pnv.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982
  1. /*
  2. * QEMU PowerPC PowerNV machine model
  3. *
  4. * Copyright (c) 2016, IBM Corporation.
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/datadir.h"
  21. #include "qemu/units.h"
  22. #include "qemu/cutils.h"
  23. #include "qapi/error.h"
  24. #include "sysemu/qtest.h"
  25. #include "sysemu/sysemu.h"
  26. #include "sysemu/numa.h"
  27. #include "sysemu/reset.h"
  28. #include "sysemu/runstate.h"
  29. #include "sysemu/cpus.h"
  30. #include "sysemu/device_tree.h"
  31. #include "sysemu/hw_accel.h"
  32. #include "target/ppc/cpu.h"
  33. #include "hw/ppc/fdt.h"
  34. #include "hw/ppc/ppc.h"
  35. #include "hw/ppc/pnv.h"
  36. #include "hw/ppc/pnv_core.h"
  37. #include "hw/loader.h"
  38. #include "hw/nmi.h"
  39. #include "qapi/visitor.h"
  40. #include "hw/intc/intc.h"
  41. #include "hw/ipmi/ipmi.h"
  42. #include "target/ppc/mmu-hash64.h"
  43. #include "hw/pci/msi.h"
  44. #include "hw/pci-host/pnv_phb.h"
  45. #include "hw/pci-host/pnv_phb3.h"
  46. #include "hw/pci-host/pnv_phb4.h"
  47. #include "hw/ppc/xics.h"
  48. #include "hw/qdev-properties.h"
  49. #include "hw/ppc/pnv_chip.h"
  50. #include "hw/ppc/pnv_xscom.h"
  51. #include "hw/ppc/pnv_pnor.h"
  52. #include "hw/isa/isa.h"
  53. #include "hw/char/serial-isa.h"
  54. #include "hw/rtc/mc146818rtc.h"
  55. #include <libfdt.h>
  56. #define FDT_MAX_SIZE (1 * MiB)
  57. #define FW_FILE_NAME "skiboot.lid"
  58. #define FW_LOAD_ADDR 0x0
  59. #define FW_MAX_SIZE (16 * MiB)
  60. #define KERNEL_LOAD_ADDR 0x20000000
  61. #define KERNEL_MAX_SIZE (128 * MiB)
  62. #define INITRD_LOAD_ADDR 0x28000000
  63. #define INITRD_MAX_SIZE (128 * MiB)
  64. static const char *pnv_chip_core_typename(const PnvChip *o)
  65. {
  66. const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
  67. int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
  68. char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
  69. const char *core_type = object_class_get_name(object_class_by_name(s));
  70. g_free(s);
  71. return core_type;
  72. }
  73. /*
  74. * On Power Systems E880 (POWER8), the max cpus (threads) should be :
  75. * 4 * 4 sockets * 12 cores * 8 threads = 1536
  76. * Let's make it 2^11
  77. */
  78. #define MAX_CPUS 2048
  79. /*
  80. * Memory nodes are created by hostboot, one for each range of memory
  81. * that has a different "affinity". In practice, it means one range
  82. * per chip.
  83. */
  84. static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
  85. {
  86. char *mem_name;
  87. uint64_t mem_reg_property[2];
  88. int off;
  89. mem_reg_property[0] = cpu_to_be64(start);
  90. mem_reg_property[1] = cpu_to_be64(size);
  91. mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
  92. off = fdt_add_subnode(fdt, 0, mem_name);
  93. g_free(mem_name);
  94. _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
  95. _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
  96. sizeof(mem_reg_property))));
  97. _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
  98. }
  99. static int get_cpus_node(void *fdt)
  100. {
  101. int cpus_offset = fdt_path_offset(fdt, "/cpus");
  102. if (cpus_offset < 0) {
  103. cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
  104. if (cpus_offset) {
  105. _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
  106. _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
  107. }
  108. }
  109. _FDT(cpus_offset);
  110. return cpus_offset;
  111. }
  112. /*
  113. * The PowerNV cores (and threads) need to use real HW ids and not an
  114. * incremental index like it has been done on other platforms. This HW
  115. * id is stored in the CPU PIR, it is used to create cpu nodes in the
  116. * device tree, used in XSCOM to address cores and in interrupt
  117. * servers.
