stm32l4x5_usart.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /*
  2. * STM32L4X5 USART (Universal Synchronous Asynchronous Receiver Transmitter)
  3. *
  4. * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
  5. * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
  6. *
  7. * SPDX-License-Identifier: GPL-2.0-or-later
  8. *
  9. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10. * See the COPYING file in the top-level directory.
  11. *
  12. * The STM32L4X5 USART is heavily inspired by the stm32f2xx_usart
  13. * by Alistair Francis.
  14. * The reference used is the STMicroElectronics RM0351 Reference manual
  15. * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
  16. */
  17. #include "qemu/osdep.h"
  18. #include "qemu/log.h"
  19. #include "qemu/module.h"
  20. #include "qapi/error.h"
  21. #include "chardev/char-fe.h"
  22. #include "chardev/char-serial.h"
  23. #include "migration/vmstate.h"
  24. #include "hw/char/stm32l4x5_usart.h"
  25. #include "hw/clock.h"
  26. #include "hw/irq.h"
  27. #include "hw/qdev-clock.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/qdev-properties-system.h"
  30. #include "hw/registerfields.h"
  31. #include "trace.h"
  32. REG32(CR1, 0x00)
  33. FIELD(CR1, M1, 28, 1) /* Word length (part 2, see M0) */
  34. FIELD(CR1, EOBIE, 27, 1) /* End of Block interrupt enable */
  35. FIELD(CR1, RTOIE, 26, 1) /* Receiver timeout interrupt enable */
  36. FIELD(CR1, DEAT, 21, 5) /* Driver Enable assertion time */
  37. FIELD(CR1, DEDT, 16, 5) /* Driver Enable de-assertion time */
  38. FIELD(CR1, OVER8, 15, 1) /* Oversampling mode */
  39. FIELD(CR1, CMIE, 14, 1) /* Character match interrupt enable */
  40. FIELD(CR1, MME, 13, 1) /* Mute mode enable */
  41. FIELD(CR1, M0, 12, 1) /* Word length (part 1, see M1) */
  42. FIELD(CR1, WAKE, 11, 1) /* Receiver wakeup method */
  43. FIELD(CR1, PCE, 10, 1) /* Parity control enable */
  44. FIELD(CR1, PS, 9, 1) /* Parity selection */
  45. FIELD(CR1, PEIE, 8, 1) /* PE interrupt enable */
  46. FIELD(CR1, TXEIE, 7, 1) /* TXE interrupt enable */
  47. FIELD(CR1, TCIE, 6, 1) /* Transmission complete interrupt enable */
  48. FIELD(CR1, RXNEIE, 5, 1) /* RXNE interrupt enable */
  49. FIELD(CR1, IDLEIE, 4, 1) /* IDLE interrupt enable */
  50. FIELD(CR1, TE, 3, 1) /* Transmitter enable */
  51. FIELD(CR1, RE, 2, 1) /* Receiver enable */
  52. FIELD(CR1, UESM, 1, 1) /* USART enable in Stop mode */
  53. FIELD(CR1, UE, 0, 1) /* USART enable */
  54. REG32(CR2, 0x04)
  55. FIELD(CR2, ADD_1, 28, 4) /* ADD[7:4] */
