nand.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. /*
  2. * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
  3. * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
  4. * Samsung Electronic.
  5. *
  6. * Copyright (c) 2006 Openedhand Ltd.
  7. * Written by Andrzej Zaborowski <balrog@zabor.org>
  8. *
  9. * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
  10. * datasheet from Micron Technology and "NAND02G-B2C" datasheet
  11. * from ST Microelectronics.
  12. *
  13. * This code is licensed under the GNU GPL v2.
  14. *
  15. * Contributions after 2012-01-13 are licensed under the terms of the
  16. * GNU GPL, version 2 or (at your option) any later version.
  17. */
  18. #ifndef NAND_IO
  19. #include "qemu/osdep.h"
  20. #include "hw/hw.h"
  21. #include "hw/qdev-properties.h"
  22. #include "hw/qdev-properties-system.h"
  23. #include "hw/block/flash.h"
  24. #include "sysemu/block-backend.h"
  25. #include "migration/vmstate.h"
  26. #include "qapi/error.h"
  27. #include "qemu/error-report.h"
  28. #include "qemu/module.h"
  29. #include "qom/object.h"
  30. # define NAND_CMD_READ0 0x00
  31. # define NAND_CMD_READ1 0x01
  32. # define NAND_CMD_READ2 0x50
  33. # define NAND_CMD_LPREAD2 0x30
  34. # define NAND_CMD_NOSERIALREAD2 0x35
  35. # define NAND_CMD_RANDOMREAD1 0x05
  36. # define NAND_CMD_RANDOMREAD2 0xe0
  37. # define NAND_CMD_READID 0x90
  38. # define NAND_CMD_RESET 0xff
  39. # define NAND_CMD_PAGEPROGRAM1 0x80
  40. # define NAND_CMD_PAGEPROGRAM2 0x10
  41. # define NAND_CMD_CACHEPROGRAM2 0x15
  42. # define NAND_CMD_BLOCKERASE1 0x60
  43. # define NAND_CMD_BLOCKERASE2 0xd0
  44. # define NAND_CMD_READSTATUS 0x70
  45. # define NAND_CMD_COPYBACKPRG1 0x85
  46. # define NAND_IOSTATUS_ERROR (1 << 0)
  47. # define NAND_IOSTATUS_PLANE0 (1 << 1)
  48. # define NAND_IOSTATUS_PLANE1 (1 << 2)
  49. # define NAND_IOSTATUS_PLANE2 (1 << 3)
  50. # define NAND_IOSTATUS_PLANE3 (1 << 4)
  51. # define NAND_IOSTATUS_READY (1 << 6)
  52. # define NAND_IOSTATUS_UNPROTCT (1 << 7)
  53. # define MAX_PAGE 0x800
  54. # define MAX_OOB 0x40
  55. typedef struct NANDFlashState NANDFlashState;
  56. struct NANDFlashState {
  57. DeviceState parent_obj;
  58. uint8_t manf_id, chip_id;
  59. uint8_t buswidth; /* in BYTES */
  60. int size, pages;
  61. int page_shift, oob_shift, erase_shift, addr_shift;
  62. uint8_t *storage;
  63. BlockBackend *blk;
  64. int mem_oob;
  65. uint8_t cle, ale, ce, wp, gnd;
  66. uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  67. uint8_t *ioaddr;
  68. int iolen;
  69. uint32_t cmd;
  70. uint64_t addr;
  71. int addrlen;
  72. int status;
  73. int offset;
  74. void (*blk_write)(NANDFlashState *s);
  75. void (*blk_erase)(NANDFlashState *s);
  76. /*
  77. * Returns %true when block containing (@addr + @offset) is
  78. * successfully loaded, otherwise %false.
