intel-hda.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. *
  4. * written by Gerd Hoffmann <kraxel@redhat.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "hw/pci/pci.h"
  21. #include "hw/qdev-properties.h"
  22. #include "hw/pci/msi.h"
  23. #include "qemu/timer.h"
  24. #include "qemu/bitops.h"
  25. #include "qemu/log.h"
  26. #include "qemu/module.h"
  27. #include "qemu/error-report.h"
  28. #include "hw/audio/soundhw.h"
  29. #include "intel-hda.h"
  30. #include "migration/vmstate.h"
  31. #include "intel-hda-defs.h"
  32. #include "sysemu/dma.h"
  33. #include "qapi/error.h"
  34. #include "qom/object.h"
  35. /* --------------------------------------------------------------------- */
  36. /* hda bus */
  37. static Property hda_props[] = {
  38. DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
  39. DEFINE_PROP_END_OF_LIST()
  40. };
  41. static const TypeInfo hda_codec_bus_info = {
  42. .name = TYPE_HDA_BUS,
  43. .parent = TYPE_BUS,
  44. .instance_size = sizeof(HDACodecBus),
  45. };
  46. void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size,
  47. hda_codec_response_func response,
  48. hda_codec_xfer_func xfer)
  49. {
  50. qbus_init(bus, bus_size, TYPE_HDA_BUS, dev, NULL);
  51. bus->response = response;
  52. bus->xfer = xfer;
  53. }
  54. static void hda_codec_dev_realize(DeviceState *qdev, Error **errp)
  55. {
  56. HDACodecBus *bus = HDA_BUS(qdev->parent_bus);
  57. HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
  58. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  59. if (dev->cad == -1) {
  60. dev->cad = bus->next_cad;
  61. }
  62. if (dev->cad >= 15) {
  63. error_setg(errp, "HDA audio codec address is full");
  64. return;
  65. }
  66. bus->next_cad = dev->cad + 1;
  67. cdc->init(dev, errp);
  68. }
  69. static void hda_codec_dev_unrealize(DeviceState *qdev)
  70. {
  71. HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
  72. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  73. if (cdc->exit) {
  74. cdc->exit(dev);
  75. }
  76. }
  77. HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
  78. {
  79. BusChild *kid;
  80. HDACodecDevice *cdev;
  81. QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) {
  82. DeviceState *qdev = kid->child;
  83. cdev = HDA_CODEC_DEVICE(qdev);
  84. if (cdev->cad == cad) {
  85. return cdev;
  86. }
  87. }
  88. return NULL;
  89. }
  90. void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  91. {
  92. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  93. bus->response(dev, solicited, response);
  94. }
  95. bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  96. uint8_t *buf, uint32_t len)
  97. {
  98. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  99. return bus->xfer(dev, stnr, output, buf, len);
  100. }
  101. /* --------------------------------------------------------------------- */
  102. /* intel hda emulation */
  103. typedef struct IntelHDAStream IntelHDAStream;
  104. typedef struct IntelHDAState IntelHDAState;
  105. typedef struct IntelHDAReg IntelHDAReg;
  106. typedef struct bpl {
  107. uint64_t addr;
  108. uint32_t len;
  109. uint32_t flags;
  110. } bpl;
  111. struct IntelHDAStream {
  112. /* registers */
  113. uint32_t ctl;
  114. uint32_t lpib;
  115. uint32_t cbl;
  116. uint32_t lvi;
  117. uint32_t fmt;
  118. uint32_t bdlp_lbase;
  119. uint32_t bdlp_ubase;
  120. /* state */
  121. bpl *bpl;
  122. uint32_t bentries;
  123. uint32_t bsize, be, bp;
  124. };
  125. struct IntelHDAState {
  126. PCIDevice pci;
  127. const char *name;
  128. HDACodecBus codecs;
  129. /* registers */
  130. uint32_t g_ctl;
  131. uint32_t wake_en;
  132. uint32_t state_sts;
  133. uint32_t int_ctl;
  134. uint32_t int_sts;
  135. uint32_t wall_clk;
  136. uint32_t corb_lbase;
  137. uint32_t corb_ubase;
  138. uint32_t corb_rp;
  139. uint32_t corb_wp;
  140. uint32_t corb_ctl;
  141. uint32_t corb_sts;
  142. uint32_t corb_size;
  143. uint32_t rirb_lbase;
  144. uint32_t rirb_ubase;
  145. uint32_t rirb_wp;
  146. uint32_t rirb_cnt;
  147. uint32_t rirb_ctl;
  148. uint32_t rirb_sts;
  149. uint32_t rirb_size;
  150. uint32_t dp_lbase;
  151. uint32_t dp_ubase;
  152. uint32_t icw;
  153. uint32_t irr;
  154. uint32_t ics;
  155. /* streams */
  156. IntelHDAStream st[8];
  157. /* state */
  158. MemoryRegion container;
  159. MemoryRegion mmio;
  160. MemoryRegion alias;
  161. uint32_t rirb_count;
  162. int64_t wall_base_ns;
  163. /* debug logging */
  164. const IntelHDAReg *last_reg;
  165. uint32_t last_val;
  166. uint32_t last_write;
  167. uint32_t last_sec;
  168. uint32_t repeat_count;
  169. /* properties */
  170. uint32_t debug;
  171. OnOffAuto msi;
  172. bool old_msi_addr;
  173. };
  174. #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic"
