npcm_clk.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. /*
  2. * Nuvoton NPCM7xx Clock Control Registers.
  3. *
  4. * Copyright 2020 Google LLC
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  14. * for more details.
  15. */
  16. #include "qemu/osdep.h"
  17. #include "hw/misc/npcm_clk.h"
  18. #include "hw/timer/npcm7xx_timer.h"
  19. #include "hw/qdev-clock.h"
  20. #include "migration/vmstate.h"
  21. #include "qemu/error-report.h"
  22. #include "qemu/log.h"
  23. #include "qemu/module.h"
  24. #include "qemu/timer.h"
  25. #include "qemu/units.h"
  26. #include "trace.h"
  27. #include "system/watchdog.h"
  28. /*
  29. * The reference clock hz, and the SECCNT and CNTR25M registers in this module,
  30. * is always 25 MHz.
  31. */
  32. #define NPCM7XX_CLOCK_REF_HZ (25000000)
  33. /* Register Field Definitions */
  34. #define NPCM7XX_CLK_WDRCR_CA9C BIT(0) /* Cortex-A9 Cores */
  35. #define PLLCON_LOKI BIT(31)
  36. #define PLLCON_LOKS BIT(30)
  37. #define PLLCON_PWDEN BIT(12)
  38. #define PLLCON_FBDV(con) extract32((con), 16, 12)
  39. #define PLLCON_OTDV2(con) extract32((con), 13, 3)
  40. #define PLLCON_OTDV1(con) extract32((con), 8, 3)
  41. #define PLLCON_INDV(con) extract32((con), 0, 6)
  42. enum NPCM7xxCLKRegisters {
  43. NPCM7XX_CLK_CLKEN1,
  44. NPCM7XX_CLK_CLKSEL,
  45. NPCM7XX_CLK_CLKDIV1,
  46. NPCM7XX_CLK_PLLCON0,
  47. NPCM7XX_CLK_PLLCON1,
  48. NPCM7XX_CLK_SWRSTR,
  49. NPCM7XX_CLK_IPSRST1 = 0x20 / sizeof(uint32_t),
  50. NPCM7XX_CLK_IPSRST2,
  51. NPCM7XX_CLK_CLKEN2,
  52. NPCM7XX_CLK_CLKDIV2,
  53. NPCM7XX_CLK_CLKEN3,
  54. NPCM7XX_CLK_IPSRST3,
  55. NPCM7XX_CLK_WD0RCR,
  56. NPCM7XX_CLK_WD1RCR,
  57. NPCM7XX_CLK_WD2RCR,
  58. NPCM7XX_CLK_SWRSTC1,
  59. NPCM7XX_CLK_SWRSTC2,
  60. NPCM7XX_CLK_SWRSTC3,
  61. NPCM7XX_CLK_SWRSTC4,
  62. NPCM7XX_CLK_PLLCON2,
  63. NPCM7XX_CLK_CLKDIV3,
  64. NPCM7XX_CLK_CORSTC,
  65. NPCM7XX_CLK_PLLCONG,
  66. NPCM7XX_CLK_AHBCKFI,
  67. NPCM7XX_CLK_SECCNT,
  68. NPCM7XX_CLK_CNTR25M,
  69. NPCM7XX_CLK_REGS_END,
  70. };
  71. /*
  72. * These reset values were taken from version 0.91 of the NPCM750R data sheet.
  73. *
  74. * All are loaded on power-up reset. CLKENx and SWRSTR should also be loaded on
  75. * core domain reset, but this reset type is not yet supported by QEMU.
  76. */
  77. static const uint32_t cold_reset_values[NPCM7XX_CLK_NR_REGS] = {
  78. [NPCM7XX_CLK_CLKEN1] = 0xffffffff,
  79. [NPCM7XX_CLK_CLKSEL] = 0x004aaaaa,
  80. [NPCM7XX_CLK_CLKDIV1] = 0x5413f855,
  81. [NPCM7XX_CLK_PLLCON0] = 0x00222101 | PLLCON_LOKI,
  82. [NPCM7XX_CLK_PLLCON1] = 0x00202101 | PLLCON_LOKI,
  83. [NPCM7XX_CLK_IPSRST1] = 0x00001000,
  84. [NPCM7XX_CLK_IPSRST2] = 0x80000000,
  85. [NPCM7XX_CLK_CLKEN2] = 0xffffffff,
  86. [NPCM7XX_CLK_CLKDIV2] = 0xaa4f8f9f,
  87. [NPCM7XX_CLK_CLKEN3] = 0xffffffff,
  88. [NPCM7XX_CLK_IPSRST3] = 0x03000000,
  89. [NPCM7XX_CLK_WD0RCR] = 0xffffffff,
  90. [NPCM7XX_CLK_WD1RCR] = 0xffffffff,
  91. [NPCM7XX_CLK_WD2RCR] = 0xffffffff,
  92. [NPCM7XX_CLK_SWRSTC1] = 0x00000003,
  93. [NPCM7XX_CLK_PLLCON2] = 0x00c02105 | PLLCON_LOKI,
  94. [NPCM7XX_CLK_CORSTC] = 0x04000003,
  95. [NPCM7XX_CLK_PLLCONG] = 0x01228606 | PLLCON_LOKI,
  96. [NPCM7XX_CLK_AHBCKFI] = 0x000000c8,
  97. };
  98. /* The number of watchdogs that can trigger a reset. */
  99. #define NPCM7XX_NR_WATCHDOGS (3)
  100. /* Clock converter functions */
  101. #define TYPE_NPCM7XX_CLOCK_PLL "npcm7xx-clock-pll"
  102. #define NPCM7XX_CLOCK_PLL(obj) OBJECT_CHECK(NPCM7xxClockPLLState, \
  103. (obj), TYPE_NPCM7XX_CLOCK_PLL)
  104. #define TYPE_NPCM7XX_CLOCK_SEL "npcm7xx-clock-sel"
  105. #define NPCM7XX_CLOCK_SEL(obj) OBJECT_CHECK(NPCM7xxClockSELState, \
  106. (obj), TYPE_NPCM7XX_CLOCK_SEL)
  107. #define TYPE_NPCM7XX_CLOCK_DIVIDER "npcm7xx-clock-divider"
  108. #define NPCM7XX_CLOCK_DIVIDER(obj) OBJECT_CHECK(NPCM7xxClockDividerState, \
  109. (obj), TYPE_NPCM7XX_CLOCK_DIVIDER)
  110. static void npcm7xx_clk_update_pll(void *opaque)
  111. {
  112. NPCM7xxClockPLLState *s = opaque;
  113. uint32_t con = s->clk->regs[s->reg];
  114. uint64_t freq;
  115. /* The PLL is grounded if it is not locked yet. */
  116. if (con & PLLCON_LOKI) {
  117. freq = clock_get_hz(s->clock_in);
  118. freq *= PLLCON_FBDV(con);
  119. freq /= PLLCON_INDV(con) * PLLCON_OTDV1(con) * PLLCON_OTDV2(con);
  120. } else {
  121. freq = 0;
  122. }
  123. clock_update_hz(s->clock_out, freq);
  124. }
  125. static void npcm7xx_clk_update_sel(void *opaque)
  126. {
  127. NPCM7xxClockSELState *s = opaque;
