virt.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844
  1. /*
  2. * QEMU RISC-V VirtIO Board
  3. *
  4. * Copyright (c) 2017 SiFive, Inc.
  5. *
  6. * RISC-V machine with 16550a UART and VirtIO MMIO
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2 or later, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include "qemu/osdep.h"
  21. #include "qemu/units.h"
  22. #include "qemu/error-report.h"
  23. #include "qemu/guest-random.h"
  24. #include "qapi/error.h"
  25. #include "hw/boards.h"
  26. #include "hw/loader.h"
  27. #include "hw/sysbus.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/char/serial-mm.h"
  30. #include "target/riscv/cpu.h"
  31. #include "hw/core/sysbus-fdt.h"
  32. #include "target/riscv/pmu.h"
  33. #include "hw/riscv/riscv_hart.h"
  34. #include "hw/riscv/virt.h"
  35. #include "hw/riscv/boot.h"
  36. #include "hw/riscv/numa.h"
  37. #include "kvm/kvm_riscv.h"
  38. #include "hw/firmware/smbios.h"
  39. #include "hw/intc/riscv_aclint.h"
  40. #include "hw/intc/riscv_aplic.h"
  41. #include "hw/intc/sifive_plic.h"
  42. #include "hw/misc/sifive_test.h"
  43. #include "hw/platform-bus.h"
  44. #include "chardev/char.h"
  45. #include "sysemu/device_tree.h"
  46. #include "sysemu/sysemu.h"
  47. #include "sysemu/tcg.h"
  48. #include "sysemu/kvm.h"
  49. #include "sysemu/tpm.h"
  50. #include "sysemu/qtest.h"
  51. #include "hw/pci/pci.h"
  52. #include "hw/pci-host/gpex.h"
  53. #include "hw/display/ramfb.h"
  54. #include "hw/acpi/aml-build.h"
  55. #include "qapi/qapi-visit-common.h"
  56. #include "hw/virtio/virtio-iommu.h"
  57. /* KVM AIA only supports APLIC MSI. APLIC Wired is always emulated by QEMU. */
  58. static bool virt_use_kvm_aia(RISCVVirtState *s)
  59. {
  60. return kvm_irqchip_in_kernel() && s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC;
  61. }
  62. static bool virt_aclint_allowed(void)
  63. {
  64. return tcg_enabled() || qtest_enabled();
  65. }
  66. static const MemMapEntry virt_memmap[] = {
  67. [VIRT_DEBUG] = { 0x0, 0x100 },
  68. [VIRT_MROM] = { 0x1000, 0xf000 },
  69. [VIRT_TEST] = { 0x100000, 0x1000 },
  70. [VIRT_RTC] = { 0x101000, 0x1000 },
  71. [VIRT_CLINT] = { 0x2000000, 0x10000 },
  72. [VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 },
  73. [VIRT_PCIE_PIO] = { 0x3000000, 0x10000 },
  74. [VIRT_PLATFORM_BUS] = { 0x4000000, 0x2000000 },
  75. [VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
  76. [VIRT_APLIC_M] = { 0xc000000, APLIC_SIZE(VIRT_CPUS_MAX) },
  77. [VIRT_APLIC_S] = { 0xd000000, APLIC_SIZE(VIRT_CPUS_MAX) },
  78. [VIRT_UART0] = { 0x10000000, 0x100 },
  79. [VIRT_VIRTIO] = { 0x10001000, 0x1000 },
  80. [VIRT_FW_CFG] = { 0x10100000, 0x18 },
  81. [VIRT_FLASH] = { 0x20000000, 0x4000000 },
  82. [VIRT_IMSIC_M] = { 0x24000000, VIRT_IMSIC_MAX_SIZE },
  83. [VIRT_IMSIC_S] = { 0x28000000, VIRT_IMSIC_MAX_SIZE },
  84. [VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
  85. [VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
  86. [VIRT_DRAM] = { 0x80000000, 0x0 },
  87. };
  88. /* PCIe high mmio is fixed for RV32 */
  89. #define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL
  90. #define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB)
  91. /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
  92. #define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB)
  93. static MemMapEntry virt_high_pcie_memmap;
  94. #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
  95. static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
  96. const char *name,
  97. const char *alias_prop_name)
  98. {
  99. /*
  100. * Create a single flash device. We use the same parameters as
  101. * the flash devices on the ARM virt board.
  102. */
  103. DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
  104. qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
  105. qdev_prop_set_uint8(dev, "width", 4);
  106. qdev_prop_set_uint8(dev, "device-width", 2);
  107. qdev_prop_set_bit(dev, "big-endian", false);
  108. qdev_prop_set_uint16(dev, "id0", 0x89);
  109. qdev_prop_set_uint16(dev, "id1", 0x18);
  110. qdev_prop_set_uint16(dev, "id2", 0x00);
  111. qdev_prop_set_uint16(dev, "id3", 0x00);
  112. qdev_prop_set_string(dev, "name", name);
  113. object_property_add_child(OBJECT(s), name, OBJECT(dev));
  114. object_property_add_alias(OBJECT(s), alias_prop_name,
  115. OBJECT(dev), "drive");
  116. return PFLASH_CFI01(dev);
  117. }
  118. static void virt_flash_create(RISCVVirtState *s)
  119. {
  120. s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
  121. s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
  122. }
  123. static void virt_flash_map1(PFlashCFI01 *flash,
  124. hwaddr base, hwaddr size,
  125. MemoryRegion *sysmem)
  126. {
  127. DeviceState *dev = DEVICE(flash);
  128. assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
  129. assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
  130. qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
  131. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  132. memory_region_add_subregion(sysmem, base,
  133. sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
  134. 0));
  135. }
  136. static void virt_flash_map(RISCVVirtState *s,
  137. MemoryRegion *sysmem)
  138. {
  139. hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
  140. hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
  141. virt_flash_map1(s->flash[0], flashbase, flashsize,
  142. sysmem);
  143. virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
  144. sysmem);
  145. }
  146. static void create_pcie_irq_map(RISCVVirtState *s, void *fdt, char *nodename,
  147. uint32_t irqchip_phandle)
  148. {
  149. int pin, dev;
  150. uint32_t irq_map_stride = 0;
  151. uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS *
  152. FDT_MAX_INT_MAP_WIDTH] = {};
  153. uint32_t *irq_map = full_irq_map;
  154. /* This code creates a standard swizzle of interrupts such that
  155. * each device's first interrupt is based on it's PCI_SLOT number.
  156. * (See pci_swizzle_map_irq_fn())
  157. *
  158. * We only need one entry per interrupt in the table (not one per
  159. * possible slot) seeing the interrupt-map-mask will allow the table
  160. * to wrap to any number of devices.