  56. FIELD(CR2, ADD_0, 24, 4) /* ADD[3:0] */
  57. FIELD(CR2, RTOEN, 23, 1) /* Receiver timeout enable */
  58. FIELD(CR2, ABRMOD, 21, 2) /* Auto baud rate mode */
  59. FIELD(CR2, ABREN, 20, 1) /* Auto baud rate enable */
  60. FIELD(CR2, MSBFIRST, 19, 1) /* Most significant bit first */
  61. FIELD(CR2, DATAINV, 18, 1) /* Binary data inversion */
  62. FIELD(CR2, TXINV, 17, 1) /* TX pin active level inversion */
  63. FIELD(CR2, RXINV, 16, 1) /* RX pin active level inversion */
  64. FIELD(CR2, SWAP, 15, 1) /* Swap RX/TX pins */
  65. FIELD(CR2, LINEN, 14, 1) /* LIN mode enable */
  66. FIELD(CR2, STOP, 12, 2) /* STOP bits */
  67. FIELD(CR2, CLKEN, 11, 1) /* Clock enable */
  68. FIELD(CR2, CPOL, 10, 1) /* Clock polarity */
  69. FIELD(CR2, CPHA, 9, 1) /* Clock phase */
  70. FIELD(CR2, LBCL, 8, 1) /* Last bit clock pulse */
  71. FIELD(CR2, LBDIE, 6, 1) /* LIN break detection interrupt enable */
  72. FIELD(CR2, LBDL, 5, 1) /* LIN break detection length */
  73. FIELD(CR2, ADDM7, 4, 1) /* 7-bit / 4-bit Address Detection */
  74. REG32(CR3, 0x08)
  75. /* TCBGTIE only on STM32L496xx/4A6xx devices */
  76. FIELD(CR3, UCESM, 23, 1) /* USART Clock Enable in Stop Mode */
  77. FIELD(CR3, WUFIE, 22, 1) /* Wakeup from Stop mode interrupt enable */
  78. FIELD(CR3, WUS, 20, 2) /* Wakeup from Stop mode interrupt flag selection */
  79. FIELD(CR3, SCARCNT, 17, 3) /* Smartcard auto-retry count */
  80. FIELD(CR3, DEP, 15, 1) /* Driver enable polarity selection */
  81. FIELD(CR3, DEM, 14, 1) /* Driver enable mode */
  82. FIELD(CR3, DDRE, 13, 1) /* DMA Disable on Reception Error */
  83. FIELD(CR3, OVRDIS, 12, 1) /* Overrun Disable */
  84. FIELD(CR3, ONEBIT, 11, 1) /* One sample bit method enable */
  85. FIELD(CR3, CTSIE, 10, 1) /* CTS interrupt enable */
  86. FIELD(CR3, CTSE, 9, 1) /* CTS enable */
  87. FIELD(CR3, RTSE, 8, 1) /* RTS enable */
  88. FIELD(CR3, DMAT, 7, 1) /* DMA enable transmitter */
  89. FIELD(CR3, DMAR, 6, 1) /* DMA enable receiver */
  90. FIELD(CR3, SCEN, 5, 1) /* Smartcard mode enable */
  91. FIELD(CR3, NACK, 4, 1) /* Smartcard NACK enable */
  92. FIELD(CR3, HDSEL, 3, 1) /* Half-duplex selection */
  93. FIELD(CR3, IRLP, 2, 1) /* IrDA low-power */
  94. FIELD(CR3, IREN, 1, 1) /* IrDA mode enable */
  95. FIELD(CR3, EIE, 0, 1) /* Error interrupt enable */
  96. REG32(BRR, 0x0C)
  97. FIELD(BRR, BRR, 0, 16)
  98. REG32(GTPR, 0x10)
  99. FIELD(GTPR, GT, 8, 8) /* Guard time value */
  100. FIELD(GTPR, PSC, 0, 8) /* Prescaler value */
  101. REG32(RTOR, 0x14)
  102. FIELD(RTOR, BLEN, 24, 8) /* Block Length */