  175. DECLARE_INSTANCE_CHECKER(IntelHDAState, INTEL_HDA,
  176. TYPE_INTEL_HDA_GENERIC)
  177. struct IntelHDAReg {
  178. const char *name; /* register name */
  179. uint32_t size; /* size in bytes */
  180. uint32_t reset; /* reset value */
  181. uint32_t wmask; /* write mask */
  182. uint32_t wclear; /* write 1 to clear bits */
  183. uint32_t offset; /* location in IntelHDAState */
  184. uint32_t shift; /* byte access entries for dwords */
  185. uint32_t stream;
  186. void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
  187. void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
  188. };
  189. /* --------------------------------------------------------------------- */
  190. static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase)
  191. {
  192. return ((uint64_t)ubase << 32) | lbase;
  193. }
  194. static void intel_hda_update_int_sts(IntelHDAState *d)
  195. {
  196. uint32_t sts = 0;
  197. uint32_t i;
  198. /* update controller status */
  199. if (d->rirb_sts & ICH6_RBSTS_IRQ) {
  200. sts |= (1 << 30);
  201. }
  202. if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
  203. sts |= (1 << 30);
  204. }
  205. if (d->state_sts & d->wake_en) {
  206. sts |= (1 << 30);
  207. }
  208. /* update stream status */
  209. for (i = 0; i < 8; i++) {
  210. /* buffer completion interrupt */
  211. if (d->st[i].ctl & (1 << 26)) {
  212. sts |= (1 << i);
  213. }
  214. }
  215. /* update global status */
  216. if (sts & d->int_ctl) {
  217. sts |= (1U << 31);
  218. }
  219. d->int_sts = sts;
  220. }
  221. static void intel_hda_update_irq(IntelHDAState *d)
  222. {
  223. bool msi = msi_enabled(&d->pci);
  224. int level;
  225. intel_hda_update_int_sts(d);
  226. if (d->int_sts & (1U << 31) && d->int_ctl & (1U << 31)) {
  227. level = 1;
  228. } else {
  229. level = 0;
  230. }
  231. dprint(d, 2, "%s: level %d [%s]\n", __func__,
  232. level, msi ? "msi" : "intx");
  233. if (msi) {
  234. if (level) {
  235. msi_notify(&d->pci, 0);
  236. }
  237. } else {
  238. pci_set_irq(&d->pci, level);
  239. }
  240. }
  241. static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
  242. {
  243. uint32_t cad, nid, data;
  244. HDACodecDevice *codec;
  245. HDACodecDeviceClass *cdc;
  246. cad = (verb >> 28) & 0x0f;
  247. if (verb & (1 << 27)) {
  248. /* indirect node addressing, not specified in HDA 1.0 */
  249. dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __func__);
  250. return -1;
  251. }
  252. nid = (verb >> 20) & 0x7f;
  253. data = verb & 0xfffff;
  254. codec = hda_codec_find(&d->codecs, cad);
  255. if (codec == NULL) {
  256. dprint(d, 1, "%s: addressed non-existing codec\n", __func__);
  257. return -1;
  258. }
  259. cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
  260. cdc->command(codec, nid, data);
  261. return 0;
  262. }
  263. static void intel_hda_corb_run(IntelHDAState *d)
  264. {
  265. hwaddr addr;
  266. uint32_t rp, verb;
  267. if (d->ics & ICH6_IRS_BUSY) {
  268. dprint(d, 2, "%s: [icw] verb 0x%08x\n", __func__, d->icw);
  269. intel_hda_send_command(d, d->icw);
  270. return;
  271. }
  272. for (;;) {
  273. if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
  274. dprint(d, 2, "%s: !run\n", __func__);
  275. return;
  276. }
  277. if ((d->corb_rp & 0xff) == d->corb_wp) {
  278. dprint(d, 2, "%s: corb ring empty\n", __func__);
  279. return;
  280. }
  281. if (d->rirb_count == d->rirb_cnt) {
  282. dprint(d, 2, "%s: rirb count reached\n", __func__);
  283. return;
  284. }
  285. rp = (d->corb_rp + 1) & 0xff;
  286. addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
  287. ldl_le_pci_dma(&d->pci, addr + 4 * rp, &verb, MEMTXATTRS_UNSPECIFIED);
  288. d->corb_rp = rp;
  289. dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __func__, rp, verb);
  290. intel_hda_send_command(d, verb);
  291. }
  292. }
  293. static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  294. {
  295. const MemTxAttrs attrs = { .memory = true };
  296. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  297. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  298. hwaddr addr;
  299. uint32_t wp, ex;
  300. MemTxResult res = MEMTX_OK;
  301. if (d->ics & ICH6_IRS_BUSY) {
  302. dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
  303. __func__, response, dev->cad);
  304. d->irr = response;
  305. d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
  306. d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
  307. return;
  308. }
  309. if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
  310. dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __func__);
  311. return;
  312. }
  313. ex = (solicited ? 0 : (1 << 4)) | dev->cad;
  314. wp = (d->rirb_wp + 1) & 0xff;