  161. */
  162. for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
  163. int devfn = dev * 0x8;
  164. for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
  165. int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
  166. int i = 0;
  167. /* Fill PCI address cells */
  168. irq_map[i] = cpu_to_be32(devfn << 8);
  169. i += FDT_PCI_ADDR_CELLS;
  170. /* Fill PCI Interrupt cells */
  171. irq_map[i] = cpu_to_be32(pin + 1);
  172. i += FDT_PCI_INT_CELLS;
  173. /* Fill interrupt controller phandle and cells */
  174. irq_map[i++] = cpu_to_be32(irqchip_phandle);
  175. irq_map[i++] = cpu_to_be32(irq_nr);
  176. if (s->aia_type != VIRT_AIA_TYPE_NONE) {
  177. irq_map[i++] = cpu_to_be32(0x4);
  178. }
  179. if (!irq_map_stride) {
  180. irq_map_stride = i;
  181. }
  182. irq_map += irq_map_stride;
  183. }
  184. }
  185. qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
  186. GPEX_NUM_IRQS * GPEX_NUM_IRQS *
  187. irq_map_stride * sizeof(uint32_t));
  188. qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
  189. 0x1800, 0, 0, 0x7);
  190. }
  191. static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
  192. char *clust_name, uint32_t *phandle,
  193. uint32_t *intc_phandles)
  194. {
  195. int cpu;
  196. uint32_t cpu_phandle;
  197. MachineState *ms = MACHINE(s);
  198. bool is_32_bit = riscv_is_32bit(&s->soc[0]);
  199. uint8_t satp_mode_max;
  200. for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
  201. RISCVCPU *cpu_ptr = &s->soc[socket].harts[cpu];
  202. g_autofree char *cpu_name = NULL;
  203. g_autofree char *core_name = NULL;
  204. g_autofree char *intc_name = NULL;
  205. g_autofree char *sv_name = NULL;
  206. cpu_phandle = (*phandle)++;
  207. cpu_name = g_strdup_printf("/cpus/cpu@%d",
  208. s->soc[socket].hartid_base + cpu);
  209. qemu_fdt_add_subnode(ms->fdt, cpu_name);
  210. if (cpu_ptr->cfg.satp_mode.supported != 0) {
  211. satp_mode_max = satp_mode_max_from_map(cpu_ptr->cfg.satp_mode.map);
  212. sv_name = g_strdup_printf("riscv,%s",
  213. satp_mode_str(satp_mode_max, is_32_bit));
  214. qemu_fdt_setprop_string(ms->fdt, cpu_name, "mmu-type", sv_name);
  215. }
  216. riscv_isa_write_fdt(cpu_ptr, ms->fdt, cpu_name);
  217. if (cpu_ptr->cfg.ext_zicbom) {
  218. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cbom-block-size",
  219. cpu_ptr->cfg.cbom_blocksize);
  220. }
  221. if (cpu_ptr->cfg.ext_zicboz) {
  222. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cboz-block-size",
  223. cpu_ptr->cfg.cboz_blocksize);
  224. }
  225. if (cpu_ptr->cfg.ext_zicbop) {
  226. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cbop-block-size",
  227. cpu_ptr->cfg.cbop_blocksize);
  228. }
  229. qemu_fdt_setprop_string(ms->fdt, cpu_name, "compatible", "riscv");
  230. qemu_fdt_setprop_string(ms->fdt, cpu_name, "status", "okay");
  231. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "reg",
  232. s->soc[socket].hartid_base + cpu);
  233. qemu_fdt_setprop_string(ms->fdt, cpu_name, "device_type", "cpu");
  234. riscv_socket_fdt_write_id(ms, cpu_name, socket);
  235. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "phandle", cpu_phandle);
  236. intc_phandles[cpu] = (*phandle)++;
  237. intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
  238. qemu_fdt_add_subnode(ms->fdt, intc_name);
  239. qemu_fdt_setprop_cell(ms->fdt, intc_name, "phandle",
  240. intc_phandles[cpu]);
  241. qemu_fdt_setprop_string(ms->fdt, intc_name, "compatible",
  242. "riscv,cpu-intc");
  243. qemu_fdt_setprop(ms->fdt, intc_name, "interrupt-controller", NULL, 0);
  244. qemu_fdt_setprop_cell(ms->fdt, intc_name, "#interrupt-cells", 1);
  245. core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
  246. qemu_fdt_add_subnode(ms->fdt, core_name);
  247. qemu_fdt_setprop_cell(ms->fdt, core_name, "cpu", cpu_phandle);
  248. }
  249. }
  250. static void create_fdt_socket_memory(RISCVVirtState *s,
  251. const MemMapEntry *memmap, int socket)
  252. {
  253. g_autofree char *mem_name = NULL;
  254. uint64_t addr, size;
  255. MachineState *ms = MACHINE(s);
  256. addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(ms, socket);
  257. size = riscv_socket_mem_size(ms, socket);
  258. mem_name = g_strdup_printf("/memory@%lx", (long)addr);
  259. qemu_fdt_add_subnode(ms->fdt, mem_name);
  260. qemu_fdt_setprop_cells(ms->fdt, mem_name, "reg",
  261. addr >> 32, addr, size >> 32, size);
  262. qemu_fdt_setprop_string(ms->fdt, mem_name, "device_type", "memory");
  263. riscv_socket_fdt_write_id(ms, mem_name, socket);
  264. }
  265. static void create_fdt_socket_clint(RISCVVirtState *s,
  266. const MemMapEntry *memmap, int socket,
  267. uint32_t *intc_phandles)
  268. {
  269. int cpu;
  270. g_autofree char *clint_name = NULL;
  271. g_autofree uint32_t *clint_cells = NULL;
  272. unsigned long clint_addr;
  273. MachineState *ms = MACHINE(s);
  274. static const char * const clint_compat[2] = {
  275. "sifive,clint0", "riscv,clint0"
  276. };
  277. clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
  278. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  279. clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
  280. clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
  281. clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
  282. clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
  283. }
  284. clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
  285. clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
  286. qemu_fdt_add_subnode(ms->fdt, clint_name);
  287. qemu_fdt_setprop_string_array(ms->fdt, clint_name, "compatible",
  288. (char **)&clint_compat,
  289. ARRAY_SIZE(clint_compat));
  290. qemu_fdt_setprop_cells(ms->fdt, clint_name, "reg",
  291. 0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
  292. qemu_fdt_setprop(ms->fdt, clint_name, "interrupts-extended",
  293. clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
  294. riscv_socket_fdt_write_id(ms, clint_name, socket);
  295. }
  296. static void create_fdt_socket_aclint(RISCVVirtState *s,
  297. const MemMapEntry *memmap, int socket,
  298. uint32_t *intc_phandles)
  299. {
  300. int cpu;
  301. char *name;
  302. unsigned long addr, size;
  303. uint32_t aclint_cells_size;
  304. g_autofree uint32_t *aclint_mswi_cells = NULL;
  305. g_autofree uint32_t *aclint_sswi_cells = NULL;
  306. g_autofree uint32_t *aclint_mtimer_cells = NULL;
  307. MachineState *ms = MACHINE(s);
  308. aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  309. aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  310. aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  311. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  312. aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  313. aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
  314. aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  315. aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
  316. aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  317. aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
  318. }
  319. aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
  320. if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
  321. addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
  322. name = g_strdup_printf("/soc/mswi@%lx", addr);
  323. qemu_fdt_add_subnode(ms->fdt, name);
  324. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  325. "riscv,aclint-mswi");
  326. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  327. 0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
  328. qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
  329. aclint_mswi_cells, aclint_cells_size);
  330. qemu_fdt_setprop(ms->fdt, name, "interrupt-controller", NULL, 0);
  331. qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells", 0);
  332. riscv_socket_fdt_write_id(ms, name, socket);
  333. g_free(name);
  334. }
  335. if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
  336. addr = memmap[VIRT_CLINT].base +
  337. (RISCV_ACLINT_DEFAULT_MTIMER_SIZE * socket);
  338. size = RISCV_ACLINT_DEFAULT_MTIMER_SIZE;
  339. } else {
  340. addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
  341. (memmap[VIRT_CLINT].size * socket);
  342. size = memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE;
  343. }
  344. name = g_strdup_printf("/soc/mtimer@%lx", addr);
  345. qemu_fdt_add_subnode(ms->fdt, name);
  346. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  347. "riscv,aclint-mtimer");
  348. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  349. 0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
  350. 0x0, size - RISCV_ACLINT_DEFAULT_MTIME,
  351. 0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
  352. 0x0, RISCV_ACLINT_DEFAULT_MTIME);
  353. qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
  354. aclint_mtimer_cells, aclint_cells_size);
  355. riscv_socket_fdt_write_id(ms, name, socket);
  356. g_free(name);
  357. if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
  358. addr = memmap[VIRT_ACLINT_SSWI].base +
  359. (memmap[VIRT_ACLINT_SSWI].size * socket);
  360. name = g_strdup_printf("/soc/sswi@%lx", addr);
  361. qemu_fdt_add_subnode(ms->fdt, name);
  362. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  363. "riscv,aclint-sswi");
  364. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  365. 0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