  79. */
  80. bool (*blk_load)(NANDFlashState *s, uint64_t addr, unsigned offset);
  81. uint32_t ioaddr_vmstate;
  82. };
  83. #define TYPE_NAND "nand"
  84. OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND)
  85. static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
  86. {
  87. /* Like memcpy() but we logical-AND the data into the destination */
  88. int i;
  89. for (i = 0; i < n; i++) {
  90. dest[i] &= src[i];
  91. }
  92. }
  93. # define NAND_NO_AUTOINCR 0x00000001
  94. # define NAND_BUSWIDTH_16 0x00000002
  95. # define NAND_NO_PADDING 0x00000004
  96. # define NAND_CACHEPRG 0x00000008
  97. # define NAND_COPYBACK 0x00000010
  98. # define NAND_IS_AND 0x00000020
  99. # define NAND_4PAGE_ARRAY 0x00000040
  100. # define NAND_NO_READRDY 0x00000100
  101. # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
  102. # define NAND_IO
  103. # define PAGE(addr) ((addr) >> ADDR_SHIFT)
  104. # define PAGE_START(page) (PAGE(page) * (NAND_PAGE_SIZE + OOB_SIZE))
  105. # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
  106. # define OOB_SHIFT (PAGE_SHIFT - 5)
  107. # define OOB_SIZE (1 << OOB_SHIFT)
  108. # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
  109. # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
  110. # define NAND_PAGE_SIZE 256
  111. # define PAGE_SHIFT 8
  112. # define PAGE_SECTORS 1
  113. # define ADDR_SHIFT 8
  114. # include "nand.c"
  115. # define NAND_PAGE_SIZE 512
  116. # define PAGE_SHIFT 9
  117. # define PAGE_SECTORS 1
  118. # define ADDR_SHIFT 8
  119. # include "nand.c"
  120. # define NAND_PAGE_SIZE 2048
  121. # define PAGE_SHIFT 11
  122. # define PAGE_SECTORS 4
  123. # define ADDR_SHIFT 16
  124. # include "nand.c"
  125. /* Information based on Linux drivers/mtd/nand/raw/nand_ids.c */
  126. static const struct {
  127. int size;
  128. int width;
  129. int page_shift;
  130. int erase_shift;
  131. uint32_t options;
  132. } nand_flash_ids[0x100] = {
  133. [0 ... 0xff] = { 0 },
  134. [0x6b] = { 4, 8, 9, 4, 0 },
  135. [0xe3] = { 4, 8, 9, 4, 0 },
  136. [0xe5] = { 4, 8, 9, 4, 0 },
  137. [0xd6] = { 8, 8, 9, 4, 0 },
  138. [0xe6] = { 8, 8, 9, 4, 0 },
  139. [0x33] = { 16, 8, 9, 5, 0 },
  140. [0x73] = { 16, 8, 9, 5, 0 },
  141. [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  142. [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  143. [0x35] = { 32, 8, 9, 5, 0 },
  144. [0x75] = { 32, 8, 9, 5, 0 },
  145. [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  146. [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  147. [0x36] = { 64, 8, 9, 5, 0 },
  148. [0x76] = { 64, 8, 9, 5, 0 },
  149. [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  150. [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  151. [0x78] = { 128, 8, 9, 5, 0 },
  152. [0x39] = { 128, 8, 9, 5, 0 },
  153. [0x79] = { 128, 8, 9, 5, 0 },
  154. [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  155. [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  156. [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  157. [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  158. [0x71] = { 256, 8, 9, 5, 0 },
  159. /*
  160. * These are the new chips with large page size. The pagesize and the
  161. * erasesize is determined from the extended id bytes
  162. */
  163. # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
  164. # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
  165. /* 512 Megabit */
  166. [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
  167. [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
  168. [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  169. [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  170. /* 1 Gigabit */
  171. [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
  172. [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
  173. [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  174. [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  175. /* 2 Gigabit */
  176. [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
  177. [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
  178. [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
  179. [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
  180. /* 4 Gigabit */
  181. [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
  182. [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
  183. [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  184. [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  185. /* 8 Gigabit */
  186. [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
  187. [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
  188. [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  189. [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  190. /* 16 Gigabit */
  191. [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
  192. [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
  193. [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  194. [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  195. };
  196. static void nand_reset(DeviceState *dev)
  197. {
  198. NANDFlashState *s = NAND(dev);
  199. s->cmd = NAND_CMD_READ0;
  200. s->addr = 0;
  201. s->addrlen = 0;
  202. s->iolen = 0;
  203. s->offset = 0;
  204. s->status &= NAND_IOSTATUS_UNPROTCT;
  205. s->status |= NAND_IOSTATUS_READY;
  206. }
  207. static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
  208. {
  209. s->ioaddr[s->iolen++] = value;
  210. for (value = s->buswidth; --value;) {
  211. s->ioaddr[s->iolen++] = 0;
  212. }
  213. }
  214. /*
  215. * nand_load_block: Load block containing (s->addr + @offset).
