;
  378. data = 0;
  379. data = FIELD_DP32(data, CPUCFG20, L3IU_WAYS, 15);
  380. data = FIELD_DP32(data, CPUCFG20, L3IU_SETS, 14);
  381. data = FIELD_DP32(data, CPUCFG20, L3IU_SIZE, 6);
  382. env->cpucfg[20] = data;
  383. env->CSR_ASID = FIELD_DP64(0, CSR_ASID, ASIDBITS, 0xa);
  384. }
  385. static void loongarch_cpu_list_entry(gpointer data, gpointer user_data)
  386. {
  387. const char *typename = object_class_get_name(OBJECT_CLASS(data));
  388. qemu_printf("%s\n", typename);
  389. }
  390. void loongarch_cpu_list(void)
  391. {
  392. GSList *list;
  393. list = object_class_get_list_sorted(TYPE_LOONGARCH_CPU, false);
  394. g_slist_foreach(list, loongarch_cpu_list_entry, NULL);
  395. g_slist_free(list);
  396. }
  397. static void loongarch_cpu_reset_hold(Object *obj)
  398. {
  399. CPUState *cs = CPU(obj);
  400. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  401. LoongArchCPUClass *lacc = LOONGARCH_CPU_GET_CLASS(cpu);
  402. CPULoongArchState *env = &cpu->env;
  403. if (lacc->parent_phases.hold) {
  404. lacc->parent_phases.hold(obj);
  405. }
  406. env->fcsr0_mask = FCSR0_M1 | FCSR0_M2 | FCSR0_M3;
  407. env->fcsr0 = 0x0;
  408. int n;
  409. /* Set csr registers value after reset */
  410. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, PLV, 0);
  411. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, IE, 0);
  412. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, DA, 1);
  413. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, PG, 0);
  414. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, DATF, 1);
  415. env->CSR_CRMD = FIELD_DP64(env->CSR_CRMD, CSR_CRMD, DATM, 1);
  416. env->CSR_EUEN = FIELD_DP64(env->CSR_EUEN, CSR_EUEN, FPE, 0);
  417. env->CSR_EUEN = FIELD_DP64(env->CSR_EUEN, CSR_EUEN, SXE, 0);
  418. env->CSR_EUEN = FIELD_DP64(env->CSR_EUEN, CSR_EUEN, ASXE, 0);
  419. env->CSR_EUEN = FIELD_DP64(env->CSR_EUEN, CSR_EUEN, BTE, 0);
  420. env->CSR_MISC = 0;
  421. env->CSR_ECFG = FIELD_DP64(env->CSR_ECFG, CSR_ECFG, VS, 0);
  422. env->CSR_ECFG = FIELD_DP64(env->CSR_ECFG, CSR_ECFG, LIE, 0);
  423. env->CSR_ESTAT = env->CSR_ESTAT & (~MAKE_64BIT_MASK(0, 2));
  424. env->CSR_RVACFG = FIELD_DP64(env->CSR_RVACFG, CSR_RVACFG, RBITS, 0);
  425. env->CSR_TCFG = FIELD_DP64(env->CSR_TCFG, CSR_TCFG, EN, 0);
  426. env->CSR_LLBCTL = FIELD_DP64(env->CSR_LLBCTL, CSR_LLBCTL, KLO, 0);
  427. env->CSR_TLBRERA = FIELD_DP64(env->CSR_TLBRERA, CSR_TLBRERA, ISTLBR, 0);
  428. env->CSR_MERRCTL = FIELD_DP64(env->CSR_MERRCTL, CSR_MERRCTL, ISMERR, 0);
  429. env->CSR_PRCFG3 = FIELD_DP64(env->CSR_PRCFG3, CSR_PRCFG3, TLB_TYPE, 2);
  430. env->CSR_PRCFG3 = FIELD_DP64(env->CSR_PRCFG3, CSR_PRCFG3, MTLB_ENTRY, 63);
  431. env->CSR_PRCFG3 = FIELD_DP64(env->CSR_PRCFG3, CSR_PRCFG3, STLB_WAYS, 7);
  432. env->CSR_PRCFG3 = FIELD_DP64(env->CSR_PRCFG3, CSR_PRCFG3, STLB_SETS, 8);
  433. for (n = 0; n < 4; n++) {
  434. env->CSR_DMW[n] = FIELD_DP64(env->CSR_DMW[n], CSR_DMW, PLV0, 0);
  435. env->CSR_DMW[n] = FIELD_DP64(env->CSR_DMW[n], CSR_DMW, PLV1, 0);