  315. addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
  316. res |= stl_le_pci_dma(&d->pci, addr + 8 * wp, response, attrs);
  317. res |= stl_le_pci_dma(&d->pci, addr + 8 * wp + 4, ex, attrs);
  318. if (res != MEMTX_OK && (d->rirb_ctl & ICH6_RBCTL_OVERRUN_EN)) {
  319. d->rirb_sts |= ICH6_RBSTS_OVERRUN;
  320. intel_hda_update_irq(d);
  321. }
  322. d->rirb_wp = wp;
  323. dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
  324. __func__, wp, response, ex);
  325. d->rirb_count++;
  326. if (d->rirb_count == d->rirb_cnt) {
  327. dprint(d, 2, "%s: rirb count reached (%d)\n", __func__, d->rirb_count);
  328. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  329. d->rirb_sts |= ICH6_RBSTS_IRQ;
  330. intel_hda_update_irq(d);
  331. }
  332. } else if ((d->corb_rp & 0xff) == d->corb_wp) {
  333. dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __func__,
  334. d->rirb_count, d->rirb_cnt);
  335. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  336. d->rirb_sts |= ICH6_RBSTS_IRQ;
  337. intel_hda_update_irq(d);
  338. }
  339. }
  340. }
  341. static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  342. uint8_t *buf, uint32_t len)
  343. {
  344. const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
  345. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  346. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  347. hwaddr addr;
  348. uint32_t s, copy, left;
  349. IntelHDAStream *st;
  350. bool irq = false;
  351. st = output ? d->st + 4 : d->st;
  352. for (s = 0; s < 4; s++) {
  353. if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
  354. st = st + s;
  355. break;
  356. }
  357. }
  358. if (s == 4) {
  359. return false;
  360. }
  361. if (st->bpl == NULL) {
  362. return false;
  363. }
  364. left = len;
  365. s = st->bentries;
  366. while (left > 0 && s-- > 0) {
  367. copy = left;
  368. if (copy > st->bsize - st->lpib)
  369. copy = st->bsize - st->lpib;
  370. if (copy > st->bpl[st->be].len - st->bp)
  371. copy = st->bpl[st->be].len - st->bp;
  372. dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
  373. st->be, st->bp, st->bpl[st->be].len, copy);
  374. pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output,
  375. attrs);
  376. st->lpib += copy;
  377. st->bp += copy;
  378. buf += copy;
  379. left -= copy;
  380. if (st->bpl[st->be].len == st->bp) {
  381. /* bpl entry filled */
  382. if (st->bpl[st->be].flags & 0x01) {
  383. irq = true;
  384. }
  385. st->bp = 0;
  386. st->be++;
  387. if (st->be == st->bentries) {
  388. /* bpl wrap around */
  389. st->be = 0;
  390. st->lpib = 0;
  391. }
  392. }
  393. }
  394. if (d->dp_lbase & 0x01) {
  395. s = st - d->st;
  396. addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
  397. stl_le_pci_dma(&d->pci, addr + 8 * s, st->lpib, attrs);
  398. }
  399. dprint(d, 3, "dma: --\n");
  400. if (irq) {
  401. st->ctl |= (1 << 26); /* buffer completion interrupt */
  402. intel_hda_update_irq(d);
  403. }
  404. return true;
  405. }
  406. static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
  407. {
  408. hwaddr addr;
  409. uint8_t buf[16];
  410. uint32_t i;
  411. addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
  412. st->bentries = st->lvi +1;
  413. g_free(st->bpl);
  414. st->bpl = g_new(bpl, st->bentries);
  415. for (i = 0; i < st->bentries; i++, addr += 16) {
  416. pci_dma_read(&d->pci, addr, buf, 16);
  417. st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
  418. st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
  419. st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
  420. dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
  421. i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
  422. }
  423. st->bsize = st->cbl;
  424. st->lpib = 0;
  425. st->be = 0;
  426. st->bp = 0;
  427. }
  428. static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
  429. {
  430. BusChild *kid;
  431. HDACodecDevice *cdev;
  432. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  433. DeviceState *qdev = kid->child;
  434. HDACodecDeviceClass *cdc;
  435. cdev = HDA_CODEC_DEVICE(qdev);
  436. cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
  437. if (cdc->stream) {
  438. cdc->stream(cdev, stream, running, output);
  439. }
  440. }
  441. }
  442. /* --------------------------------------------------------------------- */
  443. static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  444. {
  445. if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
  446. device_cold_reset(DEVICE(d));
  447. }
  448. }
  449. static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  450. {
  451. intel_hda_update_irq(d);
  452. }
  453. static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  454. {
