e1000x_common.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. /*
  2. * QEMU e1000(e) emulation - shared code
  3. *
  4. * Copyright (c) 2008 Qumranet
  5. *
  6. * Based on work done by:
  7. * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
  8. * Copyright (c) 2007 Dan Aloni
  9. * Copyright (c) 2004 Antony T Curtis
  10. *
  11. * This library is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * This library is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "hw/net/mii.h"
  27. #include "hw/pci/pci_device.h"
  28. #include "net/eth.h"
  29. #include "net/net.h"
  30. #include "e1000_common.h"
  31. #include "e1000x_common.h"
  32. #include "trace.h"
  33. bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
  34. {
  35. bool link_up = mac[STATUS] & E1000_STATUS_LU;
  36. bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
  37. bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
  38. if (!link_up || !rx_enabled || !pci_master) {
  39. trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
  40. return false;
  41. }
  42. return true;
  43. }
  44. bool e1000x_is_vlan_packet(const void *buf, uint16_t vet)
  45. {
  46. uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto);
  47. bool res = (eth_proto == vet);
  48. trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
  49. return res;
  50. }
  51. bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf)
  52. {
  53. static const int mta_shift[] = { 4, 3, 2, 0 };
  54. uint32_t f, ra[2], *rp, rctl = mac[RCTL];
  55. for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
  56. if (!(rp[1] & E1000_RAH_AV)) {
  57. continue;
  58. }
  59. ra[0] = cpu_to_le32(rp[0]);
  60. ra[1] = cpu_to_le32(rp[1]);
  61. if (!memcmp(buf, (uint8_t *)ra, ETH_ALEN)) {
  62. trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
  63. MAC_ARG(buf));
  64. return true;
  65. }
  66. }
  67. trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(buf));
  68. f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
  69. f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
  70. if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
  71. e1000x_inc_reg_if_not_full(mac, MPRC);
  72. return true;
  73. }
  74. trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(buf),
  75. (rctl >> E1000_RCTL_MO_SHIFT) & 3,
  76. f >> 5,
  77. mac[MTA + (f >> 5)]);
  78. return false;
  79. }
  80. bool e1000x_hw_rx_enabled(uint32_t *mac)
  81. {
  82. if (!(mac[STATUS] & E1000_STATUS_LU)) {
  83. trace_e1000x_rx_link_down(mac[STATUS]);
  84. return false;
  85. }
  86. if (!(mac[RCTL] & E1000_RCTL_EN)) {
  87. trace_e1000x_rx_disabled(mac[RCTL]);
  88. return false;
  89. }
  90. return true;
  91. }
  92. bool e1000x_is_oversized(uint32_t *mac, size_t size)
  93. {
  94. /* this is the size past which hardware will
  95. drop packets when setting LPE=0 */
  96. static const int maximum_ethernet_vlan_size = 1522;
  97. /* this is the size past which hardware will
  98. drop packets when setting LPE=1 */
  99. static const int maximum_ethernet_lpe_size = 16 * KiB;
  100. if ((size > maximum_ethernet_lpe_size ||
  101. (size > maximum_ethernet_vlan_size
  102. && !(mac[RCTL] & E1000_RCTL_LPE)))
  103. && !(mac[RCTL] & E1000_RCTL_SBP)) {
  104. e1000x_inc_reg_if_not_full(mac, ROC);
  105. trace_e1000x_rx_oversized(size);
  106. return true;
  107. }
  108. return false;
  109. }
  110. void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
  111. {
  112. e1000x_update_regs_on_link_down(mac, phy);
  113. trace_e1000x_link_negotiation_start();
  114. timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
  115. }
  116. void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
  117. uint8_t *mac_addr)
  118. {
  119. int i;
  120. mac_regs[RA] = 0;
  121. mac_regs[RA + 1] = E1000_RAH_AV;
  122. for (i = 0; i < 4; i++) {
  123. mac_regs[RA] |= mac_addr[i] << (8 * i);
  124. mac_regs[RA + 1] |=
  125. (i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
  126. }
  127. qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
  128. trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
  129. }
  130. void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
  131. {
  132. e1000x_update_regs_on_link_up(mac, phy);
  133. phy[MII_ANLPAR] |= MII_ANLPAR_ACK;
  134. phy[MII_BMSR] |= MII_BMSR_AN_COMP;
  135. trace_e1000x_link_negotiation_done();
  136. }
  137. void
  138. e1000x_core_prepare_eeprom(uint16_t *eeprom,
  139. const uint16_t *templ,
