tcx.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914
  1. /*
  2. * QEMU TCX Frame buffer
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu-common.h"
  26. #include "qemu/datadir.h"
  27. #include "qapi/error.h"
  28. #include "ui/console.h"
  29. #include "ui/pixel_ops.h"
  30. #include "hw/loader.h"
  31. #include "hw/qdev-properties.h"
  32. #include "hw/sysbus.h"
  33. #include "migration/vmstate.h"
  34. #include "qemu/error-report.h"
  35. #include "qemu/module.h"
  36. #include "qom/object.h"
  37. #define TCX_ROM_FILE "QEMU,tcx.bin"
  38. #define FCODE_MAX_ROM_SIZE 0x10000
  39. #define MAXX 1024
  40. #define MAXY 768
  41. #define TCX_DAC_NREGS 16
  42. #define TCX_THC_NREGS 0x1000
  43. #define TCX_DHC_NREGS 0x4000
  44. #define TCX_TEC_NREGS 0x1000
  45. #define TCX_ALT_NREGS 0x8000
  46. #define TCX_STIP_NREGS 0x800000
  47. #define TCX_BLIT_NREGS 0x800000
  48. #define TCX_RSTIP_NREGS 0x800000
  49. #define TCX_RBLIT_NREGS 0x800000
  50. #define TCX_THC_MISC 0x818
  51. #define TCX_THC_CURSXY 0x8fc
  52. #define TCX_THC_CURSMASK 0x900
  53. #define TCX_THC_CURSBITS 0x980
  54. #define TYPE_TCX "sun-tcx"
  55. OBJECT_DECLARE_SIMPLE_TYPE(TCXState, TCX)
  56. struct TCXState {
  57. SysBusDevice parent_obj;
  58. QemuConsole *con;
  59. qemu_irq irq;
  60. uint8_t *vram;
  61. uint32_t *vram24, *cplane;
  62. hwaddr prom_addr;
  63. MemoryRegion rom;
  64. MemoryRegion vram_mem;
  65. MemoryRegion vram_8bit;
  66. MemoryRegion vram_24bit;
  67. MemoryRegion stip;
  68. MemoryRegion blit;
  69. MemoryRegion vram_cplane;
  70. MemoryRegion rstip;
  71. MemoryRegion rblit;
  72. MemoryRegion tec;
  73. MemoryRegion dac;
  74. MemoryRegion thc;
  75. MemoryRegion dhc;
  76. MemoryRegion alt;
  77. MemoryRegion thc24;
  78. ram_addr_t vram24_offset, cplane_offset;
  79. uint32_t tmpblit;
  80. uint32_t vram_size;
  81. uint32_t palette[260];
  82. uint8_t r[260], g[260], b[260];
  83. uint16_t width, height, depth;
  84. uint8_t dac_index, dac_state;
  85. uint32_t thcmisc;
  86. uint32_t cursmask[32];
  87. uint32_t cursbits[32];
  88. uint16_t cursx;
  89. uint16_t cursy;
  90. };
  91. static void tcx_set_dirty(TCXState *s, ram_addr_t addr, int len)
  92. {
  93. memory_region_set_dirty(&s->vram_mem, addr, len);
  94. if (s->depth == 24) {
  95. memory_region_set_dirty(&s->vram_mem, s->vram24_offset + addr * 4,
  96. len * 4);
  97. memory_region_set_dirty(&s->vram_mem, s->cplane_offset + addr * 4,
  98. len * 4);
  99. }
  100. }
  101. static int tcx_check_dirty(TCXState *s, DirtyBitmapSnapshot *snap,
  102. ram_addr_t addr, int len)
  103. {
  104. int ret;
  105. ret = memory_region_snapshot_get_dirty(&s->vram_mem, snap, addr, len);
  106. if (s->depth == 24) {
  107. ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
  108. s->vram24_offset + addr * 4, len * 4);
  109. ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
  110. s->cplane_offset + addr * 4, len * 4);
  111. }
  112. return ret;
  113. }
  114. static void update_palette_entries(TCXState *s, int start, int end)