  366. qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
  367. aclint_sswi_cells, aclint_cells_size);
  368. qemu_fdt_setprop(ms->fdt, name, "interrupt-controller", NULL, 0);
  369. qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells", 0);
  370. riscv_socket_fdt_write_id(ms, name, socket);
  371. g_free(name);
  372. }
  373. }
  374. static void create_fdt_socket_plic(RISCVVirtState *s,
  375. const MemMapEntry *memmap, int socket,
  376. uint32_t *phandle, uint32_t *intc_phandles,
  377. uint32_t *plic_phandles)
  378. {
  379. int cpu;
  380. g_autofree char *plic_name = NULL;
  381. g_autofree uint32_t *plic_cells;
  382. unsigned long plic_addr;
  383. MachineState *ms = MACHINE(s);
  384. static const char * const plic_compat[2] = {
  385. "sifive,plic-1.0.0", "riscv,plic0"
  386. };
  387. plic_phandles[socket] = (*phandle)++;
  388. plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
  389. plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
  390. qemu_fdt_add_subnode(ms->fdt, plic_name);
  391. qemu_fdt_setprop_cell(ms->fdt, plic_name,
  392. "#interrupt-cells", FDT_PLIC_INT_CELLS);
  393. qemu_fdt_setprop_cell(ms->fdt, plic_name,
  394. "#address-cells", FDT_PLIC_ADDR_CELLS);
  395. qemu_fdt_setprop_string_array(ms->fdt, plic_name, "compatible",
  396. (char **)&plic_compat,
  397. ARRAY_SIZE(plic_compat));
  398. qemu_fdt_setprop(ms->fdt, plic_name, "interrupt-controller", NULL, 0);
  399. if (kvm_enabled()) {
  400. plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  401. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  402. plic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  403. plic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
  404. }
  405. qemu_fdt_setprop(ms->fdt, plic_name, "interrupts-extended",
  406. plic_cells,
  407. s->soc[socket].num_harts * sizeof(uint32_t) * 2);
  408. } else {
  409. plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
  410. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  411. plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
  412. plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
  413. plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
  414. plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
  415. }
  416. qemu_fdt_setprop(ms->fdt, plic_name, "interrupts-extended",
  417. plic_cells,
  418. s->soc[socket].num_harts * sizeof(uint32_t) * 4);
  419. }
  420. qemu_fdt_setprop_cells(ms->fdt, plic_name, "reg",
  421. 0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
  422. qemu_fdt_setprop_cell(ms->fdt, plic_name, "riscv,ndev",
  423. VIRT_IRQCHIP_NUM_SOURCES - 1);
  424. riscv_socket_fdt_write_id(ms, plic_name, socket);
  425. qemu_fdt_setprop_cell(ms->fdt, plic_name, "phandle",
  426. plic_phandles[socket]);
  427. if (!socket) {
  428. platform_bus_add_all_fdt_nodes(ms->fdt, plic_name,
  429. memmap[VIRT_PLATFORM_BUS].base,
  430. memmap[VIRT_PLATFORM_BUS].size,
  431. VIRT_PLATFORM_BUS_IRQ);
  432. }
  433. }
  434. uint32_t imsic_num_bits(uint32_t count)
  435. {
  436. uint32_t ret = 0;
  437. while (BIT(ret) < count) {
  438. ret++;
  439. }
  440. return ret;
  441. }
  442. static void create_fdt_one_imsic(RISCVVirtState *s, hwaddr base_addr,
  443. uint32_t *intc_phandles, uint32_t msi_phandle,
  444. bool m_mode, uint32_t imsic_guest_bits)
  445. {
  446. int cpu, socket;
  447. g_autofree char *imsic_name = NULL;
  448. MachineState *ms = MACHINE(s);
  449. int socket_count = riscv_socket_count(ms);
  450. uint32_t imsic_max_hart_per_socket, imsic_addr, imsic_size;
  451. g_autofree uint32_t *imsic_cells = NULL;
  452. g_autofree uint32_t *imsic_regs = NULL;
  453. static const char * const imsic_compat[2] = {
  454. "qemu,imsics", "riscv,imsics"
  455. };
  456. imsic_cells = g_new0(uint32_t, ms->smp.cpus * 2);
  457. imsic_regs = g_new0(uint32_t, socket_count * 4);
  458. for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
  459. imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  460. imsic_cells[cpu * 2 + 1] = cpu_to_be32(m_mode ? IRQ_M_EXT : IRQ_S_EXT);
  461. }
  462. imsic_max_hart_per_socket = 0;
  463. for (socket = 0; socket < socket_count; socket++) {
  464. imsic_addr = base_addr + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
  465. imsic_size = IMSIC_HART_SIZE(imsic_guest_bits) *
  466. s->soc[socket].num_harts;
  467. imsic_regs[socket * 4 + 0] = 0;
  468. imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
  469. imsic_regs[socket * 4 + 2] = 0;
  470. imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
  471. if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
  472. imsic_max_hart_per_socket = s->soc[socket].num_harts;
  473. }
  474. }
  475. imsic_name = g_strdup_printf("/soc/interrupt-controller@%lx",
  476. (unsigned long)base_addr);
  477. qemu_fdt_add_subnode(ms->fdt, imsic_name);
  478. qemu_fdt_setprop_string_array(ms->fdt, imsic_name, "compatible",
  479. (char **)&imsic_compat,
  480. ARRAY_SIZE(imsic_compat));
  481. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "#interrupt-cells",
  482. FDT_IMSIC_INT_CELLS);
  483. qemu_fdt_setprop(ms->fdt, imsic_name, "interrupt-controller", NULL, 0);
  484. qemu_fdt_setprop(ms->fdt, imsic_name, "msi-controller", NULL, 0);
  485. qemu_fdt_setprop(ms->fdt, imsic_name, "interrupts-extended",
  486. imsic_cells, ms->smp.cpus * sizeof(uint32_t) * 2);
  487. qemu_fdt_setprop(ms->fdt, imsic_name, "reg", imsic_regs,
  488. socket_count * sizeof(uint32_t) * 4);
  489. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,num-ids",
  490. VIRT_IRQCHIP_NUM_MSIS);
  491. if (imsic_guest_bits) {
  492. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,guest-index-bits",
  493. imsic_guest_bits);
  494. }
  495. if (socket_count > 1) {
  496. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,hart-index-bits",
  497. imsic_num_bits(imsic_max_hart_per_socket));
  498. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-bits",
  499. imsic_num_bits(socket_count));
  500. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-shift",
  501. IMSIC_MMIO_GROUP_MIN_SHIFT);
  502. }
  503. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "phandle", msi_phandle);
  504. }
  505. static void create_fdt_imsic(RISCVVirtState *s, const MemMapEntry *memmap,
  506. uint32_t *phandle, uint32_t *intc_phandles,
  507. uint32_t *msi_m_phandle, uint32_t *msi_s_phandle)
  508. {
  509. *msi_m_phandle = (*phandle)++;
  510. *msi_s_phandle = (*phandle)++;
  511. if (!kvm_enabled()) {
  512. /* M-level IMSIC node */
  513. create_fdt_one_imsic(s, memmap[VIRT_IMSIC_M].base, intc_phandles,
  514. *msi_m_phandle, true, 0);
  515. }
  516. /* S-level IMSIC node */
  517. create_fdt_one_imsic(s, memmap[VIRT_IMSIC_S].base, intc_phandles,
  518. *msi_s_phandle, false,
  519. imsic_num_bits(s->aia_guests + 1));
  520. }
  521. /* Caller must free string after use */
  522. static char *fdt_get_aplic_nodename(unsigned long aplic_addr)
  523. {
  524. return g_strdup_printf("/soc/interrupt-controller@%lx", aplic_addr);
  525. }
  526. static void create_fdt_one_aplic(RISCVVirtState *s, int socket,
  527. unsigned long aplic_addr, uint32_t aplic_size,
  528. uint32_t msi_phandle,
  529. uint32_t *intc_phandles,
  530. uint32_t aplic_phandle,
  531. uint32_t aplic_child_phandle,
  532. bool m_mode, int num_harts)
  533. {
  534. int cpu;
  535. g_autofree char *aplic_name = fdt_get_aplic_nodename(aplic_addr);
  536. g_autofree uint32_t *aplic_cells = g_new0(uint32_t, num_harts * 2);
  537. MachineState *ms = MACHINE(s);
  538. static const char * const aplic_compat[2] = {
  539. "qemu,aplic", "riscv,aplic"
  540. };
  541. for (cpu = 0; cpu < num_harts; cpu++) {
  542. aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  543. aplic_cells[cpu * 2 + 1] = cpu_to_be32(m_mode ? IRQ_M_EXT : IRQ_S_EXT);
  544. }
  545. qemu_fdt_add_subnode(ms->fdt, aplic_name);
  546. qemu_fdt_setprop_string_array(ms->fdt, aplic_name, "compatible",
  547. (char **)&aplic_compat,
  548. ARRAY_SIZE(aplic_compat));
  549. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "#address-cells",
  550. FDT_APLIC_ADDR_CELLS);
  551. qemu_fdt_setprop_cell(ms->fdt, aplic_name,
  552. "#interrupt-cells", FDT_APLIC_INT_CELLS);
  553. qemu_fdt_setprop(ms->fdt, aplic_name, "interrupt-controller", NULL, 0);
  554. if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
  555. qemu_fdt_setprop(ms->fdt, aplic_name, "interrupts-extended",
  556. aplic_cells, num_harts * sizeof(uint32_t) * 2);
  557. } else {
  558. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "msi-parent", msi_phandle);
  559. }
  560. qemu_fdt_setprop_cells(ms->fdt, aplic_name, "reg",
  561. 0x0, aplic_addr, 0x0, aplic_size);
  562. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,num-sources",
  563. VIRT_IRQCHIP_NUM_SOURCES);
  564. if (aplic_child_phandle) {
  565. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,children",
  566. aplic_child_phandle);
  567. qemu_fdt_setprop_cells(ms->fdt, aplic_name, "riscv,delegation",
  568. aplic_child_phandle, 0x1,
  569. VIRT_IRQCHIP_NUM_SOURCES);
  570. /*
  571. * DEPRECATED_9.1: Compat property kept temporarily
  572. * to allow old firmwares to work with AIA. Do *not*
  573. * use 'riscv,delegate' in new code: use
  574. * 'riscv,delegation' instead.