  103. FIELD(RTOR, RTO, 0, 24) /* Receiver timeout value */
  104. REG32(RQR, 0x18)
  105. FIELD(RQR, TXFRQ, 4, 1) /* Transmit data flush request */
  106. FIELD(RQR, RXFRQ, 3, 1) /* Receive data flush request */
  107. FIELD(RQR, MMRQ, 2, 1) /* Mute mode request */
  108. FIELD(RQR, SBKRQ, 1, 1) /* Send break request */
  109. FIELD(RQR, ABBRRQ, 0, 1) /* Auto baud rate request */
  110. REG32(ISR, 0x1C)
  111. /* TCBGT only for STM32L475xx/476xx/486xx devices */
  112. FIELD(ISR, REACK, 22, 1) /* Receive enable acknowledge flag */
  113. FIELD(ISR, TEACK, 21, 1) /* Transmit enable acknowledge flag */
  114. FIELD(ISR, WUF, 20, 1) /* Wakeup from Stop mode flag */
  115. FIELD(ISR, RWU, 19, 1) /* Receiver wakeup from Mute mode */
  116. FIELD(ISR, SBKF, 18, 1) /* Send break flag */
  117. FIELD(ISR, CMF, 17, 1) /* Character match flag */
  118. FIELD(ISR, BUSY, 16, 1) /* Busy flag */
  119. FIELD(ISR, ABRF, 15, 1) /* Auto Baud rate flag */
  120. FIELD(ISR, ABRE, 14, 1) /* Auto Baud rate error */
  121. FIELD(ISR, EOBF, 12, 1) /* End of block flag */
  122. FIELD(ISR, RTOF, 11, 1) /* Receiver timeout */
  123. FIELD(ISR, CTS, 10, 1) /* CTS flag */
  124. FIELD(ISR, CTSIF, 9, 1) /* CTS interrupt flag */
  125. FIELD(ISR, LBDF, 8, 1) /* LIN break detection flag */
  126. FIELD(ISR, TXE, 7, 1) /* Transmit data register empty */
  127. FIELD(ISR, TC, 6, 1) /* Transmission complete */
  128. FIELD(ISR, RXNE, 5, 1) /* Read data register not empty */
  129. FIELD(ISR, IDLE, 4, 1) /* Idle line detected */
  130. FIELD(ISR, ORE, 3, 1) /* Overrun error */
  131. FIELD(ISR, NF, 2, 1) /* START bit Noise detection flag */
  132. FIELD(ISR, FE, 1, 1) /* Framing Error */
  133. FIELD(ISR, PE, 0, 1) /* Parity Error */
  134. REG32(ICR, 0x20)
  135. FIELD(ICR, WUCF, 20, 1) /* Wakeup from Stop mode clear flag */
  136. FIELD(ICR, CMCF, 17, 1) /* Character match clear flag */
  137. FIELD(ICR, EOBCF, 12, 1) /* End of block clear flag */
  138. FIELD(ICR, RTOCF, 11, 1) /* Receiver timeout clear flag */
  139. FIELD(ICR, CTSCF, 9, 1) /* CTS clear flag */
  140. FIELD(ICR, LBDCF, 8, 1) /* LIN break detection clear flag */
  141. /* TCBGTCF only on STM32L496xx/4A6xx devices */
  142. FIELD(ICR, TCCF, 6, 1) /* Transmission complete clear flag */
  143. FIELD(ICR, IDLECF, 4, 1) /* Idle line detected clear flag */
  144. FIELD(ICR, ORECF, 3, 1) /* Overrun error clear flag */
  145. FIELD(ICR, NCF, 2, 1) /* Noise detected clear flag */
  146. FIELD(ICR, FECF, 1, 1) /* Framing error clear flag */
  147. FIELD(ICR, PECF, 0, 1) /* Parity error clear flag */
  148. REG32(RDR, 0x24)