  118. */
  119. static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
  120. {
  121. PowerPCCPU *cpu = pc->threads[0];
  122. CPUState *cs = CPU(cpu);
  123. DeviceClass *dc = DEVICE_GET_CLASS(cs);
  124. int smt_threads = CPU_CORE(pc)->nr_threads;
  125. CPUPPCState *env = &cpu->env;
  126. PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
  127. PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
  128. uint32_t *servers_prop;
  129. int i;
  130. uint32_t pir, tir;
  131. uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
  132. 0xffffffff, 0xffffffff};
  133. uint32_t tbfreq = PNV_TIMEBASE_FREQ;
  134. uint32_t cpufreq = 1000000000;
  135. uint32_t page_sizes_prop[64];
  136. size_t page_sizes_prop_size;
  137. int offset;
  138. char *nodename;
  139. int cpus_offset = get_cpus_node(fdt);
  140. pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
  141. /* Only one DT node per (big) core */
  142. g_assert(tir == 0);
  143. nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
  144. offset = fdt_add_subnode(fdt, cpus_offset, nodename);
  145. _FDT(offset);
  146. g_free(nodename);
  147. _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
  148. _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
  149. _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
  150. _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
  151. _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
  152. _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
  153. env->dcache_line_size)));
  154. _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
  155. env->dcache_line_size)));
  156. _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
  157. env->icache_line_size)));
  158. _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
  159. env->icache_line_size)));
  160. if (pcc->l1_dcache_size) {
  161. _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
  162. pcc->l1_dcache_size)));
  163. } else {
  164. warn_report("Unknown L1 dcache size for cpu");
  165. }
  166. if (pcc->l1_icache_size) {
  167. _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
  168. pcc->l1_icache_size)));
  169. } else {
  170. warn_report("Unknown L1 icache size for cpu");
  171. }
  172. _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
  173. _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
  174. _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
  175. cpu->hash64_opts->slb_size)));
  176. _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
  177. _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
  178. if (ppc_has_spr(cpu, SPR_PURR)) {
  179. _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
  180. }
  181. if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
  182. _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
  183. segs, sizeof(segs))));
  184. }
  185. /*
  186. * Advertise VMX/VSX (vector extensions) if available
  187. * 0 / no property == no vector extensions
  188. * 1 == VMX / Altivec available
  189. * 2 == VSX available
  190. */
  191. if (env->insns_flags & PPC_ALTIVEC) {
  192. uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
  193. _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
  194. }
  195. /*
  196. * Advertise DFP (Decimal Floating Point) if available
  197. * 0 / no property == no DFP
  198. * 1 == DFP available
  199. */
  200. if (env->insns_flags2 & PPC2_DFP) {
  201. _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
  202. }
  203. page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
  204. sizeof(page_sizes_prop));
  205. if (page_sizes_prop_size) {
  206. _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
  207. page_sizes_prop, page_sizes_prop_size)));
  208. }
  209. /* Build interrupt servers properties */
  210. if (pc->big_core) {
  211. servers_prop = g_new(uint32_t, smt_threads * 2);
  212. for (i = 0; i < smt_threads; i++) {
  213. pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
  214. servers_prop[i * 2] = cpu_to_be32(pir);
  215. pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
  216. servers_prop[i * 2 + 1] = cpu_to_be32(pir);
  217. }
  218. _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
  219. servers_prop, sizeof(*servers_prop) * smt_threads
  220. * 2)));
  221. } else {
  222. servers_prop = g_new(uint32_t, smt_threads);
  223. for (i = 0; i < smt_threads; i++) {
  224. pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
  225. servers_prop[i] = cpu_to_be32(pir);
  226. }
  227. _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
  228. servers_prop, sizeof(*servers_prop) * smt_threads)));
  229. }
  230. g_free(servers_prop);
  231. return offset;
  232. }
  233. static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
  234. uint32_t nr_threads)
  235. {
  236. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
  237. uint32_t pir;
  238. uint64_t addr;
  239. char *name;
  240. const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
  241. uint32_t irange[2], i, rsize;
  242. uint64_t *reg;
  243. int offset;
  244. pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
  245. addr = PNV_ICP_BASE(chip) | (pir << 12);
  246. irange[0] = cpu_to_be32(pir);
  247. irange[1] = cpu_to_be32(nr_threads);
  248. rsize = sizeof(uint64_t) * 2 * nr_threads;
  249. reg = g_malloc(rsize);
  250. for (i = 0; i < nr_threads; i++) {
  251. /* We know P8 PIR is linear with thread id */
  252. reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
  253. reg[i * 2 + 1] = cpu_to_be64(0x1000);
  254. }
  255. name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
  256. offset = fdt_add_subnode(fdt, 0, name);
  257. _FDT(offset);
  258. g_free(name);
  259. _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
  260. _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
  261. _FDT((fdt_setprop_string(fdt, offset, "device_type",
  262. "PowerPC-External-Interrupt-Presentation")));
  263. _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
  264. _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
  265. irange, sizeof(irange))));
  266. _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
  267. _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
  268. g_free(reg);
  269. }
  270. /*
  271. * Adds a PnvPHB to the chip on P8.