  216. * Returns length of data available at @offset in this block.
  217. */
  218. static unsigned nand_load_block(NANDFlashState *s, unsigned offset)
  219. {
  220. unsigned iolen;
  221. if (!s->blk_load(s, s->addr, offset)) {
  222. return 0;
  223. }
  224. iolen = (1 << s->page_shift);
  225. if (s->gnd) {
  226. iolen += 1 << s->oob_shift;
  227. }
  228. assert(offset <= iolen);
  229. iolen -= offset;
  230. return iolen;
  231. }
  232. static void nand_command(NANDFlashState *s)
  233. {
  234. switch (s->cmd) {
  235. case NAND_CMD_READ0:
  236. s->iolen = 0;
  237. break;
  238. case NAND_CMD_READID:
  239. s->ioaddr = s->io;
  240. s->iolen = 0;
  241. nand_pushio_byte(s, s->manf_id);
  242. nand_pushio_byte(s, s->chip_id);
  243. nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
  244. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  245. /* Page Size, Block Size, Spare Size; bit 6 indicates
  246. * 8 vs 16 bit width NAND.
  247. */
  248. nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
  249. } else {
  250. nand_pushio_byte(s, 0xc0); /* Multi-plane */
  251. }
  252. break;
  253. case NAND_CMD_RANDOMREAD2:
  254. case NAND_CMD_NOSERIALREAD2:
  255. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
  256. break;
  257. s->iolen = nand_load_block(s, s->addr & ((1 << s->addr_shift) - 1));
  258. break;
  259. case NAND_CMD_RESET:
  260. nand_reset(DEVICE(s));
  261. break;
  262. case NAND_CMD_PAGEPROGRAM1:
  263. s->ioaddr = s->io;
  264. s->iolen = 0;
  265. break;
  266. case NAND_CMD_PAGEPROGRAM2:
  267. if (s->wp) {
  268. s->blk_write(s);
  269. }
  270. break;
  271. case NAND_CMD_BLOCKERASE1:
  272. break;
  273. case NAND_CMD_BLOCKERASE2:
  274. s->addr &= (1ull << s->addrlen * 8) - 1;
  275. s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
  276. 16 : 8;
  277. if (s->wp) {
  278. s->blk_erase(s);
  279. }
  280. break;
  281. case NAND_CMD_READSTATUS:
  282. s->ioaddr = s->io;
  283. s->iolen = 0;
  284. nand_pushio_byte(s, s->status);
  285. break;
  286. default:
  287. printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
  288. }
  289. }
  290. static int nand_pre_save(void *opaque)
  291. {
  292. NANDFlashState *s = NAND(opaque);
  293. s->ioaddr_vmstate = s->ioaddr - s->io;
  294. return 0;
  295. }
  296. static int nand_post_load(void *opaque, int version_id)
  297. {
  298. NANDFlashState *s = NAND(opaque);
  299. if (s->ioaddr_vmstate > sizeof(s->io)) {
  300. return -EINVAL;
  301. }
  302. s->ioaddr = s->io + s->ioaddr_vmstate;
  303. return 0;
  304. }
  305. static const VMStateDescription vmstate_nand = {
  306. .name = "nand",
  307. .version_id = 1,
  308. .minimum_version_id = 1,
  309. .pre_save = nand_pre_save,
  310. .post_load = nand_post_load,
  311. .fields = (const VMStateField[]) {
  312. VMSTATE_UINT8(cle, NANDFlashState),
  313. VMSTATE_UINT8(ale, NANDFlashState),
  314. VMSTATE_UINT8(ce, NANDFlashState),
  315. VMSTATE_UINT8(wp, NANDFlashState),
  316. VMSTATE_UINT8(gnd, NANDFlashState),
  317. VMSTATE_BUFFER(io, NANDFlashState),
  318. VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