  128. uint32_t index = extract32(s->clk->regs[NPCM7XX_CLK_CLKSEL], s->offset,
  129. s->len);
  130. if (index >= s->input_size) {
  131. qemu_log_mask(LOG_GUEST_ERROR,
  132. "%s: SEL index: %u out of range\n",
  133. __func__, index);
  134. index = 0;
  135. }
  136. clock_update_hz(s->clock_out, clock_get_hz(s->clock_in[index]));
  137. }
  138. static void npcm7xx_clk_update_divider(void *opaque)
  139. {
  140. NPCM7xxClockDividerState *s = opaque;
  141. uint32_t freq;
  142. freq = s->divide(s);
  143. clock_update_hz(s->clock_out, freq);
  144. }
  145. static uint32_t divide_by_constant(NPCM7xxClockDividerState *s)
  146. {
  147. return clock_get_hz(s->clock_in) / s->divisor;
  148. }
  149. static uint32_t divide_by_reg_divisor(NPCM7xxClockDividerState *s)
  150. {
  151. return clock_get_hz(s->clock_in) /
  152. (extract32(s->clk->regs[s->reg], s->offset, s->len) + 1);
  153. }
  154. static uint32_t divide_by_reg_divisor_times_2(NPCM7xxClockDividerState *s)
  155. {
  156. return divide_by_reg_divisor(s) / 2;
  157. }
  158. static uint32_t shift_by_reg_divisor(NPCM7xxClockDividerState *s)
  159. {
  160. return clock_get_hz(s->clock_in) >>
  161. extract32(s->clk->regs[s->reg], s->offset, s->len);
  162. }
  163. static NPCM7xxClockPLL find_pll_by_reg(enum NPCM7xxCLKRegisters reg)
  164. {
  165. switch (reg) {
  166. case NPCM7XX_CLK_PLLCON0:
  167. return NPCM7XX_CLOCK_PLL0;
  168. case NPCM7XX_CLK_PLLCON1:
  169. return NPCM7XX_CLOCK_PLL1;
  170. case NPCM7XX_CLK_PLLCON2:
  171. return NPCM7XX_CLOCK_PLL2;
  172. case NPCM7XX_CLK_PLLCONG:
  173. return NPCM7XX_CLOCK_PLLG;
  174. default:
  175. g_assert_not_reached();
  176. }
  177. }
  178. static void npcm7xx_clk_update_all_plls(NPCMCLKState *clk)
  179. {
  180. int i;
  181. for (i = 0; i < NPCM7XX_CLOCK_NR_PLLS; ++i) {
  182. npcm7xx_clk_update_pll(&clk->plls[i]);
  183. }
  184. }
  185. static void npcm7xx_clk_update_all_sels(NPCMCLKState *clk)
  186. {
  187. int i;
  188. for (i = 0; i < NPCM7XX_CLOCK_NR_SELS; ++i) {
  189. npcm7xx_clk_update_sel(&clk->sels[i]);
  190. }
  191. }
  192. static void npcm7xx_clk_update_all_dividers(NPCMCLKState *clk)
  193. {
  194. int i;
  195. for (i = 0; i < NPCM7XX_CLOCK_NR_DIVIDERS; ++i) {
  196. npcm7xx_clk_update_divider(&clk->dividers[i]);
  197. }
  198. }
  199. static void npcm7xx_clk_update_all_clocks(NPCMCLKState *clk)
  200. {
  201. clock_update_hz(clk->clkref, NPCM7XX_CLOCK_REF_HZ);
  202. npcm7xx_clk_update_all_plls(clk);
  203. npcm7xx_clk_update_all_sels(clk);
  204. npcm7xx_clk_update_all_dividers(clk);
  205. }
  206. /* Types of clock sources. */
  207. typedef enum ClockSrcType {
  208. CLKSRC_REF,
  209. CLKSRC_PLL,
  210. CLKSRC_SEL,
  211. CLKSRC_DIV,
  212. } ClockSrcType;
  213. typedef struct PLLInitInfo {
  214. const char *name;
  215. ClockSrcType src_type;
  216. int src_index;
  217. int reg;
  218. const char *public_name;
  219. } PLLInitInfo;
  220. typedef struct SELInitInfo {
  221. const char *name;
  222. uint8_t input_size;
  223. ClockSrcType src_type[NPCM7XX_CLK_SEL_MAX_INPUT];
  224. int src_index[NPCM7XX_CLK_SEL_MAX_INPUT];
  225. int offset;
  226. int len;
  227. const char *public_name;
  228. } SELInitInfo;
  229. typedef struct DividerInitInfo {
  230. const char *name;
  231. ClockSrcType src_type;
  232. int src_index;
  233. uint32_t (*divide)(NPCM7xxClockDividerState *s);
  234. int reg; /* not used when type == CONSTANT */
  235. int offset; /* not used when type == CONSTANT */
  236. int len; /* not used when type == CONSTANT */
  237. int divisor; /* used only when type == CONSTANT */
  238. const char *public_name;
  239. } DividerInitInfo;
  240. static const PLLInitInfo pll_init_info_list[] = {
  241. [NPCM7XX_CLOCK_PLL0] = {
  242. .name = "pll0",
  243. .src_type = CLKSRC_REF,
  244. .reg = NPCM7XX_CLK_PLLCON0,
  245. },
  246. [NPCM7XX_CLOCK_PLL1] = {
  247. .name = "pll1",
  248. .src_type = CLKSRC_REF,
  249. .reg = NPCM7XX_CLK_PLLCON1,
  250. },
  251. [NPCM7XX_CLOCK_PLL2] = {
  252. .name = "pll2",
  253. .src_type = CLKSRC_REF,
  254. .reg = NPCM7XX_CLK_PLLCON2,
  255. },
  256. [NPCM7XX_CLOCK_PLLG] = {
  257. .name = "pllg",
  258. .src_type = CLKSRC_REF,
  259. .reg = NPCM7XX_CLK_PLLCONG,
  260. },
  261. };
  262. static const SELInitInfo sel_init_info_list[] = {
  263. [NPCM7XX_CLOCK_PIXCKSEL] = {
  264. .name = "pixcksel",
  265. .input_size = 2,
  266. .src_type = {CLKSRC_PLL, CLKSRC_REF},