  455. intel_hda_update_irq(d);
  456. }
  457. static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  458. {
  459. intel_hda_update_irq(d);
  460. }
  461. static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
  462. {
  463. int64_t ns;
  464. ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns;
  465. d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
  466. }
  467. static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  468. {
  469. intel_hda_corb_run(d);
  470. }
  471. static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  472. {
  473. intel_hda_corb_run(d);
  474. }
  475. static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  476. {
  477. if (d->rirb_wp & ICH6_RIRBWP_RST) {
  478. d->rirb_wp = 0;
  479. }
  480. }
  481. static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  482. {
  483. intel_hda_update_irq(d);
  484. if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
  485. /* cleared ICH6_RBSTS_IRQ */
  486. d->rirb_count = 0;
  487. intel_hda_corb_run(d);
  488. }
  489. }
  490. static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  491. {
  492. if (d->ics & ICH6_IRS_BUSY) {
  493. intel_hda_corb_run(d);
  494. }
  495. }
  496. static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  497. {
  498. bool output = reg->stream >= 4;
  499. IntelHDAStream *st = d->st + reg->stream;
  500. if (st->ctl & 0x01) {
  501. /* reset */
  502. dprint(d, 1, "st #%d: reset\n", reg->stream);
  503. st->ctl = SD_STS_FIFO_READY << 24 | SD_CTL_STREAM_RESET;
  504. }
  505. if ((st->ctl & 0x02) != (old & 0x02)) {
  506. uint32_t stnr = (st->ctl >> 20) & 0x0f;
  507. /* run bit flipped */
  508. if (st->ctl & 0x02) {
  509. /* start */
  510. dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
  511. reg->stream, stnr, st->cbl);
  512. intel_hda_parse_bdl(d, st);
  513. intel_hda_notify_codecs(d, stnr, true, output);
  514. } else {
  515. /* stop */
  516. dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
  517. intel_hda_notify_codecs(d, stnr, false, output);
  518. }
  519. }
  520. intel_hda_update_irq(d);
  521. }
  522. /* --------------------------------------------------------------------- */
  523. #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
  524. static const struct IntelHDAReg regtab[] = {
  525. /* global */
  526. [ ICH6_REG_GCAP ] = {
  527. .name = "GCAP",
  528. .size = 2,
  529. .reset = 0x4401,
  530. },
  531. [ ICH6_REG_VMIN ] = {
  532. .name = "VMIN",
  533. .size = 1,
  534. },
  535. [ ICH6_REG_VMAJ ] = {
  536. .name = "VMAJ",
  537. .size = 1,
  538. .reset = 1,
  539. },
  540. [ ICH6_REG_OUTPAY ] = {
  541. .name = "OUTPAY",
  542. .size = 2,
  543. .reset = 0x3c,
  544. },
  545. [ ICH6_REG_INPAY ] = {
  546. .name = "INPAY",
  547. .size = 2,
  548. .reset = 0x1d,
  549. },
  550. [ ICH6_REG_GCTL ] = {
  551. .name = "GCTL",
  552. .size = 4,
  553. .wmask = 0x0103,
  554. .offset = offsetof(IntelHDAState, g_ctl),
  555. .whandler = intel_hda_set_g_ctl,
  556. },
  557. [ ICH6_REG_WAKEEN ] = {
  558. .name = "WAKEEN",
  559. .size = 2,
  560. .wmask = 0x7fff,
  561. .offset = offsetof(IntelHDAState, wake_en),
  562. .whandler = intel_hda_set_wake_en,
  563. },
  564. [ ICH6_REG_STATESTS ] = {
  565. .name = "STATESTS",
  566. .size = 2,
  567. .wmask = 0x7fff,
  568. .wclear = 0x7fff,
  569. .offset = offsetof(IntelHDAState, state_sts),
  570. .whandler = intel_hda_set_state_sts,
  571. },
  572. /* interrupts */
  573. [ ICH6_REG_INTCTL ] = {
  574. .name = "INTCTL",
  575. .size = 4,
  576. .wmask = 0xc00000ff,
  577. .offset = offsetof(IntelHDAState, int_ctl),
  578. .whandler = intel_hda_set_int_ctl,
  579. },
  580. [ ICH6_REG_INTSTS ] = {
  581. .name = "INTSTS",
  582. .size = 4,
  583. .wmask = 0xc00000ff,
  584. .wclear = 0xc00000ff,
  585. .offset = offsetof(IntelHDAState, int_sts),
  586. },
  587. /* misc */
  588. [ ICH6_REG_WALLCLK ] = {
  589. .name = "WALLCLK",
  590. .size = 4,
  591. .offset = offsetof(IntelHDAState, wall_clk),
  592. .rhandler = intel_hda_get_wall_clk,
  593. },
  594. /* dma engine */
  595. [ ICH6_REG_CORBLBASE ] = {
  596. .name = "CORBLBASE",
  597. .size = 4,
  598. .wmask = 0xffffff80,
  599. .offset = offsetof(IntelHDAState, corb_lbase),
  600. },
  601. [ ICH6_REG_CORBUBASE ] = {
  602. .name = "CORBUBASE",
  603. .size = 4,
  604. .wmask = 0xffffffff,
  605. .offset = offsetof(IntelHDAState, corb_ubase),
  606. },
  607. [ ICH6_REG_CORBWP ] = {
  608. .name = "CORBWP",
  609. .size = 2,
  610. .wmask = 0xff,
  611. .offset = offsetof(IntelHDAState, corb_wp),
  612. .whandler = intel_hda_set_corb_wp,
  613. },
  614. [ ICH6_REG_CORBRP ] = {
  615. .name = "CORBRP",
  616. .size = 2,
  617. .wmask = 0x80ff,
  618. .offset = offsetof(IntelHDAState, corb_rp),