  149. FIELD(RDR, RDR, 0, 9)
  150. REG32(TDR, 0x28)
  151. FIELD(TDR, TDR, 0, 9)
  152. static void stm32l4x5_update_isr(Stm32l4x5UsartBaseState *s)
  153. {
  154. if (s->cr1 & R_CR1_TE_MASK) {
  155. s->isr |= R_ISR_TEACK_MASK;
  156. } else {
  157. s->isr &= ~R_ISR_TEACK_MASK;
  158. }
  159. if (s->cr1 & R_CR1_RE_MASK) {
  160. s->isr |= R_ISR_REACK_MASK;
  161. } else {
  162. s->isr &= ~R_ISR_REACK_MASK;
  163. }
  164. }
  165. static void stm32l4x5_update_irq(Stm32l4x5UsartBaseState *s)
  166. {
  167. if (((s->isr & R_ISR_WUF_MASK) && (s->cr3 & R_CR3_WUFIE_MASK)) ||
  168. ((s->isr & R_ISR_CMF_MASK) && (s->cr1 & R_CR1_CMIE_MASK)) ||
  169. ((s->isr & R_ISR_ABRF_MASK) && (s->cr1 & R_CR1_RXNEIE_MASK)) ||
  170. ((s->isr & R_ISR_EOBF_MASK) && (s->cr1 & R_CR1_EOBIE_MASK)) ||
  171. ((s->isr & R_ISR_RTOF_MASK) && (s->cr1 & R_CR1_RTOIE_MASK)) ||
  172. ((s->isr & R_ISR_CTSIF_MASK) && (s->cr3 & R_CR3_CTSIE_MASK)) ||
  173. ((s->isr & R_ISR_LBDF_MASK) && (s->cr2 & R_CR2_LBDIE_MASK)) ||
  174. ((s->isr & R_ISR_TXE_MASK) && (s->cr1 & R_CR1_TXEIE_MASK)) ||
  175. ((s->isr & R_ISR_TC_MASK) && (s->cr1 & R_CR1_TCIE_MASK)) ||
  176. ((s->isr & R_ISR_RXNE_MASK) && (s->cr1 & R_CR1_RXNEIE_MASK)) ||
  177. ((s->isr & R_ISR_IDLE_MASK) && (s->cr1 & R_CR1_IDLEIE_MASK)) ||
  178. ((s->isr & R_ISR_ORE_MASK) &&
  179. ((s->cr1 & R_CR1_RXNEIE_MASK) || (s->cr3 & R_CR3_EIE_MASK))) ||
  180. /* TODO: Handle NF ? */
  181. ((s->isr & R_ISR_FE_MASK) && (s->cr3 & R_CR3_EIE_MASK)) ||
  182. ((s->isr & R_ISR_PE_MASK) && (s->cr1 & R_CR1_PEIE_MASK))) {
  183. qemu_irq_raise(s->irq);
  184. trace_stm32l4x5_usart_irq_raised(s->isr);
  185. } else {
  186. qemu_irq_lower(s->irq);
  187. trace_stm32l4x5_usart_irq_lowered();
  188. }
  189. }
  190. static int stm32l4x5_usart_base_can_receive(void *opaque)
  191. {
  192. Stm32l4x5UsartBaseState *s = opaque;
  193. if (!(s->isr & R_ISR_RXNE_MASK)) {
  194. return 1;
  195. }
  196. return 0;
  197. }
  198. static void stm32l4x5_usart_base_receive(void *opaque, const uint8_t *buf,
  199. int size)
  200. {
  201. Stm32l4x5UsartBaseState *s = opaque;
  202. if (!((s->cr1 & R_CR1_UE_MASK) && (s->cr1 & R_CR1_RE_MASK))) {
  203. trace_stm32l4x5_usart_receiver_not_enabled(
  204. FIELD_EX32(s->cr1, CR1, UE), FIELD_EX32(s->cr1, CR1, RE));
  205. return;
  206. }
  207. /* Check if overrun detection is enabled and if there is an overrun */
  208. if (!(s->cr3 & R_CR3_OVRDIS_MASK) && (s->isr & R_ISR_RXNE_MASK)) {
  209. /*
  210. * A character has been received while
  211. * the previous has not been read = Overrun.