  272. * Implemented here, like for defaults PHBs
  273. */
  274. PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
  275. {
  276. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  277. phb->chip = chip;
  278. chip8->phbs[chip8->num_phbs] = phb;
  279. chip8->num_phbs++;
  280. return chip;
  281. }
  282. /*
  283. * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
  284. * HTM is always enabled because TCG does implement HTM, it's just a
  285. * degenerate implementation.
  286. */
  287. static const uint8_t pa_features_207[] = { 24, 0,
  288. 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
  289. 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
  290. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
  291. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
  292. static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
  293. {
  294. static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
  295. int i;
  296. pnv_dt_xscom(chip, fdt, 0,
  297. cpu_to_be64(PNV_XSCOM_BASE(chip)),
  298. cpu_to_be64(PNV_XSCOM_SIZE),
  299. compat, sizeof(compat));
  300. for (i = 0; i < chip->nr_cores; i++) {
  301. PnvCore *pnv_core = chip->cores[i];
  302. int offset;
  303. offset = pnv_dt_core(chip, pnv_core, fdt);
  304. _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
  305. pa_features_207, sizeof(pa_features_207))));
  306. /* Interrupt Control Presenters (ICP). One per core. */
  307. pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
  308. }
  309. if (chip->ram_size) {
  310. pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
  311. }
  312. }
  313. /*
  314. * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
  315. */
  316. static const uint8_t pa_features_300[] = { 66, 0,
  317. /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
  318. /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
  319. 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
  320. /* 6: DS207 */
  321. 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
  322. /* 16: Vector */
  323. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
  324. /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
  325. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
  326. /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
  327. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
  328. /* 32: LE atomic, 34: EBB + ext EBB */
  329. 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
  330. /* 40: Radix MMU */
  331. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
  332. /* 42: PM, 44: PC RA, 46: SC vec'd */
  333. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
  334. /* 48: SIMD, 50: QP BFP, 52: String */
  335. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
  336. /* 54: DecFP, 56: DecI, 58: SHA */
  337. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
  338. /* 60: NM atomic, 62: RNG */
  339. 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
  340. };
  341. static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
  342. {
  343. static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
  344. int i;
  345. pnv_dt_xscom(chip, fdt, 0,
  346. cpu_to_be64(PNV9_XSCOM_BASE(chip)),
  347. cpu_to_be64(PNV9_XSCOM_SIZE),
  348. compat, sizeof(compat));
  349. for (i = 0; i < chip->nr_cores; i++) {
  350. PnvCore *pnv_core = chip->cores[i];
  351. int offset;
  352. offset = pnv_dt_core(chip, pnv_core, fdt);
  353. _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
  354. pa_features_300, sizeof(pa_features_300))));
  355. if (pnv_core->big_core) {
  356. i++; /* Big-core groups two QEMU cores */
  357. }
  358. }
  359. if (chip->ram_size) {
  360. pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
  361. }
  362. pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
  363. }
  364. /*
  365. * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
  366. * always disables copy/paste.