  319. VMSTATE_INT32(iolen, NANDFlashState),
  320. VMSTATE_UINT32(cmd, NANDFlashState),
  321. VMSTATE_UINT64(addr, NANDFlashState),
  322. VMSTATE_INT32(addrlen, NANDFlashState),
  323. VMSTATE_INT32(status, NANDFlashState),
  324. VMSTATE_INT32(offset, NANDFlashState),
  325. /* XXX: do we want to save s->storage too? */
  326. VMSTATE_END_OF_LIST()
  327. }
  328. };
  329. static void nand_realize(DeviceState *dev, Error **errp)
  330. {
  331. int pagesize;
  332. NANDFlashState *s = NAND(dev);
  333. int ret;
  334. s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
  335. s->size = nand_flash_ids[s->chip_id].size << 20;
  336. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  337. s->page_shift = 11;
  338. s->erase_shift = 6;
  339. } else {
  340. s->page_shift = nand_flash_ids[s->chip_id].page_shift;
  341. s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
  342. }
  343. switch (1 << s->page_shift) {
  344. case 256:
  345. nand_init_256(s);
  346. break;
  347. case 512:
  348. nand_init_512(s);
  349. break;
  350. case 2048:
  351. nand_init_2048(s);
  352. break;
  353. default:
  354. error_setg(errp, "Unsupported NAND block size %#x",
  355. 1 << s->page_shift);
  356. return;
  357. }
  358. pagesize = 1 << s->oob_shift;
  359. s->mem_oob = 1;
  360. if (s->blk) {
  361. if (!blk_supports_write_perm(s->blk)) {
  362. error_setg(errp, "Can't use a read-only drive");
  363. return;
  364. }
  365. ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
  366. BLK_PERM_ALL, errp);
  367. if (ret < 0) {
  368. return;
  369. }
  370. if (blk_getlength(s->blk) >=
  371. (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
  372. pagesize = 0;
  373. s->mem_oob = 0;
  374. }
  375. } else {
  376. pagesize += 1 << s->page_shift;
  377. }
  378. if (pagesize) {
  379. s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
  380. 0xff, s->pages * pagesize);
  381. }
  382. /* Give s->ioaddr a sane value in case we save state before it is used. */
  383. s->ioaddr = s->io;
  384. }
  385. static Property nand_properties[] = {
  386. DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
  387. DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
  388. DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
  389. DEFINE_PROP_END_OF_LIST(),
  390. };
  391. static void nand_class_init(ObjectClass *klass, void *data)
  392. {
  393. DeviceClass *dc = DEVICE_CLASS(klass);
  394. dc->realize = nand_realize;
  395. device_class_set_legacy_reset(dc, nand_reset);
  396. dc->vmsd = &vmstate_nand;
  397. device_class_set_props(dc, nand_properties);
  398. set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
  399. }
  400. static const TypeInfo nand_info = {
  401. .name = TYPE_NAND,
  402. .parent = TYPE_DEVICE,
  403. .instance_size = sizeof(NANDFlashState),
  404. .class_init = nand_class_init,
  405. };
  406. static void nand_register_types(void)
  407. {
  408. type_register_static(&nand_info);
  409. }
  410. /*
  411. * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
  412. * outputs are R/B and eight I/O pins.