  115. {
  116. int i;
  117. for (i = start; i < end; i++) {
  118. s->palette[i] = rgb_to_pixel32(s->r[i], s->g[i], s->b[i]);
  119. }
  120. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  121. }
  122. static void tcx_draw_line32(TCXState *s1, uint8_t *d,
  123. const uint8_t *s, int width)
  124. {
  125. int x;
  126. uint8_t val;
  127. uint32_t *p = (uint32_t *)d;
  128. for (x = 0; x < width; x++) {
  129. val = *s++;
  130. *p++ = s1->palette[val];
  131. }
  132. }
  133. static void tcx_draw_cursor32(TCXState *s1, uint8_t *d,
  134. int y, int width)
  135. {
  136. int x, len;
  137. uint32_t mask, bits;
  138. uint32_t *p = (uint32_t *)d;
  139. y = y - s1->cursy;
  140. mask = s1->cursmask[y];
  141. bits = s1->cursbits[y];
  142. len = MIN(width - s1->cursx, 32);
  143. p = &p[s1->cursx];
  144. for (x = 0; x < len; x++) {
  145. if (mask & 0x80000000) {
  146. if (bits & 0x80000000) {
  147. *p = s1->palette[259];
  148. } else {
  149. *p = s1->palette[258];
  150. }
  151. }
  152. p++;
  153. mask <<= 1;
  154. bits <<= 1;
  155. }
  156. }
  157. /*
  158. * XXX Could be much more optimal:
  159. * detect if line/page/whole screen is in 24 bit mode
  160. */
  161. static inline void tcx24_draw_line32(TCXState *s1, uint8_t *d,
  162. const uint8_t *s, int width,
  163. const uint32_t *cplane,
  164. const uint32_t *s24)
  165. {
  166. int x, r, g, b;
  167. uint8_t val, *p8;
  168. uint32_t *p = (uint32_t *)d;
  169. uint32_t dval;
  170. for(x = 0; x < width; x++, s++, s24++) {
  171. if (be32_to_cpu(*cplane) & 0x03000000) {
  172. /* 24-bit direct, BGR order */
  173. p8 = (uint8_t *)s24;
  174. p8++;
  175. b = *p8++;
  176. g = *p8++;
  177. r = *p8;
  178. dval = rgb_to_pixel32(r, g, b);
  179. } else {
  180. /* 8-bit pseudocolor */
  181. val = *s;
  182. dval = s1->palette[val];
  183. }
  184. *p++ = dval;
  185. cplane++;
  186. }
  187. }
  188. /* Fixed line length 1024 allows us to do nice tricks not possible on
  189. VGA... */
  190. static void tcx_update_display(void *opaque)
  191. {
  192. TCXState *ts = opaque;
  193. DisplaySurface *surface = qemu_console_surface(ts->con);
  194. ram_addr_t page;
  195. DirtyBitmapSnapshot *snap = NULL;
  196. int y, y_start, dd, ds;
  197. uint8_t *d, *s;
  198. assert(surface_bits_per_pixel(surface) == 32);
  199. page = 0;
  200. y_start = -1;
  201. d = surface_data(surface);
  202. s = ts->vram;
  203. dd = surface_stride(surface);
  204. ds = 1024;
  205. snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
  206. memory_region_size(&ts->vram_mem),
  207. DIRTY_MEMORY_VGA);
  208. for (y = 0; y < ts->height; y++, page += ds) {
  209. if (tcx_check_dirty(ts, snap, page, ds)) {
  210. if (y_start < 0)
  211. y_start = y;
  212. tcx_draw_line32(ts, d, s, ts->width);
  213. if (y >= ts->cursy && y < ts->cursy + 32 && ts->cursx < ts->width) {
  214. tcx_draw_cursor32(ts, d, y, ts->width);
  215. }
  216. } else {
  217. if (y_start >= 0) {
  218. /* flush to display */
  219. dpy_gfx_update(ts->con, 0, y_start,