  367. */
  368. static const uint8_t pa_features_31[] = { 74, 0,
  369. /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
  370. /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
  371. 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
  372. /* 6: DS207 */
  373. 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
  374. /* 16: Vector */
  375. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
  376. /* 18: Vec. Scalar, 20: Vec. XOR */
  377. 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
  378. /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
  379. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
  380. /* 32: LE atomic, 34: EBB + ext EBB */
  381. 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
  382. /* 40: Radix MMU */
  383. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
  384. /* 42: PM, 44: PC RA, 46: SC vec'd */
  385. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
  386. /* 48: SIMD, 50: QP BFP, 52: String */
  387. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
  388. /* 54: DecFP, 56: DecI, 58: SHA */
  389. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
  390. /* 60: NM atomic, 62: RNG */
  391. 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
  392. /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
  393. 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
  394. /* 72: [P]HASHST/[P]HASHCHK */
  395. 0x80, 0x00, /* 72 - 73 */
  396. };
  397. static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
  398. {
  399. static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
  400. int i;
  401. pnv_dt_xscom(chip, fdt, 0,
  402. cpu_to_be64(PNV10_XSCOM_BASE(chip)),
  403. cpu_to_be64(PNV10_XSCOM_SIZE),
  404. compat, sizeof(compat));
  405. for (i = 0; i < chip->nr_cores; i++) {
  406. PnvCore *pnv_core = chip->cores[i];
  407. int offset;
  408. offset = pnv_dt_core(chip, pnv_core, fdt);
  409. _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
  410. pa_features_31, sizeof(pa_features_31))));
  411. if (pnv_core->big_core) {
  412. i++; /* Big-core groups two QEMU cores */
  413. }
  414. }
  415. if (chip->ram_size) {
  416. pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
  417. }
  418. pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
  419. }
  420. static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
  421. {
  422. uint32_t io_base = d->ioport_id;
  423. uint32_t io_regs[] = {
  424. cpu_to_be32(1),
  425. cpu_to_be32(io_base),
  426. cpu_to_be32(2)
  427. };
  428. char *name;
  429. int node;
  430. name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
  431. node = fdt_add_subnode(fdt, lpc_off, name);
  432. _FDT(node);
  433. g_free(name);
  434. _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
  435. _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
  436. }
  437. static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
  438. {
  439. const char compatible[] = "ns16550\0pnpPNP,501";
  440. uint32_t io_base = d->ioport_id;
  441. uint32_t io_regs[] = {
  442. cpu_to_be32(1),
  443. cpu_to_be32(io_base),
  444. cpu_to_be32(8)
  445. };
  446. uint32_t irq;
  447. char *name;
  448. int node;
  449. irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
  450. name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
  451. node = fdt_add_subnode(fdt, lpc_off, name);
  452. _FDT(node);
  453. g_free(name);
  454. _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
  455. _FDT((fdt_setprop(fdt, node, "compatible", compatible,
  456. sizeof(compatible))));
  457. _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
  458. _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
  459. _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
  460. _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
  461. fdt_get_phandle(fdt, lpc_off))));
  462. /* This is needed by Linux */
  463. _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
  464. }
  465. static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
  466. {
  467. const char compatible[] = "bt\0ipmi-bt";
  468. uint32_t io_base;
  469. uint32_t io_regs[] = {
  470. cpu_to_be32(1),
  471. 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
  472. cpu_to_be32(3)
  473. };
  474. uint32_t irq;
  475. char *name;
  476. int node;
  477. io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
  478. io_regs[1] = cpu_to_be32(io_base);
  479. irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
  480. name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
  481. node = fdt_add_subnode(fdt, lpc_off, name);
  482. _FDT(node);
  483. g_free(name);
  484. _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
  485. _FDT((fdt_setprop(fdt, node, "compatible", compatible,
  486. sizeof(compatible))));
  487. /* Mark it as reserved to avoid Linux trying to claim it */
  488. _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
  489. _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
  490. _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
  491. fdt_get_phandle(fdt, lpc_off))));
  492. }
  493. typedef struct ForeachPopulateArgs {
  494. void *fdt;
  495. int offset;
  496. } ForeachPopulateArgs;
  497. static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
  498. {
  499. ForeachPopulateArgs *args = opaque;
  500. ISADevice *d = ISA_DEVICE(dev);
  501. if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
  502. pnv_dt_rtc(d, args->fdt, args->offset);
  503. } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
  504. pnv_dt_serial(d, args->fdt, args->offset);
  505. } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
  506. pnv_dt_ipmi_bt(d, args->fdt, args->offset);
  507. } else {
  508. error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
  509. d->ioport_id);
  510. }
  511. return 0;
  512. }
  513. /*
  514. * The default LPC bus of a multichip system is on chip 0. It's
  515. * recognized by the firmware (skiboot) using a "primary" property.