  267. .src_index = {NPCM7XX_CLOCK_PLLG, 0},
  268. .offset = 5,
  269. .len = 1,
  270. .public_name = "pixel-clock",
  271. },
  272. [NPCM7XX_CLOCK_MCCKSEL] = {
  273. .name = "mccksel",
  274. .input_size = 4,
  275. .src_type = {CLKSRC_DIV, CLKSRC_REF, CLKSRC_REF,
  276. /*MCBPCK, shouldn't be used in normal operation*/
  277. CLKSRC_REF},
  278. .src_index = {NPCM7XX_CLOCK_PLL1D2, 0, 0, 0},
  279. .offset = 12,
  280. .len = 2,
  281. .public_name = "mc-phy-clock",
  282. },
  283. [NPCM7XX_CLOCK_CPUCKSEL] = {
  284. .name = "cpucksel",
  285. .input_size = 4,
  286. .src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF,
  287. /*SYSBPCK, shouldn't be used in normal operation*/
  288. CLKSRC_REF},
  289. .src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0, 0},
  290. .offset = 0,
  291. .len = 2,
  292. .public_name = "system-clock",
  293. },
  294. [NPCM7XX_CLOCK_CLKOUTSEL] = {
  295. .name = "clkoutsel",
  296. .input_size = 5,
  297. .src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF,
  298. CLKSRC_PLL, CLKSRC_DIV},
  299. .src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
  300. NPCM7XX_CLOCK_PLLG, NPCM7XX_CLOCK_PLL2D2},
  301. .offset = 18,
  302. .len = 3,
  303. .public_name = "tock",
  304. },
  305. [NPCM7XX_CLOCK_UARTCKSEL] = {
  306. .name = "uartcksel",
  307. .input_size = 4,
  308. .src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF, CLKSRC_DIV},
  309. .src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
  310. NPCM7XX_CLOCK_PLL2D2},
  311. .offset = 8,
  312. .len = 2,
  313. },
  314. [NPCM7XX_CLOCK_TIMCKSEL] = {
  315. .name = "timcksel",
  316. .input_size = 4,
  317. .src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF, CLKSRC_DIV},
  318. .src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
  319. NPCM7XX_CLOCK_PLL2D2},
  320. .offset = 14,
  321. .len = 2,
  322. },
  323. [NPCM7XX_CLOCK_SDCKSEL] = {
  324. .name = "sdcksel",
  325. .input_size = 4,
  326. .src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF, CLKSRC_DIV},
  327. .src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
  328. NPCM7XX_CLOCK_PLL2D2},
  329. .offset = 6,
  330. .len = 2,
  331. },
  332. [NPCM7XX_CLOCK_GFXMSEL] = {
  333. .name = "gfxmksel",
  334. .input_size = 2,
  335. .src_type = {CLKSRC_REF, CLKSRC_PLL},
  336. .src_index = {0, NPCM7XX_CLOCK_PLL2},
  337. .offset = 21,
  338. .len = 1,
  339. },
  340. [NPCM7XX_CLOCK_SUCKSEL] = {
  341. .name = "sucksel",
  342. .input_size = 4,
  343. .src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF, CLKSRC_DIV},
  344. .src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
  345. NPCM7XX_CLOCK_PLL2D2},
  346. .offset = 10,
  347. .len = 2,
  348. },
  349. };
  350. static const DividerInitInfo divider_init_info_list[] = {
  351. [NPCM7XX_CLOCK_PLL1D2] = {
  352. .name = "pll1d2",
  353. .src_type = CLKSRC_PLL,
  354. .src_index = NPCM7XX_CLOCK_PLL1,
  355. .divide = divide_by_constant,
  356. .divisor = 2,
  357. },
  358. [NPCM7XX_CLOCK_PLL2D2] = {
  359. .name = "pll2d2",
  360. .src_type = CLKSRC_PLL,
  361. .src_index = NPCM7XX_CLOCK_PLL2,
  362. .divide = divide_by_constant,
  363. .divisor = 2,
  364. },
  365. [NPCM7XX_CLOCK_MC_DIVIDER] = {
  366. .name = "mc-divider",
  367. .src_type = CLKSRC_SEL,
  368. .src_index = NPCM7XX_CLOCK_MCCKSEL,
  369. .divide = divide_by_constant,
  370. .divisor = 2,
  371. .public_name = "mc-clock"
  372. },
  373. [NPCM7XX_CLOCK_AXI_DIVIDER] = {
  374. .name = "axi-divider",
  375. .src_type = CLKSRC_SEL,
  376. .src_index = NPCM7XX_CLOCK_CPUCKSEL,
  377. .divide = shift_by_reg_divisor,
  378. .reg = NPCM7XX_CLK_CLKDIV1,
  379. .offset = 0,
  380. .len = 1,
  381. .public_name = "clk2"
  382. },
  383. [NPCM7XX_CLOCK_AHB_DIVIDER] = {
  384. .name = "ahb-divider",
  385. .src_type = CLKSRC_DIV,
  386. .src_index = NPCM7XX_CLOCK_AXI_DIVIDER,
  387. .divide = divide_by_reg_divisor,
  388. .reg = NPCM7XX_CLK_CLKDIV1,
  389. .offset = 26,
  390. .len = 2,
  391. .public_name = "clk4"
  392. },
  393. [NPCM7XX_CLOCK_AHB3_DIVIDER] = {
  394. .name = "ahb3-divider",
  395. .src_type = CLKSRC_DIV,
  396. .src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
  397. .divide = divide_by_reg_divisor,
  398. .reg = NPCM7XX_CLK_CLKDIV1,
  399. .offset = 6,
  400. .len = 5,
  401. .public_name = "ahb3-spi3-clock"
  402. },
  403. [NPCM7XX_CLOCK_SPI0_DIVIDER] = {
  404. .name = "spi0-divider",
  405. .src_type = CLKSRC_DIV,
  406. .src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