  619. },
  620. [ ICH6_REG_CORBCTL ] = {
  621. .name = "CORBCTL",
  622. .size = 1,
  623. .wmask = 0x03,
  624. .offset = offsetof(IntelHDAState, corb_ctl),
  625. .whandler = intel_hda_set_corb_ctl,
  626. },
  627. [ ICH6_REG_CORBSTS ] = {
  628. .name = "CORBSTS",
  629. .size = 1,
  630. .wmask = 0x01,
  631. .wclear = 0x01,
  632. .offset = offsetof(IntelHDAState, corb_sts),
  633. },
  634. [ ICH6_REG_CORBSIZE ] = {
  635. .name = "CORBSIZE",
  636. .size = 1,
  637. .reset = 0x42,
  638. .offset = offsetof(IntelHDAState, corb_size),
  639. },
  640. [ ICH6_REG_RIRBLBASE ] = {
  641. .name = "RIRBLBASE",
  642. .size = 4,
  643. .wmask = 0xffffff80,
  644. .offset = offsetof(IntelHDAState, rirb_lbase),
  645. },
  646. [ ICH6_REG_RIRBUBASE ] = {
  647. .name = "RIRBUBASE",
  648. .size = 4,
  649. .wmask = 0xffffffff,
  650. .offset = offsetof(IntelHDAState, rirb_ubase),
  651. },
  652. [ ICH6_REG_RIRBWP ] = {
  653. .name = "RIRBWP",
  654. .size = 2,
  655. .wmask = 0x8000,
  656. .offset = offsetof(IntelHDAState, rirb_wp),
  657. .whandler = intel_hda_set_rirb_wp,
  658. },
  659. [ ICH6_REG_RINTCNT ] = {
  660. .name = "RINTCNT",
  661. .size = 2,
  662. .wmask = 0xff,
  663. .offset = offsetof(IntelHDAState, rirb_cnt),
  664. },
  665. [ ICH6_REG_RIRBCTL ] = {
  666. .name = "RIRBCTL",
  667. .size = 1,
  668. .wmask = 0x07,
  669. .offset = offsetof(IntelHDAState, rirb_ctl),
  670. },
  671. [ ICH6_REG_RIRBSTS ] = {
  672. .name = "RIRBSTS",
  673. .size = 1,
  674. .wmask = 0x05,
  675. .wclear = 0x05,
  676. .offset = offsetof(IntelHDAState, rirb_sts),
  677. .whandler = intel_hda_set_rirb_sts,
  678. },
  679. [ ICH6_REG_RIRBSIZE ] = {
  680. .name = "RIRBSIZE",
  681. .size = 1,
  682. .reset = 0x42,
  683. .offset = offsetof(IntelHDAState, rirb_size),
  684. },
  685. [ ICH6_REG_DPLBASE ] = {
  686. .name = "DPLBASE",
  687. .size = 4,
  688. .wmask = 0xffffff81,
  689. .offset = offsetof(IntelHDAState, dp_lbase),
  690. },
  691. [ ICH6_REG_DPUBASE ] = {
  692. .name = "DPUBASE",
  693. .size = 4,
  694. .wmask = 0xffffffff,
  695. .offset = offsetof(IntelHDAState, dp_ubase),
  696. },
  697. [ ICH6_REG_IC ] = {
  698. .name = "ICW",
  699. .size = 4,
  700. .wmask = 0xffffffff,
  701. .offset = offsetof(IntelHDAState, icw),
  702. },
  703. [ ICH6_REG_IR ] = {
  704. .name = "IRR",
  705. .size = 4,
  706. .offset = offsetof(IntelHDAState, irr),
  707. },
  708. [ ICH6_REG_IRS ] = {
  709. .name = "ICS",
  710. .size = 2,
  711. .wmask = 0x0003,
  712. .wclear = 0x0002,
  713. .offset = offsetof(IntelHDAState, ics),
  714. .whandler = intel_hda_set_ics,
  715. },
  716. #define HDA_STREAM(_t, _i) \
  717. [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
  718. .stream = _i, \
  719. .name = _t stringify(_i) " CTL", \
  720. .size = 4, \
  721. .wmask = 0x1cff001f, \
  722. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  723. .whandler = intel_hda_set_st_ctl, \
  724. }, \
  725. [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
  726. .stream = _i, \
  727. .name = _t stringify(_i) " CTL(stnr)", \
  728. .size = 1, \
  729. .shift = 16, \
  730. .wmask = 0x00ff0000, \
  731. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  732. .whandler = intel_hda_set_st_ctl, \
  733. }, \
  734. [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
  735. .stream = _i, \
  736. .name = _t stringify(_i) " CTL(sts)", \
  737. .size = 1, \
  738. .shift = 24, \
  739. .wmask = 0x1c000000, \
  740. .wclear = 0x1c000000, \
  741. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  742. .whandler = intel_hda_set_st_ctl, \
  743. .reset = SD_STS_FIFO_READY << 24 \
  744. }, \
  745. [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
  746. .stream = _i, \
  747. .name = _t stringify(_i) " LPIB", \
  748. .size = 4, \
  749. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  750. }, \
  751. [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
  752. .stream = _i, \
  753. .name = _t stringify(_i) " CBL", \
  754. .size = 4, \
  755. .wmask = 0xffffffff, \
  756. .offset = offsetof(IntelHDAState, st[_i].cbl), \
  757. }, \
  758. [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
  759. .stream = _i, \
  760. .name = _t stringify(_i) " LVI", \
  761. .size = 2, \
  762. .wmask = 0x00ff, \
  763. .offset = offsetof(IntelHDAState, st[_i].lvi), \
  764. }, \
  765. [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
  766. .stream = _i, \
  767. .name = _t stringify(_i) " FIFOS", \
  768. .size = 2, \
  769. .reset = HDA_BUFFER_SIZE, \
  770. }, \
  771. [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
  772. .stream = _i, \
  773. .name = _t stringify(_i) " FMT", \
  774. .size = 2, \
  775. .wmask = 0x7f7f, \
  776. .offset = offsetof(IntelHDAState, st[_i].fmt), \