  516. */
  517. static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
  518. {
  519. int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
  520. ForeachPopulateArgs args = {
  521. .fdt = fdt,
  522. .offset = isa_offset,
  523. };
  524. uint32_t phandle;
  525. _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
  526. phandle = qemu_fdt_alloc_phandle(fdt);
  527. assert(phandle > 0);
  528. _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
  529. /*
  530. * ISA devices are not necessarily parented to the ISA bus so we
  531. * can not use object_child_foreach()
  532. */
  533. qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
  534. &args);
  535. }
  536. static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
  537. {
  538. int off;
  539. off = fdt_add_subnode(fdt, 0, "ibm,opal");
  540. off = fdt_add_subnode(fdt, off, "power-mgt");
  541. _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
  542. }
  543. static void *pnv_dt_create(MachineState *machine)
  544. {
  545. PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
  546. PnvMachineState *pnv = PNV_MACHINE(machine);
  547. void *fdt;
  548. char *buf;
  549. int off;
  550. int i;
  551. fdt = g_malloc0(FDT_MAX_SIZE);
  552. _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
  553. /* /qemu node */
  554. _FDT((fdt_add_subnode(fdt, 0, "qemu")));
  555. /* Root node */
  556. _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
  557. _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
  558. _FDT((fdt_setprop_string(fdt, 0, "model",
  559. "IBM PowerNV (emulated by qemu)")));
  560. _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
  561. buf = qemu_uuid_unparse_strdup(&qemu_uuid);
  562. _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
  563. if (qemu_uuid_set) {
  564. _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
  565. }
  566. g_free(buf);
  567. off = fdt_add_subnode(fdt, 0, "chosen");
  568. if (machine->kernel_cmdline) {
  569. _FDT((fdt_setprop_string(fdt, off, "bootargs",
  570. machine->kernel_cmdline)));
  571. }
  572. if (pnv->initrd_size) {
  573. uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
  574. uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
  575. _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
  576. &start_prop, sizeof(start_prop))));
  577. _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
  578. &end_prop, sizeof(end_prop))));
  579. }
  580. /* Populate device tree for each chip */
  581. for (i = 0; i < pnv->num_chips; i++) {
  582. PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
  583. }
  584. /* Populate ISA devices on chip 0 */
  585. pnv_dt_isa(pnv, fdt);
  586. if (pnv->bmc) {
  587. pnv_dt_bmc_sensors(pnv->bmc, fdt);
  588. }
  589. /* Create an extra node for power management on machines that support it */
  590. if (pmc->dt_power_mgt) {
  591. pmc->dt_power_mgt(pnv, fdt);
  592. }
  593. return fdt;
  594. }
  595. static void pnv_powerdown_notify(Notifier *n, void *opaque)
  596. {
  597. PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
  598. if (pnv->bmc) {
  599. pnv_bmc_powerdown(pnv->bmc);
  600. }
  601. }
  602. static void pnv_reset(MachineState *machine, ResetType type)
  603. {
  604. PnvMachineState *pnv = PNV_MACHINE(machine);
  605. IPMIBmc *bmc;
  606. void *fdt;
  607. qemu_devices_reset(type);
  608. /*
  609. * The machine should provide by default an internal BMC simulator.
  610. * If not, try to use the BMC device that was provided on the command
  611. * line.
  612. */
  613. bmc = pnv_bmc_find(&error_fatal);
  614. if (!pnv->bmc) {
  615. if (!bmc) {
  616. if (!qtest_enabled()) {
  617. warn_report("machine has no BMC device. Use '-device "
  618. "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
  619. "to define one");
  620. }
  621. } else {
  622. pnv_bmc_set_pnor(bmc, pnv->pnor);
  623. pnv->bmc = bmc;
  624. }
  625. }
  626. fdt = pnv_dt_create(machine);
  627. /* Pack resulting tree */
  628. _FDT((fdt_pack(fdt)));
  629. qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
  630. cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
  631. /*
  632. * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
  633. * the existing machine->fdt to avoid leaking it during
  634. * a reset.