  220. ts->width, y - y_start);
  221. y_start = -1;
  222. }
  223. }
  224. s += ds;
  225. d += dd;
  226. }
  227. if (y_start >= 0) {
  228. /* flush to display */
  229. dpy_gfx_update(ts->con, 0, y_start,
  230. ts->width, y - y_start);
  231. }
  232. g_free(snap);
  233. }
  234. static void tcx24_update_display(void *opaque)
  235. {
  236. TCXState *ts = opaque;
  237. DisplaySurface *surface = qemu_console_surface(ts->con);
  238. ram_addr_t page;
  239. DirtyBitmapSnapshot *snap = NULL;
  240. int y, y_start, dd, ds;
  241. uint8_t *d, *s;
  242. uint32_t *cptr, *s24;
  243. assert(surface_bits_per_pixel(surface) == 32);
  244. page = 0;
  245. y_start = -1;
  246. d = surface_data(surface);
  247. s = ts->vram;
  248. s24 = ts->vram24;
  249. cptr = ts->cplane;
  250. dd = surface_stride(surface);
  251. ds = 1024;
  252. snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
  253. memory_region_size(&ts->vram_mem),
  254. DIRTY_MEMORY_VGA);
  255. for (y = 0; y < ts->height; y++, page += ds) {
  256. if (tcx_check_dirty(ts, snap, page, ds)) {
  257. if (y_start < 0)
  258. y_start = y;
  259. tcx24_draw_line32(ts, d, s, ts->width, cptr, s24);
  260. if (y >= ts->cursy && y < ts->cursy+32 && ts->cursx < ts->width) {
  261. tcx_draw_cursor32(ts, d, y, ts->width);
  262. }
  263. } else {
  264. if (y_start >= 0) {
  265. /* flush to display */
  266. dpy_gfx_update(ts->con, 0, y_start,
  267. ts->width, y - y_start);
  268. y_start = -1;
  269. }
  270. }
  271. d += dd;
  272. s += ds;
  273. cptr += ds;
  274. s24 += ds;
  275. }
  276. if (y_start >= 0) {
  277. /* flush to display */
  278. dpy_gfx_update(ts->con, 0, y_start,
  279. ts->width, y - y_start);
  280. }
  281. g_free(snap);
  282. }
  283. static void tcx_invalidate_display(void *opaque)
  284. {
  285. TCXState *s = opaque;
  286. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  287. qemu_console_resize(s->con, s->width, s->height);
  288. }
  289. static void tcx24_invalidate_display(void *opaque)
  290. {
  291. TCXState *s = opaque;
  292. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  293. qemu_console_resize(s->con, s->width, s->height);
  294. }
  295. static int vmstate_tcx_post_load(void *opaque, int version_id)
  296. {
  297. TCXState *s = opaque;
  298. update_palette_entries(s, 0, 256);
  299. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  300. return 0;
  301. }
  302. static const VMStateDescription vmstate_tcx = {
  303. .name ="tcx",
  304. .version_id = 4,
  305. .minimum_version_id = 4,
  306. .post_load = vmstate_tcx_post_load,
  307. .fields = (VMStateField[]) {
  308. VMSTATE_UINT16(height, TCXState),
  309. VMSTATE_UINT16(width, TCXState),
  310. VMSTATE_UINT16(depth, TCXState),
  311. VMSTATE_BUFFER(r, TCXState),
  312. VMSTATE_BUFFER(g, TCXState),
  313. VMSTATE_BUFFER(b, TCXState),
  314. VMSTATE_UINT8(dac_index, TCXState),
  315. VMSTATE_UINT8(dac_state, TCXState),
  316. VMSTATE_END_OF_LIST()
  317. }
  318. };
  319. static void tcx_reset(DeviceState *d)