  777. }, \
  778. [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
  779. .stream = _i, \
  780. .name = _t stringify(_i) " BDLPL", \
  781. .size = 4, \
  782. .wmask = 0xffffff80, \
  783. .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
  784. }, \
  785. [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
  786. .stream = _i, \
  787. .name = _t stringify(_i) " BDLPU", \
  788. .size = 4, \
  789. .wmask = 0xffffffff, \
  790. .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
  791. }, \
  792. HDA_STREAM("IN", 0)
  793. HDA_STREAM("IN", 1)
  794. HDA_STREAM("IN", 2)
  795. HDA_STREAM("IN", 3)
  796. HDA_STREAM("OUT", 4)
  797. HDA_STREAM("OUT", 5)
  798. HDA_STREAM("OUT", 6)
  799. HDA_STREAM("OUT", 7)
  800. };
  801. static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr)
  802. {
  803. const IntelHDAReg *reg;
  804. if (addr >= ARRAY_SIZE(regtab)) {
  805. goto noreg;
  806. }
  807. reg = regtab+addr;
  808. if (reg->name == NULL) {
  809. goto noreg;
  810. }
  811. return reg;
  812. noreg:
  813. dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
  814. return NULL;
  815. }
  816. static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
  817. {
  818. uint8_t *addr = (void*)d;
  819. addr += reg->offset;
  820. return (uint32_t*)addr;
  821. }
  822. static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
  823. uint32_t wmask)
  824. {
  825. uint32_t *addr;
  826. uint32_t old;
  827. if (!reg) {
  828. return;
  829. }
  830. if (!reg->wmask) {
  831. qemu_log_mask(LOG_GUEST_ERROR, "intel-hda: write to r/o reg %s\n",
  832. reg->name);
  833. return;
  834. }
  835. if (d->debug) {
  836. time_t now = time(NULL);
  837. if (d->last_write && d->last_reg == reg && d->last_val == val) {
  838. d->repeat_count++;
  839. if (d->last_sec != now) {
  840. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  841. d->last_sec = now;
  842. d->repeat_count = 0;
  843. }
  844. } else {
  845. if (d->repeat_count) {
  846. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  847. }
  848. dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
  849. d->last_write = 1;
  850. d->last_reg = reg;
  851. d->last_val = val;
  852. d->last_sec = now;
  853. d->repeat_count = 0;
  854. }
  855. }
  856. assert(reg->offset != 0);
  857. addr = intel_hda_reg_addr(d, reg);
  858. old = *addr;
  859. if (reg->shift) {
  860. val <<= reg->shift;
  861. wmask <<= reg->shift;
  862. }
  863. wmask &= reg->wmask;
  864. *addr &= ~wmask;
  865. *addr |= wmask & val;
  866. *addr &= ~(val & reg->wclear);
  867. if (reg->whandler) {
  868. reg->whandler(d, reg, old);
  869. }
  870. }
  871. static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
  872. uint32_t rmask)
  873. {
  874. uint32_t *addr, ret;
  875. if (!reg) {
  876. return 0;
  877. }
  878. if (reg->rhandler) {
  879. reg->rhandler(d, reg);
  880. }
  881. if (reg->offset == 0) {
  882. /* constant read-only register */
  883. ret = reg->reset;
  884. } else {
  885. addr = intel_hda_reg_addr(d, reg);
  886. ret = *addr;
  887. if (reg->shift) {
  888. ret >>= reg->shift;
  889. }
  890. ret &= rmask;
  891. }
  892. if (d->debug) {
  893. time_t now = time(NULL);
  894. if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
  895. d->repeat_count++;
  896. if (d->last_sec != now) {
  897. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  898. d->last_sec = now;
  899. d->repeat_count = 0;
  900. }
  901. } else {
  902. if (d->repeat_count) {
  903. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  904. }
  905. dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
  906. d->last_write = 0;
  907. d->last_reg = reg;
  908. d->last_val = ret;
  909. d->last_sec = now;
  910. d->repeat_count = 0;
  911. }
  912. }
  913. return ret;
  914. }
  915. static void intel_hda_regs_reset(IntelHDAState *d)
  916. {
  917. uint32_t *addr;
  918. int i;
  919. for (i = 0; i < ARRAY_SIZE(regtab); i++) {
  920. if (regtab[i].name == NULL) {
  921. continue;
  922. }
  923. if (regtab[i].offset == 0) {
  924. continue;
  925. }
  926. addr = intel_hda_reg_addr(d, regtab + i);
  927. *addr = regtab[i].reset;
  928. }
  929. }
  930. /* --------------------------------------------------------------------- */
  931. static void intel_hda_mmio_write(void *opaque, hwaddr addr, uint64_t val,
  932. unsigned size)
  933. {
  934. IntelHDAState *d = opaque;
  935. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  936. intel_hda_reg_write(d, reg, val, MAKE_64BIT_MASK(0, size * 8));
  937. }
  938. static uint64_t intel_hda_mmio_read(void *opaque, hwaddr addr, unsigned size)
  939. {
  940. IntelHDAState *d = opaque;
  941. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  942. return intel_hda_reg_read(d, reg, MAKE_64BIT_MASK(0, size * 8));