  635. */
  636. g_free(machine->fdt);
  637. machine->fdt = fdt;
  638. }
  639. static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
  640. {
  641. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  642. qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
  643. qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
  644. return pnv_lpc_isa_create(&chip8->lpc, true, errp);
  645. }
  646. static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
  647. {
  648. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  649. qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
  650. qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
  651. return pnv_lpc_isa_create(&chip8->lpc, false, errp);
  652. }
  653. static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
  654. {
  655. Pnv9Chip *chip9 = PNV9_CHIP(chip);
  656. qemu_irq irq;
  657. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
  658. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
  659. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
  660. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
  661. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
  662. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
  663. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
  664. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
  665. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
  666. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
  667. return pnv_lpc_isa_create(&chip9->lpc, false, errp);
  668. }
  669. static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
  670. {
  671. Pnv10Chip *chip10 = PNV10_CHIP(chip);
  672. qemu_irq irq;
  673. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
  674. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
  675. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
  676. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
  677. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
  678. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
  679. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
  680. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
  681. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
  682. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
  683. return pnv_lpc_isa_create(&chip10->lpc, false, errp);
  684. }
  685. static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
  686. {
  687. return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
  688. }
  689. static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
  690. {
  691. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  692. int i;
  693. ics_pic_print_info(&chip8->psi.ics, buf);
  694. for (i = 0; i < chip8->num_phbs; i++) {
  695. PnvPHB *phb = chip8->phbs[i];
  696. PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
  697. pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
  698. ics_pic_print_info(&phb3->lsis, buf);
  699. }
  700. }
  701. static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
  702. {
  703. GString *buf = opaque;
  704. PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
  705. if (!phb) {
  706. return 0;
  707. }
  708. pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
  709. return 0;
  710. }
  711. static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
  712. {
  713. Pnv9Chip *chip9 = PNV9_CHIP(chip);
  714. pnv_xive_pic_print_info(&chip9->xive, buf);
  715. pnv_psi_pic_print_info(&chip9->psi, buf);
  716. object_child_foreach_recursive(OBJECT(chip),
  717. pnv_chip_power9_pic_print_info_child, buf);
  718. }
  719. static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
  720. uint32_t core_id)
  721. {
  722. return PNV_XSCOM_EX_BASE(core_id);
  723. }
  724. static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
  725. uint32_t core_id)
  726. {
  727. return PNV9_XSCOM_EC_BASE(core_id);
  728. }
  729. static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
  730. uint32_t core_id)
  731. {
  732. return PNV10_XSCOM_EC_BASE(core_id);
  733. }
  734. static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
  735. {
  736. PowerPCCPUClass *ppc_default =
  737. POWERPC_CPU_CLASS(object_class_by_name(default_type));
  738. PowerPCCPUClass *ppc =
  739. POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
  740. return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
  741. }
  742. static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
  743. {
  744. ISADevice *dev = isa_new("isa-ipmi-bt");
  745. object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
  746. object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
  747. isa_realize_and_unref(dev, bus, &error_fatal);
  748. }
  749. static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
  750. {
  751. Pnv10Chip *chip10 = PNV10_CHIP(chip);
  752. pnv_xive2_pic_print_info(&chip10->xive, buf);
  753. pnv_psi_pic_print_info(&chip10->psi, buf);
  754. object_child_foreach_recursive(OBJECT(chip),
  755. pnv_chip_power9_pic_print_info_child, buf);
  756. }
  757. /* Always give the first 1GB to chip 0 else we won't boot */
  758. static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
  759. {
  760. MachineState *machine = MACHINE(pnv);
  761. uint64_t ram_per_chip;
  762. assert(machine->ram_size >= 1 * GiB);
  763. ram_per_chip = machine->ram_size / pnv->num_chips;
  764. if (ram_per_chip >= 1 * GiB) {
  765. return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
  766. }
  767. assert(pnv->num_chips > 1);
  768. ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
  769. return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
  770. }
  771. static void pnv_init(MachineState *machine)
  772. {
  773. const char *bios_name = machine->firmware ?: FW_FILE_NAME;
  774. PnvMachineState *pnv = PNV_MACHINE(machine);
  775. MachineClass *mc = MACHINE_GET_CLASS(machine);
  776. PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
  777. int max_smt_threads = pmc->max_smt_threads;
  778. char *fw_filename;
  779. long fw_size;
  780. uint64_t chip_ram_start = 0;
  781. int i;
  782. char *chip_typename;
  783. DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
  784. DeviceState *dev;
  785. if (kvm_enabled()) {
  786. error_report("machine %s does not support the KVM accelerator",
  787. mc->name);
  788. exit(EXIT_FAILURE);
  789. }
  790. /* allocate RAM */
  791. if (machine->ram_size < mc->default_ram_size) {
  792. char *sz = size_to_str(mc->default_ram_size);
  793. error_report("Invalid RAM size, should be bigger than %s", sz);
  794. g_free(sz);
  795. exit(EXIT_FAILURE);
  796. }
  797. memory_region_add_subregion(get_system_memory(), 0, machine->ram);
  798. /*
  799. * Create our simple PNOR device
  800. */
  801. dev = qdev_new(TYPE_PNV_PNOR);
  802. if (pnor) {
  803. qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
  804. }
  805. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  806. pnv->pnor = PNV_PNOR(dev);
  807. /* load skiboot firmware */
  808. fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  809. if (!fw_filename) {
  810. error_report("Could not find OPAL firmware '%s'", bios_name);
  811. exit(1);
  812. }
  813. fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
  814. if (fw_size < 0) {
  815. error_report("Could not load OPAL firmware '%s'", fw_filename);
  816. exit(1);
  817. }
  818. g_free(fw_filename);
  819. /* load kernel */
  820. if (machine->kernel_filename) {
  821. long kernel_size;
  822. kernel_size = load_image_targphys(machine->kernel_filename,
  823. KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
  824. if (kernel_size < 0) {
  825. error_report("Could not load kernel '%s'",
  826. machine->kernel_filename);
  827. exit(1);
  828. }
  829. }
  830. /* load initrd */
  831. if (machine->initrd_filename) {
  832. pnv->initrd_base = INITRD_LOAD_ADDR;
  833. pnv->initrd_size = load_image_targphys(machine->initrd_filename,
  834. pnv->initrd_base, INITRD_MAX_SIZE);
  835. if (pnv->initrd_size < 0) {
  836. error_report("Could not load initial ram disk '%s'",
  837. machine->initrd_filename);
  838. exit(1);
  839. }
  840. }
  841. /* MSIs are supported on this platform */
  842. msi_nonbroken = true;
  843. /*
  844. * Check compatibility of the specified CPU with the machine
  845. * default.