  413. *
  414. * CE, WP and R/B are active low.
  415. */
  416. void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
  417. uint8_t ce, uint8_t wp, uint8_t gnd)
  418. {
  419. NANDFlashState *s = NAND(dev);
  420. s->cle = cle;
  421. s->ale = ale;
  422. s->ce = ce;
  423. s->wp = wp;
  424. s->gnd = gnd;
  425. if (wp) {
  426. s->status |= NAND_IOSTATUS_UNPROTCT;
  427. } else {
  428. s->status &= ~NAND_IOSTATUS_UNPROTCT;
  429. }
  430. }
  431. void nand_getpins(DeviceState *dev, int *rb)
  432. {
  433. *rb = 1;
  434. }
  435. void nand_setio(DeviceState *dev, uint32_t value)
  436. {
  437. int i;
  438. NANDFlashState *s = NAND(dev);
  439. if (!s->ce && s->cle) {
  440. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  441. if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
  442. return;
  443. if (value == NAND_CMD_RANDOMREAD1) {
  444. s->addr &= ~((1 << s->addr_shift) - 1);
  445. s->addrlen = 0;
  446. return;
  447. }
  448. }
  449. if (value == NAND_CMD_READ0) {
  450. s->offset = 0;
  451. } else if (value == NAND_CMD_READ1) {
  452. s->offset = 0x100;
  453. value = NAND_CMD_READ0;
  454. } else if (value == NAND_CMD_READ2) {
  455. s->offset = 1 << s->page_shift;
  456. value = NAND_CMD_READ0;
  457. }
  458. s->cmd = value;
  459. if (s->cmd == NAND_CMD_READSTATUS ||
  460. s->cmd == NAND_CMD_PAGEPROGRAM2 ||
  461. s->cmd == NAND_CMD_BLOCKERASE1 ||
  462. s->cmd == NAND_CMD_BLOCKERASE2 ||
  463. s->cmd == NAND_CMD_NOSERIALREAD2 ||
  464. s->cmd == NAND_CMD_RANDOMREAD2 ||
  465. s->cmd == NAND_CMD_RESET) {
  466. nand_command(s);
  467. }
  468. if (s->cmd != NAND_CMD_RANDOMREAD2) {
  469. s->addrlen = 0;
  470. }
  471. }
  472. if (s->ale) {
  473. unsigned int shift = s->addrlen * 8;
  474. uint64_t mask = ~(0xffull << shift);
  475. uint64_t v = (uint64_t)value << shift;
  476. s->addr = (s->addr & mask) | v;
  477. s->addrlen ++;
  478. switch (s->addrlen) {
  479. case 1:
  480. if (s->cmd == NAND_CMD_READID) {
  481. nand_command(s);
  482. }
  483. break;
  484. case 2: /* fix cache address as a byte address */
  485. s->addr <<= (s->buswidth - 1);
  486. break;
  487. case 3:
  488. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  489. (s->cmd == NAND_CMD_READ0 ||
  490. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  491. nand_command(s);
  492. }
  493. break;
  494. case 4:
  495. if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  496. nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
  497. (s->cmd == NAND_CMD_READ0 ||
  498. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  499. nand_command(s);
  500. }
  501. break;
  502. case 5:
  503. if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  504. nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
  505. (s->cmd == NAND_CMD_READ0 ||
  506. s->cmd == NAND_CMD_PAGEPROGRAM1)) {
  507. nand_command(s);
  508. }
  509. break;
  510. default:
  511. break;
  512. }
  513. }
  514. if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
  515. if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
  516. for (i = s->buswidth; i--; value >>= 8) {
  517. s->io[s->iolen ++] = (uint8_t) (value & 0xff);
  518. }
  519. }
  520. } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
  521. if ((s->addr & ((1 << s->addr_shift) - 1)) <
  522. (1 << s->page_shift) + (1 << s->oob_shift)) {
  523. for (i = s->buswidth; i--; s->addr++, value >>= 8) {
  524. s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
  525. (uint8_t) (value & 0xff);
  526. }
  527. }
  528. }
  529. }
  530. uint32_t nand_getio(DeviceState *dev)
  531. {
  532. int offset;
  533. uint32_t x = 0;
  534. NANDFlashState *s = NAND(dev);
  535. /* Allow sequential reading */