  575. */
  576. qemu_fdt_setprop_cells(ms->fdt, aplic_name, "riscv,delegate",
  577. aplic_child_phandle, 0x1,
  578. VIRT_IRQCHIP_NUM_SOURCES);
  579. }
  580. riscv_socket_fdt_write_id(ms, aplic_name, socket);
  581. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "phandle", aplic_phandle);
  582. }
  583. static void create_fdt_socket_aplic(RISCVVirtState *s,
  584. const MemMapEntry *memmap, int socket,
  585. uint32_t msi_m_phandle,
  586. uint32_t msi_s_phandle,
  587. uint32_t *phandle,
  588. uint32_t *intc_phandles,
  589. uint32_t *aplic_phandles,
  590. int num_harts)
  591. {
  592. unsigned long aplic_addr;
  593. MachineState *ms = MACHINE(s);
  594. uint32_t aplic_m_phandle, aplic_s_phandle;
  595. aplic_m_phandle = (*phandle)++;
  596. aplic_s_phandle = (*phandle)++;
  597. if (!kvm_enabled()) {
  598. /* M-level APLIC node */
  599. aplic_addr = memmap[VIRT_APLIC_M].base +
  600. (memmap[VIRT_APLIC_M].size * socket);
  601. create_fdt_one_aplic(s, socket, aplic_addr, memmap[VIRT_APLIC_M].size,
  602. msi_m_phandle, intc_phandles,
  603. aplic_m_phandle, aplic_s_phandle,
  604. true, num_harts);
  605. }
  606. /* S-level APLIC node */
  607. aplic_addr = memmap[VIRT_APLIC_S].base +
  608. (memmap[VIRT_APLIC_S].size * socket);
  609. create_fdt_one_aplic(s, socket, aplic_addr, memmap[VIRT_APLIC_S].size,
  610. msi_s_phandle, intc_phandles,
  611. aplic_s_phandle, 0,
  612. false, num_harts);
  613. if (!socket) {
  614. g_autofree char *aplic_name = fdt_get_aplic_nodename(aplic_addr);
  615. platform_bus_add_all_fdt_nodes(ms->fdt, aplic_name,
  616. memmap[VIRT_PLATFORM_BUS].base,
  617. memmap[VIRT_PLATFORM_BUS].size,
  618. VIRT_PLATFORM_BUS_IRQ);
  619. }
  620. aplic_phandles[socket] = aplic_s_phandle;
  621. }
  622. static void create_fdt_pmu(RISCVVirtState *s)
  623. {
  624. g_autofree char *pmu_name = g_strdup_printf("/pmu");
  625. MachineState *ms = MACHINE(s);
  626. RISCVCPU hart = s->soc[0].harts[0];
  627. qemu_fdt_add_subnode(ms->fdt, pmu_name);
  628. qemu_fdt_setprop_string(ms->fdt, pmu_name, "compatible", "riscv,pmu");
  629. riscv_pmu_generate_fdt_node(ms->fdt, hart.pmu_avail_ctrs, pmu_name);
  630. }
  631. static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
  632. uint32_t *phandle,
  633. uint32_t *irq_mmio_phandle,
  634. uint32_t *irq_pcie_phandle,
  635. uint32_t *irq_virtio_phandle,
  636. uint32_t *msi_pcie_phandle)
  637. {
  638. int socket, phandle_pos;
  639. MachineState *ms = MACHINE(s);
  640. uint32_t msi_m_phandle = 0, msi_s_phandle = 0;
  641. uint32_t xplic_phandles[MAX_NODES];
  642. g_autofree uint32_t *intc_phandles = NULL;
  643. int socket_count = riscv_socket_count(ms);
  644. qemu_fdt_add_subnode(ms->fdt, "/cpus");
  645. qemu_fdt_setprop_cell(ms->fdt, "/cpus", "timebase-frequency",
  646. kvm_enabled() ?
  647. kvm_riscv_get_timebase_frequency(first_cpu) :
  648. RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
  649. qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
  650. qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", 0x1);
  651. qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
  652. intc_phandles = g_new0(uint32_t, ms->smp.cpus);
  653. phandle_pos = ms->smp.cpus;
  654. for (socket = (socket_count - 1); socket >= 0; socket--) {
  655. g_autofree char *clust_name = NULL;
  656. phandle_pos -= s->soc[socket].num_harts;
  657. clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
  658. qemu_fdt_add_subnode(ms->fdt, clust_name);
  659. create_fdt_socket_cpus(s, socket, clust_name, phandle,
  660. &intc_phandles[phandle_pos]);
  661. create_fdt_socket_memory(s, memmap, socket);
  662. if (virt_aclint_allowed() && s->have_aclint) {
  663. create_fdt_socket_aclint(s, memmap, socket,
  664. &intc_phandles[phandle_pos]);
  665. } else if (tcg_enabled()) {
  666. create_fdt_socket_clint(s, memmap, socket,
  667. &intc_phandles[phandle_pos]);
  668. }
  669. }
  670. if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
  671. create_fdt_imsic(s, memmap, phandle, intc_phandles,
  672. &msi_m_phandle, &msi_s_phandle);
  673. *msi_pcie_phandle = msi_s_phandle;
  674. }
  675. /* KVM AIA only has one APLIC instance */
  676. if (kvm_enabled() && virt_use_kvm_aia(s)) {
  677. create_fdt_socket_aplic(s, memmap, 0,
  678. msi_m_phandle, msi_s_phandle, phandle,
  679. &intc_phandles[0], xplic_phandles,
  680. ms->smp.cpus);
  681. } else {
  682. phandle_pos = ms->smp.cpus;
  683. for (socket = (socket_count - 1); socket >= 0; socket--) {
  684. phandle_pos -= s->soc[socket].num_harts;
  685. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  686. create_fdt_socket_plic(s, memmap, socket, phandle,
  687. &intc_phandles[phandle_pos],
  688. xplic_phandles);
  689. } else {
  690. create_fdt_socket_aplic(s, memmap, socket,
  691. msi_m_phandle, msi_s_phandle, phandle,
  692. &intc_phandles[phandle_pos],
  693. xplic_phandles,
  694. s->soc[socket].num_harts);
  695. }
  696. }
  697. }
  698. if (kvm_enabled() && virt_use_kvm_aia(s)) {
  699. *irq_mmio_phandle = xplic_phandles[0];
  700. *irq_virtio_phandle = xplic_phandles[0];
  701. *irq_pcie_phandle = xplic_phandles[0];
  702. } else {
  703. for (socket = 0; socket < socket_count; socket++) {
  704. if (socket == 0) {
  705. *irq_mmio_phandle = xplic_phandles[socket];
  706. *irq_virtio_phandle = xplic_phandles[socket];
  707. *irq_pcie_phandle = xplic_phandles[socket];
  708. }
  709. if (socket == 1) {
  710. *irq_virtio_phandle = xplic_phandles[socket];
  711. *irq_pcie_phandle = xplic_phandles[socket];
  712. }
  713. if (socket == 2) {
  714. *irq_pcie_phandle = xplic_phandles[socket];
  715. }
  716. }
  717. }
  718. riscv_socket_fdt_write_distance_matrix(ms);
  719. }
  720. static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
  721. uint32_t irq_virtio_phandle)
  722. {
  723. int i;
  724. MachineState *ms = MACHINE(s);
  725. for (i = 0; i < VIRTIO_COUNT; i++) {
  726. g_autofree char *name = g_strdup_printf("/soc/virtio_mmio@%lx",
  727. (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
  728. qemu_fdt_add_subnode(ms->fdt, name);
  729. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "virtio,mmio");
  730. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  731. 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
  732. 0x0, memmap[VIRT_VIRTIO].size);
  733. qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent",
  734. irq_virtio_phandle);
  735. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  736. qemu_fdt_setprop_cell(ms->fdt, name, "interrupts",
  737. VIRTIO_IRQ + i);
  738. } else {
  739. qemu_fdt_setprop_cells(ms->fdt, name, "interrupts",
  740. VIRTIO_IRQ + i, 0x4);
  741. }
  742. }
  743. }
  744. static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
  745. uint32_t irq_pcie_phandle,
  746. uint32_t msi_pcie_phandle)
  747. {
  748. g_autofree char *name = NULL;
  749. MachineState *ms = MACHINE(s);
  750. name = g_strdup_printf("/soc/pci@%lx",
  751. (long) memmap[VIRT_PCIE_ECAM].base);
  752. qemu_fdt_setprop_cell(ms->fdt, name, "#address-cells",
  753. FDT_PCI_ADDR_CELLS);
  754. qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells",
  755. FDT_PCI_INT_CELLS);
  756. qemu_fdt_setprop_cell(ms->fdt, name, "#size-cells", 0x2);
  757. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  758. "pci-host-ecam-generic");
  759. qemu_fdt_setprop_string(ms->fdt, name, "device_type", "pci");
  760. qemu_fdt_setprop_cell(ms->fdt, name, "linux,pci-domain", 0);
  761. qemu_fdt_setprop_cells(ms->fdt, name, "bus-range", 0,
  762. memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
  763. qemu_fdt_setprop(ms->fdt, name, "dma-coherent", NULL, 0);
  764. if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
  765. qemu_fdt_setprop_cell(ms->fdt, name, "msi-parent", msi_pcie_phandle);
  766. }
  767. qemu_fdt_setprop_cells(ms->fdt, name, "reg", 0,
  768. memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