  407. .divide = divide_by_reg_divisor,
  408. .reg = NPCM7XX_CLK_CLKDIV3,
  409. .offset = 6,
  410. .len = 5,
  411. .public_name = "spi0-clock",
  412. },
  413. [NPCM7XX_CLOCK_SPIX_DIVIDER] = {
  414. .name = "spix-divider",
  415. .src_type = CLKSRC_DIV,
  416. .src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
  417. .divide = divide_by_reg_divisor,
  418. .reg = NPCM7XX_CLK_CLKDIV3,
  419. .offset = 1,
  420. .len = 5,
  421. .public_name = "spix-clock",
  422. },
  423. [NPCM7XX_CLOCK_APB1_DIVIDER] = {
  424. .name = "apb1-divider",
  425. .src_type = CLKSRC_DIV,
  426. .src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
  427. .divide = shift_by_reg_divisor,
  428. .reg = NPCM7XX_CLK_CLKDIV2,
  429. .offset = 24,
  430. .len = 2,
  431. .public_name = "apb1-clock",
  432. },
  433. [NPCM7XX_CLOCK_APB2_DIVIDER] = {
  434. .name = "apb2-divider",
  435. .src_type = CLKSRC_DIV,
  436. .src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
  437. .divide = shift_by_reg_divisor,
  438. .reg = NPCM7XX_CLK_CLKDIV2,
  439. .offset = 26,
  440. .len = 2,
  441. .public_name = "apb2-clock",
  442. },
  443. [NPCM7XX_CLOCK_APB3_DIVIDER] = {
  444. .name = "apb3-divider",
  445. .src_type = CLKSRC_DIV,
  446. .src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
  447. .divide = shift_by_reg_divisor,
  448. .reg = NPCM7XX_CLK_CLKDIV2,
  449. .offset = 28,
  450. .len = 2,
  451. .public_name = "apb3-clock",
  452. },
  453. [NPCM7XX_CLOCK_APB4_DIVIDER] = {
  454. .name = "apb4-divider",
  455. .src_type = CLKSRC_DIV,
  456. .src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
  457. .divide = shift_by_reg_divisor,
  458. .reg = NPCM7XX_CLK_CLKDIV2,
  459. .offset = 30,
  460. .len = 2,
  461. .public_name = "apb4-clock",
  462. },
  463. [NPCM7XX_CLOCK_APB5_DIVIDER] = {
  464. .name = "apb5-divider",
  465. .src_type = CLKSRC_DIV,
  466. .src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
  467. .divide = shift_by_reg_divisor,
  468. .reg = NPCM7XX_CLK_CLKDIV2,
  469. .offset = 22,
  470. .len = 2,
  471. .public_name = "apb5-clock",
  472. },
  473. [NPCM7XX_CLOCK_CLKOUT_DIVIDER] = {
  474. .name = "clkout-divider",
  475. .src_type = CLKSRC_SEL,
  476. .src_index = NPCM7XX_CLOCK_CLKOUTSEL,
  477. .divide = divide_by_reg_divisor,
  478. .reg = NPCM7XX_CLK_CLKDIV2,
  479. .offset = 16,
  480. .len = 5,
  481. .public_name = "clkout",
  482. },
  483. [NPCM7XX_CLOCK_UART_DIVIDER] = {
  484. .name = "uart-divider",
  485. .src_type = CLKSRC_SEL,
  486. .src_index = NPCM7XX_CLOCK_UARTCKSEL,
  487. .divide = divide_by_reg_divisor,
  488. .reg = NPCM7XX_CLK_CLKDIV1,
  489. .offset = 16,
  490. .len = 5,
  491. .public_name = "uart-clock",
  492. },
  493. [NPCM7XX_CLOCK_TIMER_DIVIDER] = {
  494. .name = "timer-divider",
  495. .src_type = CLKSRC_SEL,
  496. .src_index = NPCM7XX_CLOCK_TIMCKSEL,
  497. .divide = divide_by_reg_divisor,
  498. .reg = NPCM7XX_CLK_CLKDIV1,
  499. .offset = 21,
  500. .len = 5,
  501. .public_name = "timer-clock",
  502. },
  503. [NPCM7XX_CLOCK_ADC_DIVIDER] = {
  504. .name = "adc-divider",
  505. .src_type = CLKSRC_DIV,
  506. .src_index = NPCM7XX_CLOCK_TIMER_DIVIDER,
  507. .divide = shift_by_reg_divisor,
  508. .reg = NPCM7XX_CLK_CLKDIV1,
  509. .offset = 28,
  510. .len = 3,
  511. .public_name = "adc-clock",
  512. },
  513. [NPCM7XX_CLOCK_MMC_DIVIDER] = {
  514. .name = "mmc-divider",
  515. .src_type = CLKSRC_SEL,
  516. .src_index = NPCM7XX_CLOCK_SDCKSEL,
  517. .divide = divide_by_reg_divisor,
  518. .reg = NPCM7XX_CLK_CLKDIV1,
  519. .offset = 11,
  520. .len = 5,
  521. .public_name = "mmc-clock",
  522. },
  523. [NPCM7XX_CLOCK_SDHC_DIVIDER] = {
  524. .name = "sdhc-divider",
  525. .src_type = CLKSRC_SEL,
  526. .src_index = NPCM7XX_CLOCK_SDCKSEL,
  527. .divide = divide_by_reg_divisor_times_2,
  528. .reg = NPCM7XX_CLK_CLKDIV2,
  529. .offset = 0,
  530. .len = 4,
  531. .public_name = "sdhc-clock",
  532. },
  533. [NPCM7XX_CLOCK_GFXM_DIVIDER] = {
  534. .name = "gfxm-divider",
  535. .src_type = CLKSRC_SEL,
  536. .src_index = NPCM7XX_CLOCK_GFXMSEL,
  537. .divide = divide_by_constant,
  538. .divisor = 3,
  539. .public_name = "gfxm-clock",
  540. },
  541. [NPCM7XX_CLOCK_UTMI_DIVIDER] = {
  542. .name = "utmi-divider",
  543. .src_type = CLKSRC_SEL,
  544. .src_index = NPCM7XX_CLOCK_SUCKSEL,
  545. .divide = divide_by_reg_divisor,
  546. .reg = NPCM7XX_CLK_CLKDIV2,
  547. .offset = 8,
  548. .len = 5,
  549. .public_name = "utmi-clock",