  212. */
  213. s->isr |= R_ISR_ORE_MASK;
  214. trace_stm32l4x5_usart_overrun_detected(s->rdr, *buf);
  215. } else {
  216. /* No overrun */
  217. s->rdr = *buf;
  218. s->isr |= R_ISR_RXNE_MASK;
  219. trace_stm32l4x5_usart_rx(s->rdr);
  220. }
  221. stm32l4x5_update_irq(s);
  222. }
  223. /*
  224. * Try to send tx data, and arrange to be called back later if
  225. * we can't (ie the char backend is busy/blocking).
  226. */
  227. static gboolean usart_transmit(void *do_not_use, GIOCondition cond,
  228. void *opaque)
  229. {
  230. Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(opaque);
  231. int ret;
  232. /* TODO: Handle 9 bits transmission */
  233. uint8_t ch = s->tdr;
  234. s->watch_tag = 0;
  235. if (!(s->cr1 & R_CR1_TE_MASK) || (s->isr & R_ISR_TXE_MASK)) {
  236. return G_SOURCE_REMOVE;
  237. }
  238. ret = qemu_chr_fe_write(&s->chr, &ch, 1);
  239. if (ret <= 0) {
  240. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  241. usart_transmit, s);
  242. if (!s->watch_tag) {
  243. /*
  244. * Most common reason to be here is "no chardev backend":
  245. * just insta-drain the buffer, so the serial output
  246. * goes into a void, rather than blocking the guest.
  247. */
  248. goto buffer_drained;
  249. }
  250. /* Transmit pending */
  251. trace_stm32l4x5_usart_tx_pending();
  252. return G_SOURCE_REMOVE;
  253. }
  254. buffer_drained:
  255. /* Character successfully sent */
  256. trace_stm32l4x5_usart_tx(ch);
  257. s->isr |= R_ISR_TC_MASK | R_ISR_TXE_MASK;
  258. stm32l4x5_update_irq(s);
  259. return G_SOURCE_REMOVE;
  260. }
  261. static void usart_cancel_transmit(Stm32l4x5UsartBaseState *s)
  262. {
  263. if (s->watch_tag) {
  264. g_source_remove(s->watch_tag);
  265. s->watch_tag = 0;
  266. }
  267. }
  268. static void stm32l4x5_update_params(Stm32l4x5UsartBaseState *s)
  269. {
  270. int speed, parity, data_bits, stop_bits;
  271. uint32_t value, usart_div;
  272. QEMUSerialSetParams ssp;
  273. /* Select the parity type */
  274. if (s->cr1 & R_CR1_PCE_MASK) {
  275. if (s->cr1 & R_CR1_PS_MASK) {
  276. parity = 'O';
  277. } else {
  278. parity = 'E';
  279. }
  280. } else {
  281. parity = 'N';
  282. }
  283. /* Select the number of stop bits */
  284. switch (FIELD_EX32(s->cr2, CR2, STOP)) {
  285. case 0:
  286. stop_bits = 1;
  287. break;
  288. case 2:
  289. stop_bits = 2;
  290. break;
  291. default:
  292. qemu_log_mask(LOG_UNIMP,
  293. "UNIMPLEMENTED: fractionnal stop bits; CR2[13:12] = %u",
  294. FIELD_EX32(s->cr2, CR2, STOP));
  295. return;
  296. }
  297. /* Select the length of the word */
  298. switch ((FIELD_EX32(s->cr1, CR1, M1) << 1) | FIELD_EX32(s->cr1, CR1, M0)) {
  299. case 0:
  300. data_bits = 8;
  301. break;
  302. case 1:
  303. data_bits = 9;
  304. break;
  305. case 2:
  306. data_bits = 7;
  307. break;
  308. default:
  309. qemu_log_mask(LOG_GUEST_ERROR,
  310. "UNDEFINED: invalid word length, CR1.M = 0b11");
  311. return;
  312. }
  313. /* Select the baud rate */
  314. value = FIELD_EX32(s->brr, BRR, BRR);
  315. if (value < 16) {
  316. qemu_log_mask(LOG_GUEST_ERROR,
  317. "UNDEFINED: BRR less than 16: %u", value);
  318. return;
  319. }
  320. if (FIELD_EX32(s->cr1, CR1, OVER8) == 0) {
  321. /*
  322. * Oversampling by 16
  323. * BRR = USARTDIV
  324. */
  325. usart_div = value;
  326. } else {
  327. /*
  328. * Oversampling by 8
  329. * - BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right.