  320. {
  321. TCXState *s = TCX(d);
  322. /* Initialize palette */
  323. memset(s->r, 0, 260);
  324. memset(s->g, 0, 260);
  325. memset(s->b, 0, 260);
  326. s->r[255] = s->g[255] = s->b[255] = 255;
  327. s->r[256] = s->g[256] = s->b[256] = 255;
  328. s->r[258] = s->g[258] = s->b[258] = 255;
  329. update_palette_entries(s, 0, 260);
  330. memset(s->vram, 0, MAXX*MAXY);
  331. memory_region_reset_dirty(&s->vram_mem, 0, MAXX * MAXY * (1 + 4 + 4),
  332. DIRTY_MEMORY_VGA);
  333. s->dac_index = 0;
  334. s->dac_state = 0;
  335. s->cursx = 0xf000; /* Put cursor off screen */
  336. s->cursy = 0xf000;
  337. }
  338. static uint64_t tcx_dac_readl(void *opaque, hwaddr addr,
  339. unsigned size)
  340. {
  341. TCXState *s = opaque;
  342. uint32_t val = 0;
  343. switch (s->dac_state) {
  344. case 0:
  345. val = s->r[s->dac_index] << 24;
  346. s->dac_state++;
  347. break;
  348. case 1:
  349. val = s->g[s->dac_index] << 24;
  350. s->dac_state++;
  351. break;
  352. case 2:
  353. val = s->b[s->dac_index] << 24;
  354. s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
  355. /* fall through */
  356. default:
  357. s->dac_state = 0;
  358. break;
  359. }
  360. return val;
  361. }
  362. static void tcx_dac_writel(void *opaque, hwaddr addr, uint64_t val,
  363. unsigned size)
  364. {
  365. TCXState *s = opaque;
  366. unsigned index;
  367. switch (addr) {
  368. case 0: /* Address */
  369. s->dac_index = val >> 24;
  370. s->dac_state = 0;
  371. break;
  372. case 4: /* Pixel colours */
  373. case 12: /* Overlay (cursor) colours */
  374. if (addr & 8) {
  375. index = (s->dac_index & 3) + 256;
  376. } else {
  377. index = s->dac_index;
  378. }
  379. switch (s->dac_state) {
  380. case 0:
  381. s->r[index] = val >> 24;
  382. update_palette_entries(s, index, index + 1);
  383. s->dac_state++;
  384. break;
  385. case 1:
  386. s->g[index] = val >> 24;
  387. update_palette_entries(s, index, index + 1);
  388. s->dac_state++;
  389. break;
  390. case 2:
  391. s->b[index] = val >> 24;
  392. update_palette_entries(s, index, index + 1);
  393. s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
  394. /* fall through */
  395. default:
  396. s->dac_state = 0;
  397. break;
  398. }
  399. break;
  400. default: /* Control registers */
  401. break;
  402. }
  403. }
  404. static const MemoryRegionOps tcx_dac_ops = {
  405. .read = tcx_dac_readl,
  406. .write = tcx_dac_writel,
  407. .endianness = DEVICE_NATIVE_ENDIAN,
  408. .valid = {
  409. .min_access_size = 4,
  410. .max_access_size = 4,
  411. },
  412. };
  413. static uint64_t tcx_stip_readl(void *opaque, hwaddr addr,
  414. unsigned size)
  415. {
  416. return 0;
  417. }
  418. static void tcx_stip_writel(void *opaque, hwaddr addr,
  419. uint64_t val, unsigned size)
  420. {
  421. TCXState *s = opaque;
  422. int i;
  423. uint32_t col;
  424. if (!(addr & 4)) {
  425. s->tmpblit = val;
  426. } else {
  427. addr = (addr >> 3) & 0xfffff;
  428. col = cpu_to_be32(s->tmpblit);
  429. if (s->depth == 24) {