  550. },
  551. };
  552. static void npcm7xx_clk_update_pll_cb(void *opaque, ClockEvent event)
  553. {
  554. npcm7xx_clk_update_pll(opaque);
  555. }
  556. static void npcm7xx_clk_pll_init(Object *obj)
  557. {
  558. NPCM7xxClockPLLState *pll = NPCM7XX_CLOCK_PLL(obj);
  559. pll->clock_in = qdev_init_clock_in(DEVICE(pll), "clock-in",
  560. npcm7xx_clk_update_pll_cb, pll,
  561. ClockUpdate);
  562. pll->clock_out = qdev_init_clock_out(DEVICE(pll), "clock-out");
  563. }
  564. static void npcm7xx_clk_update_sel_cb(void *opaque, ClockEvent event)
  565. {
  566. npcm7xx_clk_update_sel(opaque);
  567. }
  568. static void npcm7xx_clk_sel_init(Object *obj)
  569. {
  570. int i;
  571. NPCM7xxClockSELState *sel = NPCM7XX_CLOCK_SEL(obj);
  572. for (i = 0; i < NPCM7XX_CLK_SEL_MAX_INPUT; ++i) {
  573. g_autofree char *s = g_strdup_printf("clock-in[%d]", i);
  574. sel->clock_in[i] = qdev_init_clock_in(DEVICE(sel), s,
  575. npcm7xx_clk_update_sel_cb, sel, ClockUpdate);
  576. }
  577. sel->clock_out = qdev_init_clock_out(DEVICE(sel), "clock-out");
  578. }
  579. static void npcm7xx_clk_update_divider_cb(void *opaque, ClockEvent event)
  580. {
  581. npcm7xx_clk_update_divider(opaque);
  582. }
  583. static void npcm7xx_clk_divider_init(Object *obj)
  584. {
  585. NPCM7xxClockDividerState *div = NPCM7XX_CLOCK_DIVIDER(obj);
  586. div->clock_in = qdev_init_clock_in(DEVICE(div), "clock-in",
  587. npcm7xx_clk_update_divider_cb,
  588. div, ClockUpdate);
  589. div->clock_out = qdev_init_clock_out(DEVICE(div), "clock-out");
  590. }
  591. static void npcm7xx_init_clock_pll(NPCM7xxClockPLLState *pll,
  592. NPCMCLKState *clk, const PLLInitInfo *init_info)
  593. {
  594. pll->name = init_info->name;
  595. pll->clk = clk;
  596. pll->reg = init_info->reg;
  597. if (init_info->public_name != NULL) {
  598. qdev_alias_clock(DEVICE(pll), "clock-out", DEVICE(clk),
  599. init_info->public_name);
  600. }
  601. }
  602. static void npcm7xx_init_clock_sel(NPCM7xxClockSELState *sel,
  603. NPCMCLKState *clk, const SELInitInfo *init_info)
  604. {
  605. int input_size = init_info->input_size;
  606. sel->name = init_info->name;
  607. sel->clk = clk;
  608. sel->input_size = init_info->input_size;
  609. g_assert(input_size <= NPCM7XX_CLK_SEL_MAX_INPUT);
  610. sel->offset = init_info->offset;
  611. sel->len = init_info->len;
  612. if (init_info->public_name != NULL) {
  613. qdev_alias_clock(DEVICE(sel), "clock-out", DEVICE(clk),
  614. init_info->public_name);
  615. }
  616. }
  617. static void npcm7xx_init_clock_divider(NPCM7xxClockDividerState *div,
  618. NPCMCLKState *clk, const DividerInitInfo *init_info)
  619. {
  620. div->name = init_info->name;
  621. div->clk = clk;
  622. div->divide = init_info->divide;
  623. if (div->divide == divide_by_constant) {
  624. div->divisor = init_info->divisor;
  625. } else {
  626. div->reg = init_info->reg;
  627. div->offset = init_info->offset;
  628. div->len = init_info->len;
  629. }
  630. if (init_info->public_name != NULL) {
  631. qdev_alias_clock(DEVICE(div), "clock-out", DEVICE(clk),
  632. init_info->public_name);
  633. }
  634. }
  635. static Clock *npcm7xx_get_clock(NPCMCLKState *clk, ClockSrcType type,
  636. int index)
  637. {
  638. switch (type) {
  639. case CLKSRC_REF:
  640. return clk->clkref;
  641. case CLKSRC_PLL:
  642. return clk->plls[index].clock_out;
  643. case CLKSRC_SEL:
  644. return clk->sels[index].clock_out;
  645. case CLKSRC_DIV:
  646. return clk->dividers[index].clock_out;
  647. default:
  648. g_assert_not_reached();
  649. }
  650. }
  651. static void npcm7xx_connect_clocks(NPCMCLKState *clk)
  652. {
  653. int i, j;
  654. Clock *src;
  655. for (i = 0; i < NPCM7XX_CLOCK_NR_PLLS; ++i) {
  656. src = npcm7xx_get_clock(clk, pll_init_info_list[i].src_type,
  657. pll_init_info_list[i].src_index);
  658. clock_set_source(clk->plls[i].clock_in, src);
  659. }
  660. for (i = 0; i < NPCM7XX_CLOCK_NR_SELS; ++i) {
  661. for (j = 0; j < sel_init_info_list[i].input_size; ++j) {
  662. src = npcm7xx_get_clock(clk, sel_init_info_list[i].src_type[j],
  663. sel_init_info_list[i].src_index[j]);
  664. clock_set_source(clk->sels[i].clock_in[j], src);
  665. }
  666. }
  667. for (i = 0; i < NPCM7XX_CLOCK_NR_DIVIDERS; ++i) {
  668. src = npcm7xx_get_clock(clk, divider_init_info_list[i].src_type,
  669. divider_init_info_list[i].src_index);
  670. clock_set_source(clk->dividers[i].clock_in, src);
  671. }
  672. }