  436. env->CSR_DMW[n] = FIELD_DP64(env->CSR_DMW[n], CSR_DMW, PLV2, 0);
  437. env->CSR_DMW[n] = FIELD_DP64(env->CSR_DMW[n], CSR_DMW, PLV3, 0);
  438. }
  439. #ifndef CONFIG_USER_ONLY
  440. env->pc = 0x1c000000;
  441. memset(env->tlb, 0, sizeof(env->tlb));
  442. #endif
  443. restore_fp_status(env);
  444. cs->exception_index = -1;
  445. }
  446. static void loongarch_cpu_disas_set_info(CPUState *s, disassemble_info *info)
  447. {
  448. info->print_insn = print_insn_loongarch;
  449. }
  450. static void loongarch_cpu_realizefn(DeviceState *dev, Error **errp)
  451. {
  452. CPUState *cs = CPU(dev);
  453. LoongArchCPUClass *lacc = LOONGARCH_CPU_GET_CLASS(dev);
  454. Error *local_err = NULL;
  455. cpu_exec_realizefn(cs, &local_err);
  456. if (local_err != NULL) {
  457. error_propagate(errp, local_err);
  458. return;
  459. }
  460. loongarch_cpu_register_gdb_regs_for_features(cs);
  461. cpu_reset(cs);
  462. qemu_init_vcpu(cs);
  463. lacc->parent_realize(dev, errp);
  464. }
  465. #ifndef CONFIG_USER_ONLY
  466. static void loongarch_qemu_write(void *opaque, hwaddr addr,
  467. uint64_t val, unsigned size)
  468. {
  469. qemu_log_mask(LOG_UNIMP, "[%s]: Unimplemented reg 0x%" HWADDR_PRIx "\n",
  470. __func__, addr);
  471. }
  472. static uint64_t loongarch_qemu_read(void *opaque, hwaddr addr, unsigned size)
  473. {
  474. switch (addr) {
  475. case VERSION_REG:
  476. return 0x11ULL;
  477. case FEATURE_REG:
  478. return 1ULL << IOCSRF_MSI | 1ULL << IOCSRF_EXTIOI |
  479. 1ULL << IOCSRF_CSRIPI;
  480. case VENDOR_REG:
  481. return 0x6e6f73676e6f6f4cULL; /* "Loongson" */
  482. case CPUNAME_REG:
  483. return 0x303030354133ULL; /* "3A5000" */
  484. case MISC_FUNC_REG:
  485. return 1ULL << IOCSRM_EXTIOI_EN;
  486. }
  487. return 0ULL;
  488. }
  489. static const MemoryRegionOps loongarch_qemu_ops = {
  490. .read = loongarch_qemu_read,
  491. .write = loongarch_qemu_write,
  492. .endianness = DEVICE_LITTLE_ENDIAN,
  493. .valid = {
  494. .min_access_size = 4,
  495. .max_access_size = 8,
  496. },
  497. .impl = {
  498. .min_access_size = 8,
  499. .max_access_size = 8,
  500. },
  501. };
  502. #endif
  503. static void loongarch_cpu_init(Object *obj)
  504. {
  505. LoongArchCPU *cpu = LOONGARCH_CPU(obj);
  506. cpu_set_cpustate_pointers(cpu);
  507. #ifndef CONFIG_USER_ONLY
  508. CPULoongArchState *env = &cpu->env;
  509. qdev_init_gpio_in(DEVICE(cpu), loongarch_cpu_set_irq, N_IRQS);
  510. timer_init_ns(&cpu->timer, QEMU_CLOCK_VIRTUAL,
  511. &loongarch_constant_timer_cb, cpu);
  512. memory_region_init_io(&env->system_iocsr, OBJECT(cpu), NULL,
  513. env, "iocsr", UINT64_MAX);
  514. address_space_init(&env->address_space_iocsr, &env->system_iocsr, "IOCSR");
  515. memory_region_init_io(&env->iocsr_mem, OBJECT(cpu), &loongarch_qemu_ops,
  516. NULL, "iocsr_misc", 0x428);
  517. memory_region_add_subregion(&env->system_iocsr, 0, &env->iocsr_mem);
  518. #endif
  519. }
  520. static ObjectClass *loongarch_cpu_class_by_name(const char *cpu_model)