  430. for (i = 0; i < 32; i++) {
  431. if (val & 0x80000000) {
  432. s->vram[addr + i] = s->tmpblit;
  433. s->vram24[addr + i] = col;
  434. }
  435. val <<= 1;
  436. }
  437. } else {
  438. for (i = 0; i < 32; i++) {
  439. if (val & 0x80000000) {
  440. s->vram[addr + i] = s->tmpblit;
  441. }
  442. val <<= 1;
  443. }
  444. }
  445. tcx_set_dirty(s, addr, 32);
  446. }
  447. }
  448. static void tcx_rstip_writel(void *opaque, hwaddr addr,
  449. uint64_t val, unsigned size)
  450. {
  451. TCXState *s = opaque;
  452. int i;
  453. uint32_t col;
  454. if (!(addr & 4)) {
  455. s->tmpblit = val;
  456. } else {
  457. addr = (addr >> 3) & 0xfffff;
  458. col = cpu_to_be32(s->tmpblit);
  459. if (s->depth == 24) {
  460. for (i = 0; i < 32; i++) {
  461. if (val & 0x80000000) {
  462. s->vram[addr + i] = s->tmpblit;
  463. s->vram24[addr + i] = col;
  464. s->cplane[addr + i] = col;
  465. }
  466. val <<= 1;
  467. }
  468. } else {
  469. for (i = 0; i < 32; i++) {
  470. if (val & 0x80000000) {
  471. s->vram[addr + i] = s->tmpblit;
  472. }
  473. val <<= 1;
  474. }
  475. }
  476. tcx_set_dirty(s, addr, 32);
  477. }
  478. }
  479. static const MemoryRegionOps tcx_stip_ops = {
  480. .read = tcx_stip_readl,
  481. .write = tcx_stip_writel,
  482. .endianness = DEVICE_NATIVE_ENDIAN,
  483. .impl = {
  484. .min_access_size = 4,
  485. .max_access_size = 4,
  486. },
  487. .valid = {
  488. .min_access_size = 4,
  489. .max_access_size = 8,
  490. },
  491. };
  492. static const MemoryRegionOps tcx_rstip_ops = {
  493. .read = tcx_stip_readl,
  494. .write = tcx_rstip_writel,
  495. .endianness = DEVICE_NATIVE_ENDIAN,
  496. .impl = {
  497. .min_access_size = 4,
  498. .max_access_size = 4,
  499. },
  500. .valid = {
  501. .min_access_size = 4,
  502. .max_access_size = 8,
  503. },
  504. };
  505. static uint64_t tcx_blit_readl(void *opaque, hwaddr addr,
  506. unsigned size)
  507. {
  508. return 0;
  509. }
  510. static void tcx_blit_writel(void *opaque, hwaddr addr,
  511. uint64_t val, unsigned size)
  512. {
  513. TCXState *s = opaque;
  514. uint32_t adsr, len;
  515. int i;
  516. if (!(addr & 4)) {
  517. s->tmpblit = val;
  518. } else {
  519. addr = (addr >> 3) & 0xfffff;
  520. adsr = val & 0xffffff;
  521. len = ((val >> 24) & 0x1f) + 1;
  522. if (adsr == 0xffffff) {
  523. memset(&s->vram[addr], s->tmpblit, len);
  524. if (s->depth == 24) {
  525. val = s->tmpblit & 0xffffff;
  526. val = cpu_to_be32(val);
  527. for (i = 0; i < len; i++) {
  528. s->vram24[addr + i] = val;
  529. }
  530. }
  531. } else {
  532. memcpy(&s->vram[addr], &s->vram[adsr], len);
  533. if (s->depth == 24) {
  534. memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
  535. }
  536. }
  537. tcx_set_dirty(s, addr, len);
  538. }
  539. }
  540. static void tcx_rblit_writel(void *opaque, hwaddr addr,
  541. uint64_t val, unsigned size)
  542. {
  543. TCXState *s = opaque;
  544. uint32_t adsr, len;
  545. int i;
  546. if (!(addr & 4)) {
  547. s->tmpblit = val;