  846. */
  847. if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
  848. error_report("invalid CPU model '%s' for %s machine",
  849. machine->cpu_type, mc->name);
  850. exit(1);
  851. }
  852. /* Create the processor chips */
  853. i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
  854. chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
  855. i, machine->cpu_type);
  856. if (!object_class_by_name(chip_typename)) {
  857. error_report("invalid chip model '%.*s' for %s machine",
  858. i, machine->cpu_type, mc->name);
  859. exit(1);
  860. }
  861. /* Set lpar-per-core mode if lpar-per-thread is not supported */
  862. if (!pmc->has_lpar_per_thread) {
  863. pnv->lpar_per_core = true;
  864. }
  865. pnv->num_chips =
  866. machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
  867. if (pnv->big_core) {
  868. if (machine->smp.threads % 2 == 1) {
  869. error_report("Cannot support %d threads with big-core option "
  870. "because it must be an even number",
  871. machine->smp.threads);
  872. exit(1);
  873. }
  874. max_smt_threads *= 2;
  875. }
  876. if (machine->smp.threads > max_smt_threads) {
  877. error_report("Cannot support more than %d threads/core "
  878. "on %s machine", max_smt_threads, mc->desc);
  879. if (pmc->max_smt_threads == 4) {
  880. error_report("(use big-core=on for 8 threads per core)");
  881. }
  882. exit(1);
  883. }
  884. if (pnv->big_core) {
  885. /*
  886. * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
  887. * per core, so adjust topology here. pnv_dt_core() processor
  888. * device-tree and TCG SMT code make the 2 cores appear as one big core
  889. * from software point of view. pnv pervasive models and xscoms tend to
  890. * see the big core as 2 small core halves.
  891. */
  892. machine->smp.cores *= 2;
  893. machine->smp.threads /= 2;
  894. }
  895. if (!is_power_of_2(machine->smp.threads)) {
  896. error_report("Cannot support %d threads/core on a powernv "
  897. "machine because it must be a power of 2",
  898. machine->smp.threads);
  899. exit(1);
  900. }
  901. /*
  902. * TODO: should we decide on how many chips we can create based
  903. * on #cores and Venice vs. Murano vs. Naples chip type etc...,
  904. */
  905. if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
  906. error_report("invalid number of chips: '%d'", pnv->num_chips);
  907. error_printf(
  908. "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
  909. exit(1);
  910. }
  911. pnv->chips = g_new0(PnvChip *, pnv->num_chips);
  912. for (i = 0; i < pnv->num_chips; i++) {
  913. char chip_name[32];
  914. Object *chip = OBJECT(qdev_new(chip_typename));
  915. uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i);
  916. pnv->chips[i] = PNV_CHIP(chip);
  917. /* Distribute RAM among the chips */
  918. object_property_set_int(chip, "ram-start", chip_ram_start,
  919. &error_fatal);
  920. object_property_set_int(chip, "ram-size", chip_ram_size,
  921. &error_fatal);
  922. chip_ram_start += chip_ram_size;
  923. snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
  924. object_property_add_child(OBJECT(pnv), chip_name, chip);
  925. object_property_set_int(chip, "chip-id", i, &error_fatal);
  926. object_property_set_int(chip, "nr-cores", machine->smp.cores,
  927. &error_fatal);
  928. object_property_set_int(chip, "nr-threads", machine->smp.threads,
  929. &error_fatal);
  930. object_property_set_bool(chip, "big-core", pnv->big_core,
  931. &error_fatal);
  932. object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
  933. &error_fatal);
  934. /*
  935. * The POWER8 machine use the XICS interrupt interface.