  330. * - BRR[3] must be kept cleared.
  331. * - BRR[15:4] = USARTDIV[15:4]
  332. * - The frequency is multiplied by 2
  333. */
  334. usart_div = ((value & 0xFFF0) | ((value & 0x0007) << 1)) / 2;
  335. }
  336. speed = clock_get_hz(s->clk) / usart_div;
  337. ssp.speed = speed;
  338. ssp.parity = parity;
  339. ssp.data_bits = data_bits;
  340. ssp.stop_bits = stop_bits;
  341. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  342. trace_stm32l4x5_usart_update_params(speed, parity, data_bits, stop_bits);
  343. }
  344. static void stm32l4x5_usart_base_reset_hold(Object *obj, ResetType type)
  345. {
  346. Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(obj);
  347. s->cr1 = 0x00000000;
  348. s->cr2 = 0x00000000;
  349. s->cr3 = 0x00000000;
  350. s->brr = 0x00000000;
  351. s->gtpr = 0x00000000;
  352. s->rtor = 0x00000000;
  353. s->isr = 0x020000C0;
  354. s->rdr = 0x00000000;
  355. s->tdr = 0x00000000;
  356. usart_cancel_transmit(s);
  357. stm32l4x5_update_irq(s);
  358. }
  359. static void usart_update_rqr(Stm32l4x5UsartBaseState *s, uint32_t value)
  360. {
  361. /* TXFRQ */
  362. /* Reset RXNE flag */
  363. if (value & R_RQR_RXFRQ_MASK) {
  364. s->isr &= ~R_ISR_RXNE_MASK;
  365. }
  366. /* MMRQ */
  367. /* SBKRQ */
  368. /* ABRRQ */
  369. stm32l4x5_update_irq(s);
  370. }
  371. static uint64_t stm32l4x5_usart_base_read(void *opaque, hwaddr addr,
  372. unsigned int size)
  373. {
  374. Stm32l4x5UsartBaseState *s = opaque;
  375. uint64_t retvalue = 0;
  376. switch (addr) {
  377. case A_CR1:
  378. retvalue = s->cr1;
  379. break;
  380. case A_CR2:
  381. retvalue = s->cr2;
  382. break;
  383. case A_CR3:
  384. retvalue = s->cr3;
  385. break;
  386. case A_BRR:
  387. retvalue = FIELD_EX32(s->brr, BRR, BRR);
  388. break;
  389. case A_GTPR:
  390. retvalue = s->gtpr;
  391. break;
  392. case A_RTOR:
  393. retvalue = s->rtor;
  394. break;
  395. case A_RQR:
  396. /* RQR is a write only register */
  397. retvalue = 0x00000000;
  398. break;
  399. case A_ISR:
  400. retvalue = s->isr;
  401. break;
  402. case A_ICR:
  403. /* ICR is a clear register */
  404. retvalue = 0x00000000;
  405. break;
  406. case A_RDR:
  407. retvalue = FIELD_EX32(s->rdr, RDR, RDR);
  408. /* Reset RXNE flag */
  409. s->isr &= ~R_ISR_RXNE_MASK;
  410. stm32l4x5_update_irq(s);
  411. break;
  412. case A_TDR:
  413. retvalue = FIELD_EX32(s->tdr, TDR, TDR);
  414. break;
  415. default:
  416. qemu_log_mask(LOG_GUEST_ERROR,
  417. "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
  418. break;
  419. }
  420. trace_stm32l4x5_usart_read(addr, retvalue);
  421. return retvalue;
  422. }
  423. static void stm32l4x5_usart_base_write(void *opaque, hwaddr addr,
  424. uint64_t val64, unsigned int size)
  425. {
  426. Stm32l4x5UsartBaseState *s = opaque;
  427. const uint32_t value = val64;