  943. }
  944. static const MemoryRegionOps intel_hda_mmio_ops = {
  945. .read = intel_hda_mmio_read,
  946. .write = intel_hda_mmio_write,
  947. .impl = {
  948. .min_access_size = 1,
  949. .max_access_size = 4,
  950. },
  951. .endianness = DEVICE_NATIVE_ENDIAN,
  952. };
  953. /* --------------------------------------------------------------------- */
  954. static void intel_hda_reset(DeviceState *dev)
  955. {
  956. BusChild *kid;
  957. IntelHDAState *d = INTEL_HDA(dev);
  958. HDACodecDevice *cdev;
  959. intel_hda_regs_reset(d);
  960. d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  961. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  962. DeviceState *qdev = kid->child;
  963. cdev = HDA_CODEC_DEVICE(qdev);
  964. d->state_sts |= (1 << cdev->cad);
  965. }
  966. intel_hda_update_irq(d);
  967. }
  968. static void intel_hda_realize(PCIDevice *pci, Error **errp)
  969. {
  970. IntelHDAState *d = INTEL_HDA(pci);
  971. uint8_t *conf = d->pci.config;
  972. Error *err = NULL;
  973. int ret;
  974. d->name = object_get_typename(OBJECT(d));
  975. pci_config_set_interrupt_pin(conf, 1);
  976. /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
  977. conf[0x40] = 0x01;
  978. if (d->msi != ON_OFF_AUTO_OFF) {
  979. ret = msi_init(&d->pci, d->old_msi_addr ? 0x50 : 0x60,
  980. 1, true, false, &err);
  981. /* Any error other than -ENOTSUP(board's MSI support is broken)
  982. * is a programming error */
  983. assert(!ret || ret == -ENOTSUP);
  984. if (ret && d->msi == ON_OFF_AUTO_ON) {
  985. /* Can't satisfy user's explicit msi=on request, fail */
  986. error_append_hint(&err, "You have to use msi=auto (default) or "
  987. "msi=off with this machine type.\n");
  988. error_propagate(errp, err);
  989. return;
  990. }
  991. assert(!err || d->msi == ON_OFF_AUTO_AUTO);
  992. /* With msi=auto, we fall back to MSI off silently */
  993. error_free(err);
  994. }
  995. memory_region_init(&d->container, OBJECT(d),
  996. "intel-hda-container", 0x4000);
  997. memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d,
  998. "intel-hda", 0x2000);
  999. memory_region_add_subregion(&d->container, 0x0000, &d->mmio);
  1000. memory_region_init_alias(&d->alias, OBJECT(d), "intel-hda-alias",
  1001. &d->mmio, 0, 0x2000);
  1002. memory_region_add_subregion(&d->container, 0x2000, &d->alias);
  1003. pci_register_bar(&d->pci, 0, 0, &d->container);
  1004. hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs),
  1005. intel_hda_response, intel_hda_xfer);
  1006. }
  1007. static void intel_hda_exit(PCIDevice *pci)
  1008. {
  1009. IntelHDAState *d = INTEL_HDA(pci);
  1010. msi_uninit(&d->pci);
  1011. }
  1012. static int intel_hda_post_load(void *opaque, int version)
  1013. {
  1014. IntelHDAState* d = opaque;
  1015. int i;
  1016. dprint(d, 1, "%s\n", __func__);
  1017. for (i = 0; i < ARRAY_SIZE(d->st); i++) {
  1018. if (d->st[i].ctl & 0x02) {
  1019. intel_hda_parse_bdl(d, &d->st[i]);
  1020. }
  1021. }
  1022. intel_hda_update_irq(d);
  1023. return 0;
  1024. }
  1025. static const VMStateDescription vmstate_intel_hda_stream = {
  1026. .name = "intel-hda-stream",
  1027. .version_id = 1,
  1028. .fields = (const VMStateField[]) {
  1029. VMSTATE_UINT32(ctl, IntelHDAStream),
  1030. VMSTATE_UINT32(lpib, IntelHDAStream),
  1031. VMSTATE_UINT32(cbl, IntelHDAStream),
  1032. VMSTATE_UINT32(lvi, IntelHDAStream),
  1033. VMSTATE_UINT32(fmt, IntelHDAStream),
  1034. VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
  1035. VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
  1036. VMSTATE_END_OF_LIST()
  1037. }
  1038. };
  1039. static const VMStateDescription vmstate_intel_hda = {
  1040. .name = "intel-hda",
  1041. .version_id = 1,
  1042. .post_load = intel_hda_post_load,
  1043. .fields = (const VMStateField[]) {
  1044. VMSTATE_PCI_DEVICE(pci, IntelHDAState),
  1045. /* registers */
  1046. VMSTATE_UINT32(g_ctl, IntelHDAState),
  1047. VMSTATE_UINT32(wake_en, IntelHDAState),
  1048. VMSTATE_UINT32(state_sts, IntelHDAState),
  1049. VMSTATE_UINT32(int_ctl, IntelHDAState),
  1050. VMSTATE_UINT32(int_sts, IntelHDAState),
  1051. VMSTATE_UINT32(wall_clk, IntelHDAState),
  1052. VMSTATE_UINT32(corb_lbase, IntelHDAState),
  1053. VMSTATE_UINT32(corb_ubase, IntelHDAState),
  1054. VMSTATE_UINT32(corb_rp, IntelHDAState),
  1055. VMSTATE_UINT32(corb_wp, IntelHDAState),
  1056. VMSTATE_UINT32(corb_ctl, IntelHDAState),
  1057. VMSTATE_UINT32(corb_sts, IntelHDAState),
  1058. VMSTATE_UINT32(corb_size, IntelHDAState),
  1059. VMSTATE_UINT32(rirb_lbase, IntelHDAState),
  1060. VMSTATE_UINT32(rirb_ubase, IntelHDAState),
  1061. VMSTATE_UINT32(rirb_wp, IntelHDAState),
  1062. VMSTATE_UINT32(rirb_cnt, IntelHDAState),