  536. if (!s->iolen && s->cmd == NAND_CMD_READ0) {
  537. offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
  538. s->offset = 0;
  539. s->iolen = nand_load_block(s, offset);
  540. }
  541. if (s->ce || s->iolen <= 0) {
  542. return 0;
  543. }
  544. for (offset = s->buswidth; offset--;) {
  545. x |= s->ioaddr[offset] << (offset << 3);
  546. }
  547. /* after receiving READ STATUS command all subsequent reads will
  548. * return the status register value until another command is issued
  549. */
  550. if (s->cmd != NAND_CMD_READSTATUS) {
  551. s->addr += s->buswidth;
  552. s->ioaddr += s->buswidth;
  553. s->iolen -= s->buswidth;
  554. }
  555. return x;
  556. }
  557. uint32_t nand_getbuswidth(DeviceState *dev)
  558. {
  559. NANDFlashState *s = (NANDFlashState *) dev;
  560. return s->buswidth << 3;
  561. }
  562. DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
  563. {
  564. DeviceState *dev;
  565. if (nand_flash_ids[chip_id].size == 0) {
  566. hw_error("%s: Unsupported NAND chip ID.\n", __func__);
  567. }
  568. dev = qdev_new(TYPE_NAND);
  569. qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
  570. qdev_prop_set_uint8(dev, "chip_id", chip_id);
  571. if (blk) {
  572. qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal);
  573. }
  574. qdev_realize(dev, NULL, &error_fatal);
  575. return dev;
  576. }
  577. type_init(nand_register_types)
  578. #else
  579. /* Program a single page */
  580. static void glue(nand_blk_write_, NAND_PAGE_SIZE)(NANDFlashState *s)
  581. {
  582. uint64_t off, page, sector, soff;
  583. uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
  584. if (PAGE(s->addr) >= s->pages)
  585. return;
  586. if (!s->blk) {
  587. mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
  588. s->offset, s->io, s->iolen);
  589. } else if (s->mem_oob) {
  590. sector = SECTOR(s->addr);
  591. off = (s->addr & PAGE_MASK) + s->offset;
  592. soff = SECTOR_OFFSET(s->addr);
  593. if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS,
  594. PAGE_SECTORS << BDRV_SECTOR_BITS, iobuf, 0) < 0) {
  595. printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
  596. return;
  597. }
  598. mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, NAND_PAGE_SIZE - off));
  599. if (off + s->iolen > NAND_PAGE_SIZE) {
  600. page = PAGE(s->addr);
  601. mem_and(s->storage + (page << OOB_SHIFT), s->io + NAND_PAGE_SIZE - off,
  602. MIN(OOB_SIZE, off + s->iolen - NAND_PAGE_SIZE));
  603. }
  604. if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS,
  605. PAGE_SECTORS << BDRV_SECTOR_BITS, iobuf, 0) < 0) {
  606. printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
  607. }
  608. } else {
  609. off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
  610. sector = off >> 9;
  611. soff = off & 0x1ff;
  612. if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS,
  613. (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, iobuf, 0) < 0) {
  614. printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
  615. return;
  616. }
  617. mem_and(iobuf + soff, s->io, s->iolen);
  618. if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS,
  619. (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, iobuf, 0) < 0) {
  620. printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
  621. }
  622. }
  623. s->offset = 0;
  624. }
  625. /* Erase a single block */
  626. static void glue(nand_blk_erase_, NAND_PAGE_SIZE)(NANDFlashState *s)
  627. {
  628. uint64_t i, page, addr;
  629. uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
  630. addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
  631. if (PAGE(addr) >= s->pages) {
  632. return;
  633. }
  634. if (!s->blk) {