  769. qemu_fdt_setprop_sized_cells(ms->fdt, name, "ranges",
  770. 1, FDT_PCI_RANGE_IOPORT, 2, 0,
  771. 2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
  772. 1, FDT_PCI_RANGE_MMIO,
  773. 2, memmap[VIRT_PCIE_MMIO].base,
  774. 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
  775. 1, FDT_PCI_RANGE_MMIO_64BIT,
  776. 2, virt_high_pcie_memmap.base,
  777. 2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
  778. create_pcie_irq_map(s, ms->fdt, name, irq_pcie_phandle);
  779. }
  780. static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
  781. uint32_t *phandle)
  782. {
  783. char *name;
  784. uint32_t test_phandle;
  785. MachineState *ms = MACHINE(s);
  786. test_phandle = (*phandle)++;
  787. name = g_strdup_printf("/soc/test@%lx",
  788. (long)memmap[VIRT_TEST].base);
  789. qemu_fdt_add_subnode(ms->fdt, name);
  790. {
  791. static const char * const compat[3] = {
  792. "sifive,test1", "sifive,test0", "syscon"
  793. };
  794. qemu_fdt_setprop_string_array(ms->fdt, name, "compatible",
  795. (char **)&compat, ARRAY_SIZE(compat));
  796. }
  797. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  798. 0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
  799. qemu_fdt_setprop_cell(ms->fdt, name, "phandle", test_phandle);
  800. test_phandle = qemu_fdt_get_phandle(ms->fdt, name);
  801. g_free(name);
  802. name = g_strdup_printf("/reboot");
  803. qemu_fdt_add_subnode(ms->fdt, name);
  804. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "syscon-reboot");
  805. qemu_fdt_setprop_cell(ms->fdt, name, "regmap", test_phandle);
  806. qemu_fdt_setprop_cell(ms->fdt, name, "offset", 0x0);
  807. qemu_fdt_setprop_cell(ms->fdt, name, "value", FINISHER_RESET);
  808. g_free(name);
  809. name = g_strdup_printf("/poweroff");
  810. qemu_fdt_add_subnode(ms->fdt, name);
  811. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "syscon-poweroff");
  812. qemu_fdt_setprop_cell(ms->fdt, name, "regmap", test_phandle);
  813. qemu_fdt_setprop_cell(ms->fdt, name, "offset", 0x0);
  814. qemu_fdt_setprop_cell(ms->fdt, name, "value", FINISHER_PASS);
  815. g_free(name);
  816. }
  817. static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
  818. uint32_t irq_mmio_phandle)
  819. {
  820. g_autofree char *name = NULL;
  821. MachineState *ms = MACHINE(s);
  822. name = g_strdup_printf("/soc/serial@%lx", (long)memmap[VIRT_UART0].base);
  823. qemu_fdt_add_subnode(ms->fdt, name);
  824. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "ns16550a");
  825. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  826. 0x0, memmap[VIRT_UART0].base,
  827. 0x0, memmap[VIRT_UART0].size);
  828. qemu_fdt_setprop_cell(ms->fdt, name, "clock-frequency", 3686400);
  829. qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent", irq_mmio_phandle);
  830. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  831. qemu_fdt_setprop_cell(ms->fdt, name, "interrupts", UART0_IRQ);
  832. } else {
  833. qemu_fdt_setprop_cells(ms->fdt, name, "interrupts", UART0_IRQ, 0x4);
  834. }
  835. qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", name);
  836. }
  837. static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
  838. uint32_t irq_mmio_phandle)
  839. {
  840. g_autofree char *name = NULL;
  841. MachineState *ms = MACHINE(s);
  842. name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
  843. qemu_fdt_add_subnode(ms->fdt, name);
  844. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  845. "google,goldfish-rtc");
  846. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  847. 0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
  848. qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent",
  849. irq_mmio_phandle);
  850. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  851. qemu_fdt_setprop_cell(ms->fdt, name, "interrupts", RTC_IRQ);
  852. } else {
  853. qemu_fdt_setprop_cells(ms->fdt, name, "interrupts", RTC_IRQ, 0x4);
  854. }
  855. }
  856. static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
  857. {
  858. MachineState *ms = MACHINE(s);
  859. hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
  860. hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
  861. g_autofree char *name = g_strdup_printf("/flash@%" PRIx64, flashbase);
  862. qemu_fdt_add_subnode(ms->fdt, name);
  863. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "cfi-flash");
  864. qemu_fdt_setprop_sized_cells(ms->fdt, name, "reg",
  865. 2, flashbase, 2, flashsize,
  866. 2, flashbase + flashsize, 2, flashsize);
  867. qemu_fdt_setprop_cell(ms->fdt, name, "bank-width", 4);
  868. }
  869. static void create_fdt_fw_cfg(RISCVVirtState *s, const MemMapEntry *memmap)
  870. {
  871. MachineState *ms = MACHINE(s);
  872. hwaddr base = memmap[VIRT_FW_CFG].base;
  873. hwaddr size = memmap[VIRT_FW_CFG].size;
  874. g_autofree char *nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
  875. qemu_fdt_add_subnode(ms->fdt, nodename);
  876. qemu_fdt_setprop_string(ms->fdt, nodename,
  877. "compatible", "qemu,fw-cfg-mmio");
  878. qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
  879. 2, base, 2, size);
  880. qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
  881. }
  882. static void create_fdt_virtio_iommu(RISCVVirtState *s, uint16_t bdf)
  883. {
  884. const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
  885. void *fdt = MACHINE(s)->fdt;
  886. uint32_t iommu_phandle;
  887. g_autofree char *iommu_node = NULL;
  888. g_autofree char *pci_node = NULL;
  889. pci_node = g_strdup_printf("/soc/pci@%lx",
  890. (long) virt_memmap[VIRT_PCIE_ECAM].base);
  891. iommu_node = g_strdup_printf("%s/virtio_iommu@%x,%x", pci_node,
  892. PCI_SLOT(bdf), PCI_FUNC(bdf));
  893. iommu_phandle = qemu_fdt_alloc_phandle(fdt);
  894. qemu_fdt_add_subnode(fdt, iommu_node);
  895. qemu_fdt_setprop(fdt, iommu_node, "compatible", compat, sizeof(compat));
  896. qemu_fdt_setprop_sized_cells(fdt, iommu_node, "reg",
  897. 1, bdf << 8, 1, 0, 1, 0,
  898. 1, 0, 1, 0);
  899. qemu_fdt_setprop_cell(fdt, iommu_node, "#iommu-cells", 1);
  900. qemu_fdt_setprop_cell(fdt, iommu_node, "phandle", iommu_phandle);
  901. qemu_fdt_setprop_cells(fdt, pci_node, "iommu-map",
  902. 0, iommu_phandle, 0, bdf,
  903. bdf + 1, iommu_phandle, bdf + 1, 0xffff - bdf);
  904. }
  905. static void finalize_fdt(RISCVVirtState *s)
  906. {
  907. uint32_t phandle = 1, irq_mmio_phandle = 1, msi_pcie_phandle = 1;
  908. uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
  909. create_fdt_sockets(s, virt_memmap, &phandle, &irq_mmio_phandle,
  910. &irq_pcie_phandle, &irq_virtio_phandle,
  911. &msi_pcie_phandle);
  912. create_fdt_virtio(s, virt_memmap, irq_virtio_phandle);
  913. create_fdt_pcie(s, virt_memmap, irq_pcie_phandle, msi_pcie_phandle);
  914. create_fdt_reset(s, virt_memmap, &phandle);
  915. create_fdt_uart(s, virt_memmap, irq_mmio_phandle);
  916. create_fdt_rtc(s, virt_memmap, irq_mmio_phandle);
  917. }
  918. static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap)
  919. {
  920. MachineState *ms = MACHINE(s);
  921. uint8_t rng_seed[32];
  922. g_autofree char *name = NULL;
  923. ms->fdt = create_device_tree(&s->fdt_size);
  924. if (!ms->fdt) {
  925. error_report("create_device_tree() failed");
  926. exit(1);
  927. }
  928. qemu_fdt_setprop_string(ms->fdt, "/", "model", "riscv-virtio,qemu");
  929. qemu_fdt_setprop_string(ms->fdt, "/", "compatible", "riscv-virtio");
  930. qemu_fdt_setprop_cell(ms->fdt, "/", "#size-cells", 0x2);
  931. qemu_fdt_setprop_cell(ms->fdt, "/", "#address-cells", 0x2);
  932. qemu_fdt_add_subnode(ms->fdt, "/soc");
  933. qemu_fdt_setprop(ms->fdt, "/soc", "ranges", NULL, 0);
  934. qemu_fdt_setprop_string(ms->fdt, "/soc", "compatible", "simple-bus");
  935. qemu_fdt_setprop_cell(ms->fdt, "/soc", "#size-cells", 0x2);
  936. qemu_fdt_setprop_cell(ms->fdt, "/soc", "#address-cells", 0x2);
  937. /*
  938. * The "/soc/pci@..." node is needed for PCIE hotplugs
  939. * that might happen before finalize_fdt().