  1063. VMSTATE_UINT32(rirb_ctl, IntelHDAState),
  1064. VMSTATE_UINT32(rirb_sts, IntelHDAState),
  1065. VMSTATE_UINT32(rirb_size, IntelHDAState),
  1066. VMSTATE_UINT32(dp_lbase, IntelHDAState),
  1067. VMSTATE_UINT32(dp_ubase, IntelHDAState),
  1068. VMSTATE_UINT32(icw, IntelHDAState),
  1069. VMSTATE_UINT32(irr, IntelHDAState),
  1070. VMSTATE_UINT32(ics, IntelHDAState),
  1071. VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
  1072. vmstate_intel_hda_stream,
  1073. IntelHDAStream),
  1074. /* additional state info */
  1075. VMSTATE_UINT32(rirb_count, IntelHDAState),
  1076. VMSTATE_INT64(wall_base_ns, IntelHDAState),
  1077. VMSTATE_END_OF_LIST()
  1078. }
  1079. };
  1080. static Property intel_hda_properties[] = {
  1081. DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
  1082. DEFINE_PROP_ON_OFF_AUTO("msi", IntelHDAState, msi, ON_OFF_AUTO_AUTO),
  1083. DEFINE_PROP_BOOL("old_msi_addr", IntelHDAState, old_msi_addr, false),
  1084. DEFINE_PROP_END_OF_LIST(),
  1085. };
  1086. static void intel_hda_class_init(ObjectClass *klass, void *data)
  1087. {
  1088. DeviceClass *dc = DEVICE_CLASS(klass);
  1089. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1090. k->realize = intel_hda_realize;
  1091. k->exit = intel_hda_exit;
  1092. k->vendor_id = PCI_VENDOR_ID_INTEL;
  1093. k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO;
  1094. device_class_set_legacy_reset(dc, intel_hda_reset);
  1095. dc->vmsd = &vmstate_intel_hda;
  1096. device_class_set_props(dc, intel_hda_properties);
  1097. }
  1098. static void intel_hda_class_init_ich6(ObjectClass *klass, void *data)
  1099. {
  1100. DeviceClass *dc = DEVICE_CLASS(klass);
  1101. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1102. k->device_id = 0x2668;
  1103. k->revision = 1;
  1104. set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
  1105. dc->desc = "Intel HD Audio Controller (ich6)";
  1106. }
  1107. static void intel_hda_class_init_ich9(ObjectClass *klass, void *data)
  1108. {
  1109. DeviceClass *dc = DEVICE_CLASS(klass);
  1110. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1111. k->device_id = 0x293e;
  1112. k->revision = 3;
  1113. set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
  1114. dc->desc = "Intel HD Audio Controller (ich9)";
  1115. }
  1116. static const TypeInfo intel_hda_info = {
  1117. .name = TYPE_INTEL_HDA_GENERIC,
  1118. .parent = TYPE_PCI_DEVICE,
  1119. .instance_size = sizeof(IntelHDAState),
  1120. .class_init = intel_hda_class_init,
  1121. .abstract = true,
  1122. .interfaces = (InterfaceInfo[]) {
  1123. { INTERFACE_CONVENTIONAL_PCI_DEVICE },
  1124. { },
  1125. },
  1126. };
  1127. static const TypeInfo intel_hda_info_ich6 = {
  1128. .name = "intel-hda",
  1129. .parent = TYPE_INTEL_HDA_GENERIC,
  1130. .class_init = intel_hda_class_init_ich6,
  1131. };
  1132. static const TypeInfo intel_hda_info_ich9 = {
  1133. .name = "ich9-intel-hda",
  1134. .parent = TYPE_INTEL_HDA_GENERIC,
  1135. .class_init = intel_hda_class_init_ich9,
  1136. };
  1137. static void hda_codec_device_class_init(ObjectClass *klass, void *data)
  1138. {
  1139. DeviceClass *k = DEVICE_CLASS(klass);
  1140. k->realize = hda_codec_dev_realize;
  1141. k->unrealize = hda_codec_dev_unrealize;
  1142. set_bit(DEVICE_CATEGORY_SOUND, k->categories);
  1143. k->bus_type = TYPE_HDA_BUS;
  1144. device_class_set_props(k, hda_props);
  1145. }
  1146. static const TypeInfo hda_codec_device_type_info = {
  1147. .name = TYPE_HDA_CODEC_DEVICE,
  1148. .parent = TYPE_DEVICE,
  1149. .instance_size = sizeof(HDACodecDevice),
  1150. .abstract = true,
  1151. .class_size = sizeof(HDACodecDeviceClass),
  1152. .class_init = hda_codec_device_class_init,
  1153. };
  1154. /*
  1155. * create intel hda controller with codec attached to it,
  1156. * so '-soundhw hda' works.
  1157. */
  1158. static int intel_hda_and_codec_init(PCIBus *bus, const char *audiodev)
  1159. {
  1160. DeviceState *controller;
  1161. BusState *hdabus;
  1162. DeviceState *codec;
  1163. controller = DEVICE(pci_create_simple(bus, -1, "intel-hda"));
  1164. hdabus = QLIST_FIRST(&controller->child_bus);
  1165. codec = qdev_new("hda-duplex");
  1166. qdev_prop_set_string(codec, "audiodev", audiodev);
  1167. qdev_realize_and_unref(codec, hdabus, &error_fatal);
  1168. return 0;
  1169. }
  1170. static void intel_hda_register_types(void)
  1171. {
  1172. type_register_static(&hda_codec_bus_info);
  1173. type_register_static(&intel_hda_info);
  1174. type_register_static(&intel_hda_info_ich6);
  1175. type_register_static(&intel_hda_info_ich9);
  1176. type_register_static(&hda_codec_device_type_info);
  1177. pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init);
  1178. }
  1179. type_init(intel_hda_register_types)