  548. } else {
  549. addr = (addr >> 3) & 0xfffff;
  550. adsr = val & 0xffffff;
  551. len = ((val >> 24) & 0x1f) + 1;
  552. if (adsr == 0xffffff) {
  553. memset(&s->vram[addr], s->tmpblit, len);
  554. if (s->depth == 24) {
  555. val = s->tmpblit & 0xffffff;
  556. val = cpu_to_be32(val);
  557. for (i = 0; i < len; i++) {
  558. s->vram24[addr + i] = val;
  559. s->cplane[addr + i] = val;
  560. }
  561. }
  562. } else {
  563. memcpy(&s->vram[addr], &s->vram[adsr], len);
  564. if (s->depth == 24) {
  565. memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
  566. memcpy(&s->cplane[addr], &s->cplane[adsr], len * 4);
  567. }
  568. }
  569. tcx_set_dirty(s, addr, len);
  570. }
  571. }
  572. static const MemoryRegionOps tcx_blit_ops = {
  573. .read = tcx_blit_readl,
  574. .write = tcx_blit_writel,
  575. .endianness = DEVICE_NATIVE_ENDIAN,
  576. .impl = {
  577. .min_access_size = 4,
  578. .max_access_size = 4,
  579. },
  580. .valid = {
  581. .min_access_size = 4,
  582. .max_access_size = 8,
  583. },
  584. };
  585. static const MemoryRegionOps tcx_rblit_ops = {
  586. .read = tcx_blit_readl,
  587. .write = tcx_rblit_writel,
  588. .endianness = DEVICE_NATIVE_ENDIAN,
  589. .impl = {
  590. .min_access_size = 4,
  591. .max_access_size = 4,
  592. },
  593. .valid = {
  594. .min_access_size = 4,
  595. .max_access_size = 8,
  596. },
  597. };
  598. static void tcx_invalidate_cursor_position(TCXState *s)
  599. {
  600. int ymin, ymax, start, end;
  601. /* invalidate only near the cursor */
  602. ymin = s->cursy;
  603. if (ymin >= s->height) {
  604. return;
  605. }
  606. ymax = MIN(s->height, ymin + 32);
  607. start = ymin * 1024;
  608. end = ymax * 1024;
  609. tcx_set_dirty(s, start, end - start);
  610. }
  611. static uint64_t tcx_thc_readl(void *opaque, hwaddr addr,
  612. unsigned size)
  613. {
  614. TCXState *s = opaque;
  615. uint64_t val;
  616. if (addr == TCX_THC_MISC) {
  617. val = s->thcmisc | 0x02000000;
  618. } else {
  619. val = 0;
  620. }
  621. return val;
  622. }
  623. static void tcx_thc_writel(void *opaque, hwaddr addr,
  624. uint64_t val, unsigned size)
  625. {
  626. TCXState *s = opaque;
  627. if (addr == TCX_THC_CURSXY) {
  628. tcx_invalidate_cursor_position(s);
  629. s->cursx = val >> 16;
  630. s->cursy = val;
  631. tcx_invalidate_cursor_position(s);
  632. } else if (addr >= TCX_THC_CURSMASK && addr < TCX_THC_CURSMASK + 128) {
  633. s->cursmask[(addr - TCX_THC_CURSMASK) >> 2] = val;
  634. tcx_invalidate_cursor_position(s);
  635. } else if (addr >= TCX_THC_CURSBITS && addr < TCX_THC_CURSBITS + 128) {
  636. s->cursbits[(addr - TCX_THC_CURSBITS) >> 2] = val;
  637. tcx_invalidate_cursor_position(s);
  638. } else if (addr == TCX_THC_MISC) {
  639. s->thcmisc = val;
  640. }
  641. }
  642. static const MemoryRegionOps tcx_thc_ops = {
  643. .read = tcx_thc_readl,
  644. .write = tcx_thc_writel,
  645. .endianness = DEVICE_NATIVE_ENDIAN,
  646. .valid = {
  647. .min_access_size = 4,
  648. .max_access_size = 4,
  649. },