  940. */
  941. name = g_strdup_printf("/soc/pci@%lx", (long) memmap[VIRT_PCIE_ECAM].base);
  942. qemu_fdt_add_subnode(ms->fdt, name);
  943. qemu_fdt_add_subnode(ms->fdt, "/chosen");
  944. /* Pass seed to RNG */
  945. qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
  946. qemu_fdt_setprop(ms->fdt, "/chosen", "rng-seed",
  947. rng_seed, sizeof(rng_seed));
  948. create_fdt_flash(s, memmap);
  949. create_fdt_fw_cfg(s, memmap);
  950. create_fdt_pmu(s);
  951. }
  952. static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
  953. DeviceState *irqchip,
  954. RISCVVirtState *s)
  955. {
  956. DeviceState *dev;
  957. MemoryRegion *ecam_alias, *ecam_reg;
  958. MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
  959. hwaddr ecam_base = s->memmap[VIRT_PCIE_ECAM].base;
  960. hwaddr ecam_size = s->memmap[VIRT_PCIE_ECAM].size;
  961. hwaddr mmio_base = s->memmap[VIRT_PCIE_MMIO].base;
  962. hwaddr mmio_size = s->memmap[VIRT_PCIE_MMIO].size;
  963. hwaddr high_mmio_base = virt_high_pcie_memmap.base;
  964. hwaddr high_mmio_size = virt_high_pcie_memmap.size;
  965. hwaddr pio_base = s->memmap[VIRT_PCIE_PIO].base;
  966. hwaddr pio_size = s->memmap[VIRT_PCIE_PIO].size;
  967. qemu_irq irq;
  968. int i;
  969. dev = qdev_new(TYPE_GPEX_HOST);
  970. /* Set GPEX object properties for the virt machine */
  971. object_property_set_uint(OBJECT(GPEX_HOST(dev)), PCI_HOST_ECAM_BASE,
  972. ecam_base, NULL);
  973. object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_ECAM_SIZE,
  974. ecam_size, NULL);
  975. object_property_set_uint(OBJECT(GPEX_HOST(dev)),
  976. PCI_HOST_BELOW_4G_MMIO_BASE,
  977. mmio_base, NULL);
  978. object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_BELOW_4G_MMIO_SIZE,
  979. mmio_size, NULL);
  980. object_property_set_uint(OBJECT(GPEX_HOST(dev)),
  981. PCI_HOST_ABOVE_4G_MMIO_BASE,
  982. high_mmio_base, NULL);
  983. object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_ABOVE_4G_MMIO_SIZE,
  984. high_mmio_size, NULL);
  985. object_property_set_uint(OBJECT(GPEX_HOST(dev)), PCI_HOST_PIO_BASE,
  986. pio_base, NULL);
  987. object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_PIO_SIZE,
  988. pio_size, NULL);
  989. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  990. ecam_alias = g_new0(MemoryRegion, 1);
  991. ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
  992. memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
  993. ecam_reg, 0, ecam_size);
  994. memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
  995. mmio_alias = g_new0(MemoryRegion, 1);
  996. mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
  997. memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
  998. mmio_reg, mmio_base, mmio_size);
  999. memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
  1000. /* Map high MMIO space */
  1001. high_mmio_alias = g_new0(MemoryRegion, 1);
  1002. memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
  1003. mmio_reg, high_mmio_base, high_mmio_size);
  1004. memory_region_add_subregion(get_system_memory(), high_mmio_base,
  1005. high_mmio_alias);
  1006. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
  1007. for (i = 0; i < GPEX_NUM_IRQS; i++) {
  1008. irq = qdev_get_gpio_in(irqchip, PCIE_IRQ + i);
  1009. sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
  1010. gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
  1011. }
  1012. GPEX_HOST(dev)->gpex_cfg.bus = PCI_HOST_BRIDGE(GPEX_HOST(dev))->bus;
  1013. return dev;
  1014. }
  1015. static FWCfgState *create_fw_cfg(const MachineState *ms)
  1016. {
  1017. hwaddr base = virt_memmap[VIRT_FW_CFG].base;
  1018. FWCfgState *fw_cfg;
  1019. fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
  1020. &address_space_memory);
  1021. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
  1022. return fw_cfg;
  1023. }
  1024. static DeviceState *virt_create_plic(const MemMapEntry *memmap, int socket,
  1025. int base_hartid, int hart_count)
  1026. {
  1027. DeviceState *ret;
  1028. g_autofree char *plic_hart_config = NULL;
  1029. /* Per-socket PLIC hart topology configuration string */
  1030. plic_hart_config = riscv_plic_hart_config_string(hart_count);
  1031. /* Per-socket PLIC */
  1032. ret = sifive_plic_create(
  1033. memmap[VIRT_PLIC].base + socket * memmap[VIRT_PLIC].size,
  1034. plic_hart_config, hart_count, base_hartid,
  1035. VIRT_IRQCHIP_NUM_SOURCES,
  1036. ((1U << VIRT_IRQCHIP_NUM_PRIO_BITS) - 1),
  1037. VIRT_PLIC_PRIORITY_BASE,
  1038. VIRT_PLIC_PENDING_BASE,
  1039. VIRT_PLIC_ENABLE_BASE,
  1040. VIRT_PLIC_ENABLE_STRIDE,
  1041. VIRT_PLIC_CONTEXT_BASE,
  1042. VIRT_PLIC_CONTEXT_STRIDE,
  1043. memmap[VIRT_PLIC].size);
  1044. return ret;
  1045. }
  1046. static DeviceState *virt_create_aia(RISCVVirtAIAType aia_type, int aia_guests,
  1047. const MemMapEntry *memmap, int socket,
  1048. int base_hartid, int hart_count)
  1049. {
  1050. int i;
  1051. hwaddr addr;
  1052. uint32_t guest_bits;
  1053. DeviceState *aplic_s = NULL;
  1054. DeviceState *aplic_m = NULL;
  1055. bool msimode = aia_type == VIRT_AIA_TYPE_APLIC_IMSIC;
  1056. if (msimode) {
  1057. if (!kvm_enabled()) {
  1058. /* Per-socket M-level IMSICs */
  1059. addr = memmap[VIRT_IMSIC_M].base +
  1060. socket * VIRT_IMSIC_GROUP_MAX_SIZE;
  1061. for (i = 0; i < hart_count; i++) {
  1062. riscv_imsic_create(addr + i * IMSIC_HART_SIZE(0),
  1063. base_hartid + i, true, 1,
  1064. VIRT_IRQCHIP_NUM_MSIS);
  1065. }
  1066. }
  1067. /* Per-socket S-level IMSICs */
  1068. guest_bits = imsic_num_bits(aia_guests + 1);
  1069. addr = memmap[VIRT_IMSIC_S].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
  1070. for (i = 0; i < hart_count; i++) {
  1071. riscv_imsic_create(addr + i * IMSIC_HART_SIZE(guest_bits),
  1072. base_hartid + i, false, 1 + aia_guests,
  1073. VIRT_IRQCHIP_NUM_MSIS);
  1074. }
  1075. }
  1076. if (!kvm_enabled()) {
  1077. /* Per-socket M-level APLIC */
  1078. aplic_m = riscv_aplic_create(memmap[VIRT_APLIC_M].base +
  1079. socket * memmap[VIRT_APLIC_M].size,
  1080. memmap[VIRT_APLIC_M].size,
  1081. (msimode) ? 0 : base_hartid,
  1082. (msimode) ? 0 : hart_count,
  1083. VIRT_IRQCHIP_NUM_SOURCES,
  1084. VIRT_IRQCHIP_NUM_PRIO_BITS,
  1085. msimode, true, NULL);
  1086. }
  1087. /* Per-socket S-level APLIC */
  1088. aplic_s = riscv_aplic_create(memmap[VIRT_APLIC_S].base +
  1089. socket * memmap[VIRT_APLIC_S].size,
  1090. memmap[VIRT_APLIC_S].size,
  1091. (msimode) ? 0 : base_hartid,
  1092. (msimode) ? 0 : hart_count,
  1093. VIRT_IRQCHIP_NUM_SOURCES,
  1094. VIRT_IRQCHIP_NUM_PRIO_BITS,
  1095. msimode, false, aplic_m);
  1096. return kvm_enabled() ? aplic_s : aplic_m;
  1097. }
  1098. static void create_platform_bus(RISCVVirtState *s, DeviceState *irqchip)
  1099. {
  1100. DeviceState *dev;
  1101. SysBusDevice *sysbus;
  1102. const MemMapEntry *memmap = virt_memmap;
  1103. int i;
  1104. MemoryRegion *sysmem = get_system_memory();
  1105. dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
  1106. dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
  1107. qdev_prop_set_uint32(dev, "num_irqs", VIRT_PLATFORM_BUS_NUM_IRQS);
  1108. qdev_prop_set_uint32(dev, "mmio_size", memmap[VIRT_PLATFORM_BUS].size);
  1109. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  1110. s->platform_bus_dev = dev;
  1111. sysbus = SYS_BUS_DEVICE(dev);
  1112. for (i = 0; i < VIRT_PLATFORM_BUS_NUM_IRQS; i++) {
  1113. int irq = VIRT_PLATFORM_BUS_IRQ + i;
  1114. sysbus_connect_irq(sysbus, i, qdev_get_gpio_in(irqchip, irq));
  1115. }
  1116. memory_region_add_subregion(sysmem,
  1117. memmap[VIRT_PLATFORM_BUS].base,
  1118. sysbus_mmio_get_region(sysbus, 0));
  1119. }
  1120. static void virt_build_smbios(RISCVVirtState *s)
  1121. {
  1122. MachineClass *mc = MACHINE_GET_CLASS(s);
  1123. MachineState *ms = MACHINE(s);
  1124. uint8_t *smbios_tables, *smbios_anchor;
  1125. size_t smbios_tables_len, smbios_anchor_len;
  1126. struct smbios_phys_mem_area mem_array;
  1127. const char *product = "QEMU Virtual Machine";
  1128. if (kvm_enabled()) {
  1129. product = "KVM Virtual Machine";
  1130. }
  1131. smbios_set_defaults("QEMU", product, mc->name);
  1132. if (riscv_is_32bit(&s->soc[0])) {
  1133. smbios_set_default_processor_family(0x200);
  1134. } else {
  1135. smbios_set_default_processor_family(0x201);
  1136. }
  1137. /* build the array of physical mem area from base_memmap */
  1138. mem_array.address = s->memmap[VIRT_DRAM].base;
  1139. mem_array.length = ms->ram_size;
  1140. smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64,
  1141. &mem_array, 1,
  1142. &smbios_tables, &smbios_tables_len,
  1143. &smbios_anchor, &smbios_anchor_len,
  1144. &error_fatal);
  1145. if (smbios_anchor) {
  1146. fw_cfg_add_file(s->fw_cfg, "etc/smbios/smbios-tables",
  1147. smbios_tables, smbios_tables_len);
  1148. fw_cfg_add_file(s->fw_cfg, "etc/smbios/smbios-anchor",
  1149. smbios_anchor, smbios_anchor_len);
  1150. }
  1151. }
  1152. static void virt_machine_done(Notifier *notifier, void *data)
  1153. {
  1154. RISCVVirtState *s = container_of(notifier, RISCVVirtState,
  1155. machine_done);
  1156. const MemMapEntry *memmap = virt_memmap;
  1157. MachineState *machine = MACHINE(s);
  1158. hwaddr start_addr = memmap[VIRT_DRAM].base;
  1159. target_ulong firmware_end_addr, kernel_start_addr;
  1160. const char *firmware_name = riscv_default_firmware_name(&s->soc[0]);
  1161. uint64_t fdt_load_addr;
  1162. uint64_t kernel_entry = 0;
  1163. BlockBackend *pflash_blk0;
  1164. /*
  1165. * An user provided dtb must include everything, including
  1166. * dynamic sysbus devices. Our FDT needs to be finalized.