  140. uint32_t templ_size,
  141. uint16_t dev_id,
  142. const uint8_t *macaddr)
  143. {
  144. uint16_t checksum = 0;
  145. int i;
  146. memmove(eeprom, templ, templ_size);
  147. for (i = 0; i < 3; i++) {
  148. eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
  149. }
  150. eeprom[11] = eeprom[13] = dev_id;
  151. for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
  152. checksum += eeprom[i];
  153. }
  154. checksum = (uint16_t) EEPROM_SUM - checksum;
  155. eeprom[EEPROM_CHECKSUM_REG] = checksum;
  156. }
  157. uint32_t
  158. e1000x_rxbufsize(uint32_t rctl)
  159. {
  160. rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
  161. E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
  162. E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
  163. switch (rctl) {
  164. case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
  165. return 16384;
  166. case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
  167. return 8192;
  168. case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
  169. return 4096;
  170. case E1000_RCTL_SZ_1024:
  171. return 1024;
  172. case E1000_RCTL_SZ_512:
  173. return 512;
  174. case E1000_RCTL_SZ_256:
  175. return 256;
  176. }
  177. return 2048;
  178. }
  179. void
  180. e1000x_update_rx_total_stats(uint32_t *mac,
  181. size_t data_size,
  182. size_t data_fcs_size)
  183. {
  184. static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
  185. PRC1023, PRC1522 };
  186. e1000x_increase_size_stats(mac, PRCregs, data_fcs_size);
  187. e1000x_inc_reg_if_not_full(mac, TPR);
  188. mac[GPRC] = mac[TPR];
  189. /* TOR - Total Octets Received:
  190. * This register includes bytes received in a packet from the <Destination
  191. * Address> field through the <CRC> field, inclusively.
  192. * Always include FCS length (4) in size.
  193. */
  194. e1000x_grow_8reg_if_not_full(mac, TORL, data_size + 4);
  195. mac[GORCL] = mac[TORL];
  196. mac[GORCH] = mac[TORH];
  197. }
  198. void
  199. e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
  200. {
  201. if (size > 1023) {
  202. e1000x_inc_reg_if_not_full(mac, size_regs[5]);
  203. } else if (size > 511) {
  204. e1000x_inc_reg_if_not_full(mac, size_regs[4]);
  205. } else if (size > 255) {
  206. e1000x_inc_reg_if_not_full(mac, size_regs[3]);
  207. } else if (size > 127) {
  208. e1000x_inc_reg_if_not_full(mac, size_regs[2]);
  209. } else if (size > 64) {
  210. e1000x_inc_reg_if_not_full(mac, size_regs[1]);
  211. } else if (size == 64) {
  212. e1000x_inc_reg_if_not_full(mac, size_regs[0]);
  213. }
  214. }
  215. void
  216. e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
  217. e1000x_txd_props *props)
  218. {
  219. uint32_t op = le32_to_cpu(d->cmd_and_length);
  220. props->ipcss = d->lower_setup.ip_fields.ipcss;
  221. props->ipcso = d->lower_setup.ip_fields.ipcso;
  222. props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
  223. props->tucss = d->upper_setup.tcp_fields.tucss;
  224. props->tucso = d->upper_setup.tcp_fields.tucso;
  225. props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
  226. props->paylen = op & 0xfffff;
  227. props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
  228. props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
  229. props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
  230. props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
  231. props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
  232. }
  233. void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi)
  234. {
  235. int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  236. uint32_t timinca = mac[TIMINCA];
  237. uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK;
  238. uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
  239. int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16);
  240. mac[lo] = timestamp & 0xffffffff;
  241. mac[hi] = timestamp >> 32;
  242. }
  243. void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val)
  244. {
  245. int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  246. uint32_t old_val = mac[TIMINCA];
  247. uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK;
  248. uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
  249. uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK;
  250. uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
  251. mac[TIMINCA] = val;
  252. *timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16;
  253. }