  521. {
  522. ObjectClass *oc;
  523. oc = object_class_by_name(cpu_model);
  524. if (!oc) {
  525. g_autofree char *typename
  526. = g_strdup_printf(LOONGARCH_CPU_TYPE_NAME("%s"), cpu_model);
  527. oc = object_class_by_name(typename);
  528. if (!oc) {
  529. return NULL;
  530. }
  531. }
  532. if (object_class_dynamic_cast(oc, TYPE_LOONGARCH_CPU)
  533. && !object_class_is_abstract(oc)) {
  534. return oc;
  535. }
  536. return NULL;
  537. }
  538. void loongarch_cpu_dump_state(CPUState *cs, FILE *f, int flags)
  539. {
  540. LoongArchCPU *cpu = LOONGARCH_CPU(cs);
  541. CPULoongArchState *env = &cpu->env;
  542. int i;
  543. qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
  544. qemu_fprintf(f, " FCSR0 0x%08x fp_status 0x%02x\n", env->fcsr0,
  545. get_float_exception_flags(&env->fp_status));
  546. /* gpr */
  547. for (i = 0; i < 32; i++) {
  548. if ((i & 3) == 0) {
  549. qemu_fprintf(f, " GPR%02d:", i);
  550. }
  551. qemu_fprintf(f, " %s %016" PRIx64, regnames[i], env->gpr[i]);
  552. if ((i & 3) == 3) {
  553. qemu_fprintf(f, "\n");
  554. }
  555. }
  556. qemu_fprintf(f, "CRMD=%016" PRIx64 "\n", env->CSR_CRMD);
  557. qemu_fprintf(f, "PRMD=%016" PRIx64 "\n", env->CSR_PRMD);
  558. qemu_fprintf(f, "EUEN=%016" PRIx64 "\n", env->CSR_EUEN);
  559. qemu_fprintf(f, "ESTAT=%016" PRIx64 "\n", env->CSR_ESTAT);
  560. qemu_fprintf(f, "ERA=%016" PRIx64 "\n", env->CSR_ERA);
  561. qemu_fprintf(f, "BADV=%016" PRIx64 "\n", env->CSR_BADV);
  562. qemu_fprintf(f, "BADI=%016" PRIx64 "\n", env->CSR_BADI);
  563. qemu_fprintf(f, "EENTRY=%016" PRIx64 "\n", env->CSR_EENTRY);
  564. qemu_fprintf(f, "PRCFG1=%016" PRIx64 ", PRCFG2=%016" PRIx64 ","
  565. " PRCFG3=%016" PRIx64 "\n",
  566. env->CSR_PRCFG1, env->CSR_PRCFG3, env->CSR_PRCFG3);
  567. qemu_fprintf(f, "TLBRENTRY=%016" PRIx64 "\n", env->CSR_TLBRENTRY);
  568. qemu_fprintf(f, "TLBRBADV=%016" PRIx64 "\n", env->CSR_TLBRBADV);
  569. qemu_fprintf(f, "TLBRERA=%016" PRIx64 "\n", env->CSR_TLBRERA);
  570. /* fpr */
  571. if (flags & CPU_DUMP_FPU) {
  572. for (i = 0; i < 32; i++) {
  573. qemu_fprintf(f, " %s %016" PRIx64, fregnames[i], env->fpr[i].vreg.D(0));
  574. if ((i & 3) == 3) {
  575. qemu_fprintf(f, "\n");
  576. }
  577. }
  578. }
  579. }
  580. #ifdef CONFIG_TCG
  581. #include "hw/core/tcg-cpu-ops.h"
  582. static struct TCGCPUOps loongarch_tcg_ops = {
  583. .initialize = loongarch_translate_init,
  584. .synchronize_from_tb = loongarch_cpu_synchronize_from_tb,
  585. .restore_state_to_opc = loongarch_restore_state_to_opc,
  586. #ifndef CONFIG_USER_ONLY
  587. .tlb_fill = loongarch_cpu_tlb_fill,
  588. .cpu_exec_interrupt = loongarch_cpu_exec_interrupt,
  589. .do_interrupt = loongarch_cpu_do_interrupt,
  590. .do_transaction_failed = loongarch_cpu_do_transaction_failed,
  591. #endif
  592. };
  593. #endif /* CONFIG_TCG */
  594. #ifndef CONFIG_USER_ONLY
  595. #include "hw/core/sysemu-cpu-ops.h"
  596. static const struct SysemuCPUOps loongarch_sysemu_ops = {
  597. .get_phys_page_debug = loongarch_cpu_get_phys_page_debug,