  1167. */
  1168. if (machine->dtb == NULL) {
  1169. finalize_fdt(s);
  1170. }
  1171. /*
  1172. * Only direct boot kernel is currently supported for KVM VM,
  1173. * so the "-bios" parameter is not supported when KVM is enabled.
  1174. */
  1175. if (kvm_enabled()) {
  1176. if (machine->firmware) {
  1177. if (strcmp(machine->firmware, "none")) {
  1178. error_report("Machine mode firmware is not supported in "
  1179. "combination with KVM.");
  1180. exit(1);
  1181. }
  1182. } else {
  1183. machine->firmware = g_strdup("none");
  1184. }
  1185. }
  1186. firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
  1187. &start_addr, NULL);
  1188. pflash_blk0 = pflash_cfi01_get_blk(s->flash[0]);
  1189. if (pflash_blk0) {
  1190. if (machine->firmware && !strcmp(machine->firmware, "none") &&
  1191. !kvm_enabled()) {
  1192. /*
  1193. * Pflash was supplied but bios is none and not KVM guest,
  1194. * let's overwrite the address we jump to after reset to
  1195. * the base of the flash.
  1196. */
  1197. start_addr = virt_memmap[VIRT_FLASH].base;
  1198. } else {
  1199. /*
  1200. * Pflash was supplied but either KVM guest or bios is not none.
  1201. * In this case, base of the flash would contain S-mode payload.
  1202. */
  1203. riscv_setup_firmware_boot(machine);
  1204. kernel_entry = virt_memmap[VIRT_FLASH].base;
  1205. }
  1206. }
  1207. if (machine->kernel_filename && !kernel_entry) {
  1208. kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
  1209. firmware_end_addr);
  1210. kernel_entry = riscv_load_kernel(machine, &s->soc[0],
  1211. kernel_start_addr, true, NULL);
  1212. }
  1213. fdt_load_addr = riscv_compute_fdt_addr(memmap[VIRT_DRAM].base,
  1214. memmap[VIRT_DRAM].size,
  1215. machine);
  1216. riscv_load_fdt(fdt_load_addr, machine->fdt);
  1217. /* load the reset vector */
  1218. riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
  1219. virt_memmap[VIRT_MROM].base,
  1220. virt_memmap[VIRT_MROM].size, kernel_entry,
  1221. fdt_load_addr);
  1222. /*
  1223. * Only direct boot kernel is currently supported for KVM VM,
  1224. * So here setup kernel start address and fdt address.
  1225. * TODO:Support firmware loading and integrate to TCG start
  1226. */
  1227. if (kvm_enabled()) {
  1228. riscv_setup_direct_kernel(kernel_entry, fdt_load_addr);
  1229. }
  1230. virt_build_smbios(s);
  1231. if (virt_is_acpi_enabled(s)) {
  1232. virt_acpi_setup(s);
  1233. }
  1234. }
  1235. static void virt_machine_init(MachineState *machine)
  1236. {
  1237. const MemMapEntry *memmap = virt_memmap;
  1238. RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
  1239. MemoryRegion *system_memory = get_system_memory();
  1240. MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
  1241. DeviceState *mmio_irqchip, *virtio_irqchip, *pcie_irqchip;
  1242. int i, base_hartid, hart_count;
  1243. int socket_count = riscv_socket_count(machine);
  1244. /* Check socket count limit */
  1245. if (VIRT_SOCKETS_MAX < socket_count) {
  1246. error_report("number of sockets/nodes should be less than %d",
  1247. VIRT_SOCKETS_MAX);
  1248. exit(1);
  1249. }
  1250. if (!virt_aclint_allowed() && s->have_aclint) {
  1251. error_report("'aclint' is only available with TCG acceleration");
  1252. exit(1);
  1253. }
  1254. /* Initialize sockets */
  1255. mmio_irqchip = virtio_irqchip = pcie_irqchip = NULL;
  1256. for (i = 0; i < socket_count; i++) {
  1257. g_autofree char *soc_name = g_strdup_printf("soc%d", i);
  1258. if (!riscv_socket_check_hartids(machine, i)) {
  1259. error_report("discontinuous hartids in socket%d", i);
  1260. exit(1);
  1261. }
  1262. base_hartid = riscv_socket_first_hartid(machine, i);
  1263. if (base_hartid < 0) {
  1264. error_report("can't find hartid base for socket%d", i);
  1265. exit(1);
  1266. }
  1267. hart_count = riscv_socket_hart_count(machine, i);
  1268. if (hart_count < 0) {
  1269. error_report("can't find hart count for socket%d", i);
  1270. exit(1);
  1271. }
  1272. object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
  1273. TYPE_RISCV_HART_ARRAY);
  1274. object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
  1275. machine->cpu_type, &error_abort);
  1276. object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
  1277. base_hartid, &error_abort);
  1278. object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
  1279. hart_count, &error_abort);
  1280. sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
  1281. if (virt_aclint_allowed() && s->have_aclint) {
  1282. if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
  1283. /* Per-socket ACLINT MTIMER */
  1284. riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
  1285. i * RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
  1286. RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
  1287. base_hartid, hart_count,
  1288. RISCV_ACLINT_DEFAULT_MTIMECMP,
  1289. RISCV_ACLINT_DEFAULT_MTIME,
  1290. RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
  1291. } else {
  1292. /* Per-socket ACLINT MSWI, MTIMER, and SSWI */
  1293. riscv_aclint_swi_create(memmap[VIRT_CLINT].base +
  1294. i * memmap[VIRT_CLINT].size,
  1295. base_hartid, hart_count, false);
  1296. riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
  1297. i * memmap[VIRT_CLINT].size +
  1298. RISCV_ACLINT_SWI_SIZE,
  1299. RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
  1300. base_hartid, hart_count,
  1301. RISCV_ACLINT_DEFAULT_MTIMECMP,
  1302. RISCV_ACLINT_DEFAULT_MTIME,
  1303. RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
  1304. riscv_aclint_swi_create(memmap[VIRT_ACLINT_SSWI].base +
  1305. i * memmap[VIRT_ACLINT_SSWI].size,
  1306. base_hartid, hart_count, true);
  1307. }
  1308. } else if (tcg_enabled()) {
  1309. /* Per-socket SiFive CLINT */
  1310. riscv_aclint_swi_create(
  1311. memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
  1312. base_hartid, hart_count, false);
  1313. riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
  1314. i * memmap[VIRT_CLINT].size + RISCV_ACLINT_SWI_SIZE,
  1315. RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
  1316. RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
  1317. RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
  1318. }
  1319. /* Per-socket interrupt controller */
  1320. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  1321. s->irqchip[i] = virt_create_plic(memmap, i,
  1322. base_hartid, hart_count);
  1323. } else {
  1324. s->irqchip[i] = virt_create_aia(s->aia_type, s->aia_guests,
  1325. memmap, i, base_hartid,
  1326. hart_count);
  1327. }
  1328. /* Try to use different IRQCHIP instance based device type */
  1329. if (i == 0) {
  1330. mmio_irqchip = s->irqchip[i];
  1331. virtio_irqchip = s->irqchip[i];
  1332. pcie_irqchip = s->irqchip[i];
  1333. }
  1334. if (i == 1) {
  1335. virtio_irqchip = s->irqchip[i];
  1336. pcie_irqchip = s->irqchip[i];
  1337. }
  1338. if (i == 2) {
  1339. pcie_irqchip = s->irqchip[i];
  1340. }
  1341. }
  1342. if (kvm_enabled() && virt_use_kvm_aia(s)) {
  1343. kvm_riscv_aia_create(machine, IMSIC_MMIO_GROUP_MIN_SHIFT,
  1344. VIRT_IRQCHIP_NUM_SOURCES, VIRT_IRQCHIP_NUM_MSIS,
  1345. memmap[VIRT_APLIC_S].base,
  1346. memmap[VIRT_IMSIC_S].base,
  1347. s->aia_guests);
  1348. }
  1349. if (riscv_is_32bit(&s->soc[0])) {
  1350. #if HOST_LONG_BITS == 64
  1351. /* limit RAM size in a 32-bit system */
  1352. if (machine->ram_size > 10 * GiB) {
  1353. machine->ram_size = 10 * GiB;
  1354. error_report("Limiting RAM size to 10 GiB");
  1355. }
  1356. #endif
  1357. virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
  1358. virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
  1359. } else {
  1360. virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
  1361. virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
  1362. virt_high_pcie_memmap.base =
  1363. ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
  1364. }
  1365. s->memmap = virt_memmap;
  1366. /* register system main memory (actual RAM) */
  1367. memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
  1368. machine->ram);
  1369. /* boot rom */
  1370. memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
  1371. memmap[VIRT_MROM].size, &error_fatal);
  1372. memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
  1373. mask_rom);
  1374. /*
  1375. * Init fw_cfg. Must be done before riscv_load_fdt, otherwise the
  1376. * device tree cannot be altered and we get FDT_ERR_NOSPACE.