  428. trace_stm32l4x5_usart_write(addr, value);
  429. switch (addr) {
  430. case A_CR1:
  431. s->cr1 = value;
  432. stm32l4x5_update_params(s);
  433. stm32l4x5_update_isr(s);
  434. stm32l4x5_update_irq(s);
  435. return;
  436. case A_CR2:
  437. s->cr2 = value;
  438. stm32l4x5_update_params(s);
  439. return;
  440. case A_CR3:
  441. s->cr3 = value;
  442. return;
  443. case A_BRR:
  444. s->brr = value;
  445. stm32l4x5_update_params(s);
  446. return;
  447. case A_GTPR:
  448. s->gtpr = value;
  449. return;
  450. case A_RTOR:
  451. s->rtor = value;
  452. return;
  453. case A_RQR:
  454. usart_update_rqr(s, value);
  455. return;
  456. case A_ISR:
  457. qemu_log_mask(LOG_GUEST_ERROR,
  458. "%s: ISR is read only !\n", __func__);
  459. return;
  460. case A_ICR:
  461. /* Clear the status flags */
  462. s->isr &= ~value;
  463. stm32l4x5_update_irq(s);
  464. return;
  465. case A_RDR:
  466. qemu_log_mask(LOG_GUEST_ERROR,
  467. "%s: RDR is read only !\n", __func__);
  468. return;
  469. case A_TDR:
  470. s->tdr = value;
  471. s->isr &= ~R_ISR_TXE_MASK;
  472. usart_transmit(NULL, G_IO_OUT, s);
  473. return;
  474. default:
  475. qemu_log_mask(LOG_GUEST_ERROR,
  476. "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
  477. }
  478. }
  479. static const MemoryRegionOps stm32l4x5_usart_base_ops = {
  480. .read = stm32l4x5_usart_base_read,
  481. .write = stm32l4x5_usart_base_write,
  482. .endianness = DEVICE_NATIVE_ENDIAN,
  483. .valid = {
  484. .max_access_size = 4,
  485. .min_access_size = 4,
  486. .unaligned = false
  487. },
  488. .impl = {
  489. .max_access_size = 4,
  490. .min_access_size = 4,
  491. .unaligned = false
  492. },
  493. };
  494. static const Property stm32l4x5_usart_base_properties[] = {
  495. DEFINE_PROP_CHR("chardev", Stm32l4x5UsartBaseState, chr),
  496. };
  497. static void stm32l4x5_usart_base_init(Object *obj)
  498. {
  499. Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(obj);
  500. sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
  501. memory_region_init_io(&s->mmio, obj, &stm32l4x5_usart_base_ops, s,
  502. TYPE_STM32L4X5_USART_BASE, 0x400);
  503. sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
  504. s->clk = qdev_init_clock_in(DEVICE(s), "clk", NULL, s, 0);
  505. }
  506. static int stm32l4x5_usart_base_post_load(void *opaque, int version_id)
  507. {
  508. Stm32l4x5UsartBaseState *s = (Stm32l4x5UsartBaseState *)opaque;
  509. stm32l4x5_update_params(s);
  510. return 0;
  511. }
  512. static const VMStateDescription vmstate_stm32l4x5_usart_base = {
  513. .name = TYPE_STM32L4X5_USART_BASE,
  514. .version_id = 1,
  515. .minimum_version_id = 1,
  516. .post_load = stm32l4x5_usart_base_post_load,
  517. .fields = (VMStateField[]) {
  518. VMSTATE_UINT32(cr1, Stm32l4x5UsartBaseState),