  598. };
  599. #endif
  600. static void loongarch_cpu_class_init(ObjectClass *c, void *data)
  601. {
  602. LoongArchCPUClass *lacc = LOONGARCH_CPU_CLASS(c);
  603. CPUClass *cc = CPU_CLASS(c);
  604. DeviceClass *dc = DEVICE_CLASS(c);
  605. ResettableClass *rc = RESETTABLE_CLASS(c);
  606. device_class_set_parent_realize(dc, loongarch_cpu_realizefn,
  607. &lacc->parent_realize);
  608. resettable_class_set_parent_phases(rc, NULL, loongarch_cpu_reset_hold, NULL,
  609. &lacc->parent_phases);
  610. cc->class_by_name = loongarch_cpu_class_by_name;
  611. cc->has_work = loongarch_cpu_has_work;
  612. cc->dump_state = loongarch_cpu_dump_state;
  613. cc->set_pc = loongarch_cpu_set_pc;
  614. cc->get_pc = loongarch_cpu_get_pc;
  615. #ifndef CONFIG_USER_ONLY
  616. dc->vmsd = &vmstate_loongarch_cpu;
  617. cc->sysemu_ops = &loongarch_sysemu_ops;
  618. #endif
  619. cc->disas_set_info = loongarch_cpu_disas_set_info;
  620. cc->gdb_read_register = loongarch_cpu_gdb_read_register;
  621. cc->gdb_write_register = loongarch_cpu_gdb_write_register;
  622. cc->gdb_stop_before_watchpoint = true;
  623. #ifdef CONFIG_TCG
  624. cc->tcg_ops = &loongarch_tcg_ops;
  625. #endif
  626. }
  627. static gchar *loongarch32_gdb_arch_name(CPUState *cs)
  628. {
  629. return g_strdup("loongarch32");
  630. }
  631. static void loongarch32_cpu_class_init(ObjectClass *c, void *data)
  632. {
  633. CPUClass *cc = CPU_CLASS(c);
  634. cc->gdb_num_core_regs = 35;
  635. cc->gdb_core_xml_file = "loongarch-base32.xml";
  636. cc->gdb_arch_name = loongarch32_gdb_arch_name;
  637. }
  638. static gchar *loongarch64_gdb_arch_name(CPUState *cs)
  639. {
  640. return g_strdup("loongarch64");
  641. }
  642. static void loongarch64_cpu_class_init(ObjectClass *c, void *data)
  643. {
  644. CPUClass *cc = CPU_CLASS(c);
  645. cc->gdb_num_core_regs = 35;
  646. cc->gdb_core_xml_file = "loongarch-base64.xml";
  647. cc->gdb_arch_name = loongarch64_gdb_arch_name;
  648. }
  649. #define DEFINE_LOONGARCH_CPU_TYPE(size, model, initfn) \
  650. { \
  651. .parent = TYPE_LOONGARCH##size##_CPU, \
  652. .instance_init = initfn, \
  653. .name = LOONGARCH_CPU_TYPE_NAME(model), \
  654. }
  655. static const TypeInfo loongarch_cpu_type_infos[] = {
  656. {
  657. .name = TYPE_LOONGARCH_CPU,
  658. .parent = TYPE_CPU,
  659. .instance_size = sizeof(LoongArchCPU),
  660. .instance_init = loongarch_cpu_init,
  661. .abstract = true,
  662. .class_size = sizeof(LoongArchCPUClass),
  663. .class_init = loongarch_cpu_class_init,
  664. },
  665. {
  666. .name = TYPE_LOONGARCH32_CPU,
  667. .parent = TYPE_LOONGARCH_CPU,
  668. .abstract = true,
  669. .class_init = loongarch32_cpu_class_init,
  670. },
  671. {
  672. .name = TYPE_LOONGARCH64_CPU,
  673. .parent = TYPE_LOONGARCH_CPU,
  674. .abstract = true,
  675. .class_init = loongarch64_cpu_class_init,
  676. },
  677. DEFINE_LOONGARCH_CPU_TYPE(64, "la464", loongarch_la464_initfn),
  678. };
  679. DEFINE_TYPES(loongarch_cpu_type_infos)