  673. static uint64_t npcm_clk_read(void *opaque, hwaddr offset, unsigned size)
  674. {
  675. uint32_t reg = offset / sizeof(uint32_t);
  676. NPCMCLKState *s = opaque;
  677. int64_t now_ns;
  678. uint32_t value = 0;
  679. if (reg >= NPCM7XX_CLK_NR_REGS) {
  680. qemu_log_mask(LOG_GUEST_ERROR,
  681. "%s: offset 0x%04" HWADDR_PRIx " out of range\n",
  682. __func__, offset);
  683. return 0;
  684. }
  685. switch (reg) {
  686. case NPCM7XX_CLK_SWRSTR:
  687. qemu_log_mask(LOG_GUEST_ERROR,
  688. "%s: register @ 0x%04" HWADDR_PRIx " is write-only\n",
  689. __func__, offset);
  690. break;
  691. case NPCM7XX_CLK_SECCNT:
  692. now_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  693. value = (now_ns - s->ref_ns) / NANOSECONDS_PER_SECOND;
  694. break;
  695. case NPCM7XX_CLK_CNTR25M:
  696. now_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  697. /*
  698. * This register counts 25 MHz cycles, updating every 640 ns. It rolls
  699. * over to zero every second.
  700. *
  701. * The 4 LSBs are always zero: (1e9 / 640) << 4 = 25000000.
  702. */
  703. value = (((now_ns - s->ref_ns) / 640) << 4) % NPCM7XX_CLOCK_REF_HZ;
  704. break;
  705. default:
  706. value = s->regs[reg];
  707. break;
  708. };
  709. trace_npcm_clk_read(offset, value);
  710. return value;
  711. }
  712. static void npcm_clk_write(void *opaque, hwaddr offset,
  713. uint64_t v, unsigned size)
  714. {
  715. uint32_t reg = offset / sizeof(uint32_t);
  716. NPCMCLKState *s = opaque;
  717. uint32_t value = v;
  718. trace_npcm_clk_write(offset, value);
  719. if (reg >= NPCM7XX_CLK_NR_REGS) {
  720. qemu_log_mask(LOG_GUEST_ERROR,
  721. "%s: offset 0x%04" HWADDR_PRIx " out of range\n",
  722. __func__, offset);
  723. return;
  724. }
  725. switch (reg) {
  726. case NPCM7XX_CLK_SWRSTR:
  727. qemu_log_mask(LOG_UNIMP, "%s: SW reset not implemented: 0x%02x\n",
  728. __func__, value);
  729. value = 0;
  730. break;
  731. case NPCM7XX_CLK_PLLCON0:
  732. case NPCM7XX_CLK_PLLCON1:
  733. case NPCM7XX_CLK_PLLCON2:
  734. case NPCM7XX_CLK_PLLCONG:
  735. if (value & PLLCON_PWDEN) {
  736. /* Power down -- clear lock and indicate loss of lock */
  737. value &= ~PLLCON_LOKI;
  738. value |= PLLCON_LOKS;
  739. } else {
  740. /* Normal mode -- assume always locked */
  741. value |= PLLCON_LOKI;
  742. /* Keep LOKS unchanged unless cleared by writing 1 */
  743. if (value & PLLCON_LOKS) {
  744. value &= ~PLLCON_LOKS;
  745. } else {
  746. value |= (value & PLLCON_LOKS);
  747. }
  748. }
  749. /* Only update PLL when it is locked. */
  750. if (value & PLLCON_LOKI) {
  751. npcm7xx_clk_update_pll(&s->plls[find_pll_by_reg(reg)]);
  752. }
  753. break;
  754. case NPCM7XX_CLK_CLKSEL:
  755. npcm7xx_clk_update_all_sels(s);
  756. break;
  757. case NPCM7XX_CLK_CLKDIV1:
  758. case NPCM7XX_CLK_CLKDIV2:
  759. case NPCM7XX_CLK_CLKDIV3:
  760. npcm7xx_clk_update_all_dividers(s);
  761. break;
  762. case NPCM7XX_CLK_CNTR25M:
  763. qemu_log_mask(LOG_GUEST_ERROR,
  764. "%s: register @ 0x%04" HWADDR_PRIx " is read-only\n",
  765. __func__, offset);
  766. return;
  767. }
  768. s->regs[reg] = value;
  769. }
  770. /* Perform reset action triggered by a watchdog */
  771. static void npcm7xx_clk_perform_watchdog_reset(void *opaque, int n,
  772. int level)
  773. {
  774. NPCMCLKState *clk = NPCM_CLK(opaque);
  775. uint32_t rcr;
  776. g_assert(n >= 0 && n <= NPCM7XX_NR_WATCHDOGS);
  777. rcr = clk->regs[NPCM7XX_CLK_WD0RCR + n];
  778. if (rcr & NPCM7XX_CLK_WDRCR_CA9C) {
  779. watchdog_perform_action();
  780. } else {
  781. qemu_log_mask(LOG_UNIMP,
  782. "%s: only CPU reset is implemented. (requested 0x%" PRIx32")\n",
  783. __func__, rcr);
  784. }
  785. }
  786. static const struct MemoryRegionOps npcm_clk_ops = {
  787. .read = npcm_clk_read,
  788. .write = npcm_clk_write,
  789. .endianness = DEVICE_LITTLE_ENDIAN,
  790. .valid = {
  791. .min_access_size = 4,
  792. .max_access_size = 4,
  793. .unaligned = false,
  794. },
  795. };
  796. static void npcm_clk_enter_reset(Object *obj, ResetType type)
  797. {
  798. NPCMCLKState *s = NPCM_CLK(obj);
  799. QEMU_BUILD_BUG_ON(sizeof(s->regs) != sizeof(cold_reset_values));
  800. memcpy(s->regs, cold_reset_values, sizeof(cold_reset_values));
  801. s->ref_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  802. npcm7xx_clk_update_all_clocks(s);
  803. /*
  804. * A small number of registers need to be reset on a core domain reset,
  805. * but no such reset type exists yet.