  519. VMSTATE_UINT32(cr2, Stm32l4x5UsartBaseState),
  520. VMSTATE_UINT32(cr3, Stm32l4x5UsartBaseState),
  521. VMSTATE_UINT32(brr, Stm32l4x5UsartBaseState),
  522. VMSTATE_UINT32(gtpr, Stm32l4x5UsartBaseState),
  523. VMSTATE_UINT32(rtor, Stm32l4x5UsartBaseState),
  524. VMSTATE_UINT32(isr, Stm32l4x5UsartBaseState),
  525. VMSTATE_UINT32(rdr, Stm32l4x5UsartBaseState),
  526. VMSTATE_UINT32(tdr, Stm32l4x5UsartBaseState),
  527. VMSTATE_CLOCK(clk, Stm32l4x5UsartBaseState),
  528. VMSTATE_END_OF_LIST()
  529. }
  530. };
  531. static void stm32l4x5_usart_base_realize(DeviceState *dev, Error **errp)
  532. {
  533. ERRP_GUARD();
  534. Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(dev);
  535. if (!clock_has_source(s->clk)) {
  536. error_setg(errp, "USART clock must be wired up by SoC code");
  537. return;
  538. }
  539. qemu_chr_fe_set_handlers(&s->chr, stm32l4x5_usart_base_can_receive,
  540. stm32l4x5_usart_base_receive, NULL, NULL,
  541. s, NULL, true);
  542. }
  543. static void stm32l4x5_usart_base_class_init(ObjectClass *klass, void *data)
  544. {
  545. DeviceClass *dc = DEVICE_CLASS(klass);
  546. ResettableClass *rc = RESETTABLE_CLASS(klass);
  547. rc->phases.hold = stm32l4x5_usart_base_reset_hold;
  548. device_class_set_props(dc, stm32l4x5_usart_base_properties);
  549. dc->realize = stm32l4x5_usart_base_realize;
  550. dc->vmsd = &vmstate_stm32l4x5_usart_base;
  551. }
  552. static void stm32l4x5_usart_class_init(ObjectClass *oc, void *data)
  553. {
  554. Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc);
  555. subc->type = STM32L4x5_USART;
  556. }
  557. static void stm32l4x5_uart_class_init(ObjectClass *oc, void *data)
  558. {
  559. Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc);
  560. subc->type = STM32L4x5_UART;
  561. }
  562. static void stm32l4x5_lpuart_class_init(ObjectClass *oc, void *data)
  563. {
  564. Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc);
  565. subc->type = STM32L4x5_LPUART;
  566. }
  567. static const TypeInfo stm32l4x5_usart_types[] = {
  568. {
  569. .name = TYPE_STM32L4X5_USART_BASE,
  570. .parent = TYPE_SYS_BUS_DEVICE,
  571. .instance_size = sizeof(Stm32l4x5UsartBaseState),
  572. .instance_init = stm32l4x5_usart_base_init,
  573. .class_size = sizeof(Stm32l4x5UsartBaseClass),
  574. .class_init = stm32l4x5_usart_base_class_init,
  575. .abstract = true,
  576. }, {
  577. .name = TYPE_STM32L4X5_USART,
  578. .parent = TYPE_STM32L4X5_USART_BASE,
  579. .class_init = stm32l4x5_usart_class_init,
  580. }, {
  581. .name = TYPE_STM32L4X5_UART,
  582. .parent = TYPE_STM32L4X5_USART_BASE,
  583. .class_init = stm32l4x5_uart_class_init,
  584. }, {
  585. .name = TYPE_STM32L4X5_LPUART,
  586. .parent = TYPE_STM32L4X5_USART_BASE,
  587. .class_init = stm32l4x5_lpuart_class_init,
  588. }
  589. };
  590. DEFINE_TYPES(stm32l4x5_usart_types)