  650. };
  651. static uint64_t tcx_dummy_readl(void *opaque, hwaddr addr,
  652. unsigned size)
  653. {
  654. return 0;
  655. }
  656. static void tcx_dummy_writel(void *opaque, hwaddr addr,
  657. uint64_t val, unsigned size)
  658. {
  659. return;
  660. }
  661. static const MemoryRegionOps tcx_dummy_ops = {
  662. .read = tcx_dummy_readl,
  663. .write = tcx_dummy_writel,
  664. .endianness = DEVICE_NATIVE_ENDIAN,
  665. .valid = {
  666. .min_access_size = 4,
  667. .max_access_size = 4,
  668. },
  669. };
  670. static const GraphicHwOps tcx_ops = {
  671. .invalidate = tcx_invalidate_display,
  672. .gfx_update = tcx_update_display,
  673. };
  674. static const GraphicHwOps tcx24_ops = {
  675. .invalidate = tcx24_invalidate_display,
  676. .gfx_update = tcx24_update_display,
  677. };
  678. static void tcx_initfn(Object *obj)
  679. {
  680. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  681. TCXState *s = TCX(obj);
  682. memory_region_init_rom_nomigrate(&s->rom, obj, "tcx.prom",
  683. FCODE_MAX_ROM_SIZE, &error_fatal);
  684. sysbus_init_mmio(sbd, &s->rom);
  685. /* 2/STIP : Stippler */
  686. memory_region_init_io(&s->stip, obj, &tcx_stip_ops, s, "tcx.stip",
  687. TCX_STIP_NREGS);
  688. sysbus_init_mmio(sbd, &s->stip);
  689. /* 3/BLIT : Blitter */
  690. memory_region_init_io(&s->blit, obj, &tcx_blit_ops, s, "tcx.blit",
  691. TCX_BLIT_NREGS);
  692. sysbus_init_mmio(sbd, &s->blit);
  693. /* 5/RSTIP : Raw Stippler */
  694. memory_region_init_io(&s->rstip, obj, &tcx_rstip_ops, s, "tcx.rstip",
  695. TCX_RSTIP_NREGS);
  696. sysbus_init_mmio(sbd, &s->rstip);
  697. /* 6/RBLIT : Raw Blitter */
  698. memory_region_init_io(&s->rblit, obj, &tcx_rblit_ops, s, "tcx.rblit",
  699. TCX_RBLIT_NREGS);
  700. sysbus_init_mmio(sbd, &s->rblit);
  701. /* 7/TEC : ??? */
  702. memory_region_init_io(&s->tec, obj, &tcx_dummy_ops, s, "tcx.tec",
  703. TCX_TEC_NREGS);
  704. sysbus_init_mmio(sbd, &s->tec);
  705. /* 8/CMAP : DAC */
  706. memory_region_init_io(&s->dac, obj, &tcx_dac_ops, s, "tcx.dac",
  707. TCX_DAC_NREGS);
  708. sysbus_init_mmio(sbd, &s->dac);
  709. /* 9/THC : Cursor */
  710. memory_region_init_io(&s->thc, obj, &tcx_thc_ops, s, "tcx.thc",
  711. TCX_THC_NREGS);
  712. sysbus_init_mmio(sbd, &s->thc);
  713. /* 11/DHC : ??? */
  714. memory_region_init_io(&s->dhc, obj, &tcx_dummy_ops, s, "tcx.dhc",
  715. TCX_DHC_NREGS);
  716. sysbus_init_mmio(sbd, &s->dhc);
  717. /* 12/ALT : ??? */
  718. memory_region_init_io(&s->alt, obj, &tcx_dummy_ops, s, "tcx.alt",
  719. TCX_ALT_NREGS);
  720. sysbus_init_mmio(sbd, &s->alt);
  721. }
  722. static void tcx_realizefn(DeviceState *dev, Error **errp)
  723. {
  724. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  725. TCXState *s = TCX(dev);
  726. ram_addr_t vram_offset = 0;
  727. int size, ret;
  728. uint8_t *vram_base;
  729. char *fcode_filename;
  730. memory_region_init_ram_nomigrate(&s->vram_mem, OBJECT(s), "tcx.vram",
  731. s->vram_size * (1 + 4 + 4), &error_fatal);
  732. vmstate_register_ram_global(&s->vram_mem);