  806. */
  807. }
  808. static void npcm7xx_clk_init_clock_hierarchy(NPCMCLKState *s)
  809. {
  810. int i;
  811. s->clkref = qdev_init_clock_in(DEVICE(s), "clkref", NULL, NULL, 0);
  812. /* First pass: init all converter modules */
  813. QEMU_BUILD_BUG_ON(ARRAY_SIZE(pll_init_info_list) != NPCM7XX_CLOCK_NR_PLLS);
  814. QEMU_BUILD_BUG_ON(ARRAY_SIZE(sel_init_info_list) != NPCM7XX_CLOCK_NR_SELS);
  815. QEMU_BUILD_BUG_ON(ARRAY_SIZE(divider_init_info_list)
  816. != NPCM7XX_CLOCK_NR_DIVIDERS);
  817. for (i = 0; i < NPCM7XX_CLOCK_NR_PLLS; ++i) {
  818. object_initialize_child(OBJECT(s), pll_init_info_list[i].name,
  819. &s->plls[i], TYPE_NPCM7XX_CLOCK_PLL);
  820. npcm7xx_init_clock_pll(&s->plls[i], s,
  821. &pll_init_info_list[i]);
  822. }
  823. for (i = 0; i < NPCM7XX_CLOCK_NR_SELS; ++i) {
  824. object_initialize_child(OBJECT(s), sel_init_info_list[i].name,
  825. &s->sels[i], TYPE_NPCM7XX_CLOCK_SEL);
  826. npcm7xx_init_clock_sel(&s->sels[i], s,
  827. &sel_init_info_list[i]);
  828. }
  829. for (i = 0; i < NPCM7XX_CLOCK_NR_DIVIDERS; ++i) {
  830. object_initialize_child(OBJECT(s), divider_init_info_list[i].name,
  831. &s->dividers[i], TYPE_NPCM7XX_CLOCK_DIVIDER);
  832. npcm7xx_init_clock_divider(&s->dividers[i], s,
  833. &divider_init_info_list[i]);
  834. }
  835. /* Second pass: connect converter modules */
  836. npcm7xx_connect_clocks(s);
  837. clock_update_hz(s->clkref, NPCM7XX_CLOCK_REF_HZ);
  838. }
  839. static void npcm_clk_init(Object *obj)
  840. {
  841. NPCMCLKState *s = NPCM_CLK(obj);
  842. memory_region_init_io(&s->iomem, obj, &npcm_clk_ops, s,
  843. TYPE_NPCM_CLK, 4 * KiB);
  844. sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->iomem);
  845. }
  846. static int npcm_clk_post_load(void *opaque, int version_id)
  847. {
  848. if (version_id >= 1) {
  849. NPCMCLKState *clk = opaque;
  850. npcm7xx_clk_update_all_clocks(clk);
  851. }
  852. return 0;
  853. }
  854. static void npcm_clk_realize(DeviceState *dev, Error **errp)
  855. {
  856. int i;
  857. NPCMCLKState *s = NPCM_CLK(dev);
  858. qdev_init_gpio_in_named(DEVICE(s), npcm7xx_clk_perform_watchdog_reset,
  859. NPCM7XX_WATCHDOG_RESET_GPIO_IN, NPCM7XX_NR_WATCHDOGS);
  860. npcm7xx_clk_init_clock_hierarchy(s);
  861. /* Realize child devices */
  862. for (i = 0; i < NPCM7XX_CLOCK_NR_PLLS; ++i) {
  863. if (!qdev_realize(DEVICE(&s->plls[i]), NULL, errp)) {
  864. return;
  865. }
  866. }
  867. for (i = 0; i < NPCM7XX_CLOCK_NR_SELS; ++i) {
  868. if (!qdev_realize(DEVICE(&s->sels[i]), NULL, errp)) {
  869. return;
  870. }
  871. }
  872. for (i = 0; i < NPCM7XX_CLOCK_NR_DIVIDERS; ++i) {
  873. if (!qdev_realize(DEVICE(&s->dividers[i]), NULL, errp)) {
  874. return;
  875. }
  876. }
  877. }
  878. static const VMStateDescription vmstate_npcm7xx_clk_pll = {
  879. .name = "npcm7xx-clock-pll",
  880. .version_id = 0,
  881. .minimum_version_id = 0,
  882. .fields = (const VMStateField[]) {
  883. VMSTATE_CLOCK(clock_in, NPCM7xxClockPLLState),
  884. VMSTATE_END_OF_LIST(),
  885. },
  886. };
  887. static const VMStateDescription vmstate_npcm7xx_clk_sel = {
  888. .name = "npcm7xx-clock-sel",
  889. .version_id = 0,
  890. .minimum_version_id = 0,
  891. .fields = (const VMStateField[]) {
  892. VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(clock_in, NPCM7xxClockSELState,
  893. NPCM7XX_CLK_SEL_MAX_INPUT, 0, vmstate_clock, Clock),
  894. VMSTATE_END_OF_LIST(),
  895. },
  896. };
  897. static const VMStateDescription vmstate_npcm7xx_clk_divider = {
  898. .name = "npcm7xx-clock-divider",
  899. .version_id = 0,
  900. .minimum_version_id = 0,