  635. memset(s->storage + PAGE_START(addr),
  636. 0xff, (NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift);
  637. } else if (s->mem_oob) {
  638. memset(s->storage + (PAGE(addr) << OOB_SHIFT),
  639. 0xff, OOB_SIZE << s->erase_shift);
  640. i = SECTOR(addr);
  641. page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
  642. for (; i < page; i ++)
  643. if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS,
  644. BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
  645. printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
  646. }
  647. } else {
  648. addr = PAGE_START(addr);
  649. page = addr >> 9;
  650. if (blk_pread(s->blk, page << BDRV_SECTOR_BITS,
  651. BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
  652. printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
  653. }
  654. memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
  655. if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS,
  656. BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
  657. printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
  658. }
  659. memset(iobuf, 0xff, 0x200);
  660. i = (addr & ~0x1ff) + 0x200;
  661. for (addr += ((NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
  662. i < addr; i += 0x200) {
  663. if (blk_pwrite(s->blk, i, BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
  664. printf("%s: write error in sector %" PRIu64 "\n",
  665. __func__, i >> 9);
  666. }
  667. }
  668. page = i >> 9;
  669. if (blk_pread(s->blk, page << BDRV_SECTOR_BITS,
  670. BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
  671. printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
  672. }
  673. memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
  674. if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS,
  675. BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
  676. printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
  677. }
  678. }
  679. }
  680. static bool glue(nand_blk_load_, NAND_PAGE_SIZE)(NANDFlashState *s,
  681. uint64_t addr, unsigned offset)
  682. {
  683. if (PAGE(addr) >= s->pages) {
  684. return false;
  685. }
  686. if (offset > NAND_PAGE_SIZE + OOB_SIZE) {
  687. return false;
  688. }
  689. if (s->blk) {
  690. if (s->mem_oob) {
  691. if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS,
  692. PAGE_SECTORS << BDRV_SECTOR_BITS, s->io, 0) < 0) {
  693. printf("%s: read error in sector %" PRIu64 "\n",
  694. __func__, SECTOR(addr));
  695. }
  696. memcpy(s->io + SECTOR_OFFSET(s->addr) + NAND_PAGE_SIZE,
  697. s->storage + (PAGE(s->addr) << OOB_SHIFT),
  698. OOB_SIZE);
  699. s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
  700. } else {
  701. if (blk_pread(s->blk, PAGE_START(addr),
  702. (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, s->io, 0)
  703. < 0) {
  704. printf("%s: read error in sector %" PRIu64 "\n",
  705. __func__, PAGE_START(addr) >> 9);
  706. }
  707. s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
  708. }
  709. } else {
  710. memcpy(s->io, s->storage + PAGE_START(s->addr) +
  711. offset, NAND_PAGE_SIZE + OOB_SIZE - offset);
  712. s->ioaddr = s->io;
  713. }
  714. return true;
  715. }
  716. static void glue(nand_init_, NAND_PAGE_SIZE)(NANDFlashState *s)
  717. {
  718. s->oob_shift = PAGE_SHIFT - 5;
  719. s->pages = s->size >> PAGE_SHIFT;
  720. s->addr_shift = ADDR_SHIFT;
  721. s->blk_erase = glue(nand_blk_erase_, NAND_PAGE_SIZE);
  722. s->blk_write = glue(nand_blk_write_, NAND_PAGE_SIZE);
  723. s->blk_load = glue(nand_blk_load_, NAND_PAGE_SIZE);
  724. }
  725. # undef NAND_PAGE_SIZE
  726. # undef PAGE_SHIFT
  727. # undef PAGE_SECTORS
  728. # undef ADDR_SHIFT
  729. #endif /* NAND_IO */