  733. memory_region_set_log(&s->vram_mem, true, DIRTY_MEMORY_VGA);
  734. vram_base = memory_region_get_ram_ptr(&s->vram_mem);
  735. /* 10/ROM : FCode ROM */
  736. vmstate_register_ram_global(&s->rom);
  737. fcode_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, TCX_ROM_FILE);
  738. if (fcode_filename) {
  739. ret = load_image_mr(fcode_filename, &s->rom);
  740. g_free(fcode_filename);
  741. if (ret < 0 || ret > FCODE_MAX_ROM_SIZE) {
  742. warn_report("tcx: could not load prom '%s'", TCX_ROM_FILE);
  743. }
  744. }
  745. /* 0/DFB8 : 8-bit plane */
  746. s->vram = vram_base;
  747. size = s->vram_size;
  748. memory_region_init_alias(&s->vram_8bit, OBJECT(s), "tcx.vram.8bit",
  749. &s->vram_mem, vram_offset, size);
  750. sysbus_init_mmio(sbd, &s->vram_8bit);
  751. vram_offset += size;
  752. vram_base += size;
  753. /* 1/DFB24 : 24bit plane */
  754. size = s->vram_size * 4;
  755. s->vram24 = (uint32_t *)vram_base;
  756. s->vram24_offset = vram_offset;
  757. memory_region_init_alias(&s->vram_24bit, OBJECT(s), "tcx.vram.24bit",
  758. &s->vram_mem, vram_offset, size);
  759. sysbus_init_mmio(sbd, &s->vram_24bit);
  760. vram_offset += size;
  761. vram_base += size;
  762. /* 4/RDFB32 : Raw Framebuffer */
  763. size = s->vram_size * 4;
  764. s->cplane = (uint32_t *)vram_base;
  765. s->cplane_offset = vram_offset;
  766. memory_region_init_alias(&s->vram_cplane, OBJECT(s), "tcx.vram.cplane",
  767. &s->vram_mem, vram_offset, size);
  768. sysbus_init_mmio(sbd, &s->vram_cplane);
  769. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  770. if (s->depth == 8) {
  771. memory_region_init_io(&s->thc24, OBJECT(s), &tcx_dummy_ops, s,
  772. "tcx.thc24", TCX_THC_NREGS);
  773. sysbus_init_mmio(sbd, &s->thc24);
  774. }
  775. sysbus_init_irq(sbd, &s->irq);
  776. if (s->depth == 8) {
  777. s->con = graphic_console_init(dev, 0, &tcx_ops, s);
  778. } else {
  779. s->con = graphic_console_init(dev, 0, &tcx24_ops, s);
  780. }
  781. s->thcmisc = 0;
  782. qemu_console_resize(s->con, s->width, s->height);
  783. }
  784. static Property tcx_properties[] = {
  785. DEFINE_PROP_UINT32("vram_size", TCXState, vram_size, -1),
  786. DEFINE_PROP_UINT16("width", TCXState, width, -1),
  787. DEFINE_PROP_UINT16("height", TCXState, height, -1),
  788. DEFINE_PROP_UINT16("depth", TCXState, depth, -1),
  789. DEFINE_PROP_END_OF_LIST(),
  790. };
  791. static void tcx_class_init(ObjectClass *klass, void *data)
  792. {
  793. DeviceClass *dc = DEVICE_CLASS(klass);
  794. dc->realize = tcx_realizefn;
  795. dc->reset = tcx_reset;
  796. dc->vmsd = &vmstate_tcx;
  797. device_class_set_props(dc, tcx_properties);
  798. }
  799. static const TypeInfo tcx_info = {
  800. .name = TYPE_TCX,
  801. .parent = TYPE_SYS_BUS_DEVICE,
  802. .instance_size = sizeof(TCXState),
  803. .instance_init = tcx_initfn,
  804. .class_init = tcx_class_init,
  805. };
  806. static void tcx_register_types(void)
  807. {
  808. type_register_static(&tcx_info);
  809. }
  810. type_init(tcx_register_types)