  901. .fields = (const VMStateField[]) {
  902. VMSTATE_CLOCK(clock_in, NPCM7xxClockDividerState),
  903. VMSTATE_END_OF_LIST(),
  904. },
  905. };
  906. static const VMStateDescription vmstate_npcm_clk = {
  907. .name = "npcm-clk",
  908. .version_id = 2,
  909. .minimum_version_id = 2,
  910. .post_load = npcm_clk_post_load,
  911. .fields = (const VMStateField[]) {
  912. VMSTATE_UINT32_ARRAY(regs, NPCMCLKState, NPCM_CLK_MAX_NR_REGS),
  913. VMSTATE_INT64(ref_ns, NPCMCLKState),
  914. VMSTATE_CLOCK(clkref, NPCMCLKState),
  915. VMSTATE_END_OF_LIST(),
  916. },
  917. };
  918. static void npcm7xx_clk_pll_class_init(ObjectClass *klass, void *data)
  919. {
  920. DeviceClass *dc = DEVICE_CLASS(klass);
  921. dc->desc = "NPCM7xx Clock PLL Module";
  922. dc->vmsd = &vmstate_npcm7xx_clk_pll;
  923. }
  924. static void npcm7xx_clk_sel_class_init(ObjectClass *klass, void *data)
  925. {
  926. DeviceClass *dc = DEVICE_CLASS(klass);
  927. dc->desc = "NPCM7xx Clock SEL Module";
  928. dc->vmsd = &vmstate_npcm7xx_clk_sel;
  929. }
  930. static void npcm7xx_clk_divider_class_init(ObjectClass *klass, void *data)
  931. {
  932. DeviceClass *dc = DEVICE_CLASS(klass);
  933. dc->desc = "NPCM7xx Clock Divider Module";
  934. dc->vmsd = &vmstate_npcm7xx_clk_divider;
  935. }
  936. static void npcm_clk_class_init(ObjectClass *klass, void *data)
  937. {
  938. ResettableClass *rc = RESETTABLE_CLASS(klass);
  939. DeviceClass *dc = DEVICE_CLASS(klass);
  940. dc->vmsd = &vmstate_npcm_clk;
  941. dc->realize = npcm_clk_realize;
  942. rc->phases.enter = npcm_clk_enter_reset;
  943. }
  944. static void npcm7xx_clk_class_init(ObjectClass *klass, void *data)
  945. {
  946. DeviceClass *dc = DEVICE_CLASS(klass);
  947. QEMU_BUILD_BUG_ON(NPCM7XX_CLK_REGS_END > NPCM_CLK_MAX_NR_REGS);
  948. QEMU_BUILD_BUG_ON(NPCM7XX_CLK_REGS_END != NPCM7XX_CLK_NR_REGS);
  949. dc->desc = "NPCM7xx Clock Control Registers";
  950. }
  951. static const TypeInfo npcm7xx_clk_pll_info = {
  952. .name = TYPE_NPCM7XX_CLOCK_PLL,
  953. .parent = TYPE_DEVICE,
  954. .instance_size = sizeof(NPCM7xxClockPLLState),
  955. .instance_init = npcm7xx_clk_pll_init,
  956. .class_init = npcm7xx_clk_pll_class_init,
  957. };
  958. static const TypeInfo npcm7xx_clk_sel_info = {
  959. .name = TYPE_NPCM7XX_CLOCK_SEL,
  960. .parent = TYPE_DEVICE,
  961. .instance_size = sizeof(NPCM7xxClockSELState),
  962. .instance_init = npcm7xx_clk_sel_init,
  963. .class_init = npcm7xx_clk_sel_class_init,
  964. };
  965. static const TypeInfo npcm7xx_clk_divider_info = {
  966. .name = TYPE_NPCM7XX_CLOCK_DIVIDER,
  967. .parent = TYPE_DEVICE,
  968. .instance_size = sizeof(NPCM7xxClockDividerState),
  969. .instance_init = npcm7xx_clk_divider_init,
  970. .class_init = npcm7xx_clk_divider_class_init,
  971. };
  972. static const TypeInfo npcm_clk_info = {
  973. .name = TYPE_NPCM_CLK,
  974. .parent = TYPE_SYS_BUS_DEVICE,
  975. .instance_size = sizeof(NPCMCLKState),
  976. .instance_init = npcm_clk_init,
  977. .class_init = npcm_clk_class_init,
  978. .abstract = true,
  979. };
  980. static const TypeInfo npcm7xx_clk_info = {
  981. .name = TYPE_NPCM7XX_CLK,
  982. .parent = TYPE_NPCM_CLK,
  983. .class_init = npcm7xx_clk_class_init,
  984. };
  985. static void npcm7xx_clk_register_type(void)
  986. {
  987. type_register_static(&npcm7xx_clk_pll_info);
  988. type_register_static(&npcm7xx_clk_sel_info);
  989. type_register_static(&npcm7xx_clk_divider_info);
  990. type_register_static(&npcm_clk_info);
  991. type_register_static(&npcm7xx_clk_info);
  992. }
  993. type_init(npcm7xx_clk_register_type);