  1377. */
  1378. s->fw_cfg = create_fw_cfg(machine);
  1379. rom_set_fw(s->fw_cfg);
  1380. /* SiFive Test MMIO device */
  1381. sifive_test_create(memmap[VIRT_TEST].base);
  1382. /* VirtIO MMIO devices */
  1383. for (i = 0; i < VIRTIO_COUNT; i++) {
  1384. sysbus_create_simple("virtio-mmio",
  1385. memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
  1386. qdev_get_gpio_in(virtio_irqchip, VIRTIO_IRQ + i));
  1387. }
  1388. gpex_pcie_init(system_memory, pcie_irqchip, s);
  1389. create_platform_bus(s, mmio_irqchip);
  1390. serial_mm_init(system_memory, memmap[VIRT_UART0].base,
  1391. 0, qdev_get_gpio_in(mmio_irqchip, UART0_IRQ), 399193,
  1392. serial_hd(0), DEVICE_LITTLE_ENDIAN);
  1393. sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
  1394. qdev_get_gpio_in(mmio_irqchip, RTC_IRQ));
  1395. for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
  1396. /* Map legacy -drive if=pflash to machine properties */
  1397. pflash_cfi01_legacy_drive(s->flash[i],
  1398. drive_get(IF_PFLASH, 0, i));
  1399. }
  1400. virt_flash_map(s, system_memory);
  1401. /* load/create device tree */
  1402. if (machine->dtb) {
  1403. machine->fdt = load_device_tree(machine->dtb, &s->fdt_size);
  1404. if (!machine->fdt) {
  1405. error_report("load_device_tree() failed");
  1406. exit(1);
  1407. }
  1408. } else {
  1409. create_fdt(s, memmap);
  1410. }
  1411. s->machine_done.notify = virt_machine_done;
  1412. qemu_add_machine_init_done_notifier(&s->machine_done);
  1413. }
  1414. static void virt_machine_instance_init(Object *obj)
  1415. {
  1416. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1417. virt_flash_create(s);
  1418. s->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
  1419. s->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
  1420. s->acpi = ON_OFF_AUTO_AUTO;
  1421. }
  1422. static char *virt_get_aia_guests(Object *obj, Error **errp)
  1423. {
  1424. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1425. return g_strdup_printf("%d", s->aia_guests);
  1426. }
  1427. static void virt_set_aia_guests(Object *obj, const char *val, Error **errp)
  1428. {
  1429. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1430. s->aia_guests = atoi(val);
  1431. if (s->aia_guests < 0 || s->aia_guests > VIRT_IRQCHIP_MAX_GUESTS) {
  1432. error_setg(errp, "Invalid number of AIA IMSIC guests");
  1433. error_append_hint(errp, "Valid values be between 0 and %d.\n",
  1434. VIRT_IRQCHIP_MAX_GUESTS);
  1435. }
  1436. }
  1437. static char *virt_get_aia(Object *obj, Error **errp)
  1438. {
  1439. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1440. const char *val;
  1441. switch (s->aia_type) {
  1442. case VIRT_AIA_TYPE_APLIC:
  1443. val = "aplic";
  1444. break;
  1445. case VIRT_AIA_TYPE_APLIC_IMSIC:
  1446. val = "aplic-imsic";
  1447. break;
  1448. default:
  1449. val = "none";
  1450. break;
  1451. };
  1452. return g_strdup(val);
  1453. }
  1454. static void virt_set_aia(Object *obj, const char *val, Error **errp)
  1455. {
  1456. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1457. if (!strcmp(val, "none")) {
  1458. s->aia_type = VIRT_AIA_TYPE_NONE;
  1459. } else if (!strcmp(val, "aplic")) {
  1460. s->aia_type = VIRT_AIA_TYPE_APLIC;
  1461. } else if (!strcmp(val, "aplic-imsic")) {
  1462. s->aia_type = VIRT_AIA_TYPE_APLIC_IMSIC;
  1463. } else {
  1464. error_setg(errp, "Invalid AIA interrupt controller type");
  1465. error_append_hint(errp, "Valid values are none, aplic, and "
  1466. "aplic-imsic.\n");
  1467. }
  1468. }
  1469. static bool virt_get_aclint(Object *obj, Error **errp)
  1470. {
  1471. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1472. return s->have_aclint;
  1473. }
  1474. static void virt_set_aclint(Object *obj, bool value, Error **errp)
  1475. {
  1476. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1477. s->have_aclint = value;
  1478. }
  1479. bool virt_is_acpi_enabled(RISCVVirtState *s)
  1480. {
  1481. return s->acpi != ON_OFF_AUTO_OFF;
  1482. }
  1483. static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
  1484. void *opaque, Error **errp)
  1485. {
  1486. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1487. OnOffAuto acpi = s->acpi;
  1488. visit_type_OnOffAuto(v, name, &acpi, errp);
  1489. }
  1490. static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
  1491. void *opaque, Error **errp)
  1492. {
  1493. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1494. visit_type_OnOffAuto(v, name, &s->acpi, errp);
  1495. }
  1496. static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
  1497. DeviceState *dev)
  1498. {
  1499. MachineClass *mc = MACHINE_GET_CLASS(machine);
  1500. if (device_is_dynamic_sysbus(mc, dev) ||
  1501. object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
  1502. return HOTPLUG_HANDLER(machine);
  1503. }
  1504. return NULL;
  1505. }
  1506. static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
  1507. DeviceState *dev, Error **errp)
  1508. {
  1509. RISCVVirtState *s = RISCV_VIRT_MACHINE(hotplug_dev);
  1510. if (s->platform_bus_dev) {
  1511. MachineClass *mc = MACHINE_GET_CLASS(s);
  1512. if (device_is_dynamic_sysbus(mc, dev)) {
  1513. platform_bus_link_device(PLATFORM_BUS_DEVICE(s->platform_bus_dev),
  1514. SYS_BUS_DEVICE(dev));
  1515. }
  1516. }
  1517. if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
  1518. create_fdt_virtio_iommu(s, pci_get_bdf(PCI_DEVICE(dev)));
  1519. }
  1520. }
  1521. static void virt_machine_class_init(ObjectClass *oc, void *data)
  1522. {
  1523. MachineClass *mc = MACHINE_CLASS(oc);
  1524. HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
  1525. mc->desc = "RISC-V VirtIO board";
  1526. mc->init = virt_machine_init;
  1527. mc->max_cpus = VIRT_CPUS_MAX;
  1528. mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
  1529. mc->block_default_type = IF_VIRTIO;
  1530. mc->no_cdrom = 1;
  1531. mc->pci_allow_0_address = true;
  1532. mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
  1533. mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
  1534. mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
  1535. mc->numa_mem_supported = true;
  1536. /* platform instead of architectural choice */
  1537. mc->cpu_cluster_has_numa_boundary = true;
  1538. mc->default_ram_id = "riscv_virt_board.ram";
  1539. assert(!mc->get_hotplug_handler);
  1540. mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
  1541. hc->plug = virt_machine_device_plug_cb;
  1542. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
  1543. #ifdef CONFIG_TPM
  1544. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
  1545. #endif
  1546. object_class_property_add_bool(oc, "aclint", virt_get_aclint,
  1547. virt_set_aclint);
  1548. object_class_property_set_description(oc, "aclint",
  1549. "(TCG only) Set on/off to "
  1550. "enable/disable emulating "
  1551. "ACLINT devices");
  1552. object_class_property_add_str(oc, "aia", virt_get_aia,
  1553. virt_set_aia);
  1554. object_class_property_set_description(oc, "aia",
  1555. "Set type of AIA interrupt "
  1556. "controller. Valid values are "
  1557. "none, aplic, and aplic-imsic.");
  1558. object_class_property_add_str(oc, "aia-guests",
  1559. virt_get_aia_guests,
  1560. virt_set_aia_guests);
  1561. {
  1562. g_autofree char *str =
  1563. g_strdup_printf("Set number of guest MMIO pages for AIA IMSIC. "
  1564. "Valid value should be between 0 and %d.",
  1565. VIRT_IRQCHIP_MAX_GUESTS);
  1566. object_class_property_set_description(oc, "aia-guests", str);
  1567. }
  1568. object_class_property_add(oc, "acpi", "OnOffAuto",
  1569. virt_get_acpi, virt_set_acpi,
  1570. NULL, NULL);
  1571. object_class_property_set_description(oc, "acpi",
  1572. "Enable ACPI");
  1573. }
  1574. static const TypeInfo virt_machine_typeinfo = {
  1575. .name = MACHINE_TYPE_NAME("virt"),
  1576. .parent = TYPE_MACHINE,
  1577. .class_init = virt_machine_class_init,
  1578. .instance_init = virt_machine_instance_init,
  1579. .instance_size = sizeof(RISCVVirtState),
  1580. .interfaces = (InterfaceInfo[]) {
  1581. { TYPE_HOTPLUG_HANDLER },
  1582. { }
  1583. },
  1584. };
  1585. static void virt_machine_init_register_types(void)
  1586. {
  1587. type_register_static(&virt_machine_typeinfo);
  1588. }
  1589. type_init(virt_machine_init_register_types)