  936. * Propagate the XICS fabric to the chip and its controllers.
  937. */
  938. if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
  939. object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
  940. }
  941. if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
  942. object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
  943. &error_abort);
  944. }
  945. sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
  946. }
  947. g_free(chip_typename);
  948. /* Instantiate ISA bus on chip 0 */
  949. pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
  950. /* Create serial port */
  951. serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
  952. /* Create an RTC ISA device too */
  953. mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
  954. /*
  955. * Create the machine BMC simulator and the IPMI BT device for
  956. * communication with the BMC
  957. */
  958. if (defaults_enabled()) {
  959. pnv->bmc = pnv_bmc_create(pnv->pnor);
  960. pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
  961. }
  962. /*
  963. * The PNOR is mapped on the LPC FW address space by the BMC.
  964. * Since we can not reach the remote BMC machine with LPC memops,
  965. * map it always for now.
  966. */
  967. memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
  968. &pnv->pnor->mmio);
  969. /*
  970. * OpenPOWER systems use a IPMI SEL Event message to notify the
  971. * host to powerdown
  972. */
  973. pnv->powerdown_notifier.notify = pnv_powerdown_notify;
  974. qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
  975. /*
  976. * Create/Connect any machine-specific I2C devices
  977. */
  978. if (pmc->i2c_init) {
  979. pmc->i2c_init(pnv);
  980. }
  981. }
  982. /*
  983. * 0:21 Reserved - Read as zeros
  984. * 22:24 Chip ID
  985. * 25:28 Core number
  986. * 29:31 Thread ID
  987. */
  988. static void pnv_get_pir_tir_p8(PnvChip *chip,
  989. uint32_t core_id, uint32_t thread_id,
  990. uint32_t *pir, uint32_t *tir)
  991. {
  992. if (pir) {
  993. *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
  994. }
  995. if (tir) {
  996. *tir = thread_id;
  997. }
  998. }
  999. static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
  1000. Error **errp)
  1001. {
  1002. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  1003. Error *local_err = NULL;
  1004. Object *obj;
  1005. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1006. obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
  1007. if (local_err) {
  1008. error_propagate(errp, local_err);
  1009. return;
  1010. }
  1011. pnv_cpu->intc = obj;
  1012. }
  1013. static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
  1014. {
  1015. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1016. icp_reset(ICP(pnv_cpu->intc));
  1017. }
  1018. static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
  1019. {
  1020. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1021. icp_destroy(ICP(pnv_cpu->intc));
  1022. pnv_cpu->intc = NULL;
  1023. }
  1024. static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
  1025. GString *buf)
  1026. {
  1027. icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
  1028. }
  1029. /*
  1030. * 0:48 Reserved - Read as zeroes
  1031. * 49:52 Node ID
  1032. * 53:55 Chip ID
  1033. * 56 Reserved - Read as zero
  1034. * 57:61 Core number
  1035. * 62:63 Thread ID
  1036. *
  1037. * We only care about the lower bits. uint32_t is fine for the moment.
  1038. */
  1039. static void pnv_get_pir_tir_p9(PnvChip *chip,
  1040. uint32_t core_id, uint32_t thread_id,
  1041. uint32_t *pir, uint32_t *tir)
  1042. {
  1043. if (chip->big_core) {
  1044. /* Big-core interleaves thread ID between small-cores */
  1045. thread_id <<= 1;
  1046. thread_id |= core_id & 1;
  1047. core_id >>= 1;
  1048. if (pir) {
  1049. *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
  1050. }
  1051. } else {
  1052. if (pir) {
  1053. *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
  1054. }
  1055. }
  1056. if (tir) {
  1057. *tir = thread_id;
  1058. }
  1059. }
  1060. /*
  1061. * 0:48 Reserved - Read as zeroes
  1062. * 49:52 Node ID
  1063. * 53:55 Chip ID
  1064. * 56 Reserved - Read as zero
  1065. * 57:59 Quad ID
  1066. * 60 Core Chiplet Pair ID
  1067. * 61:63 Thread/Core Chiplet ID t0-t2
  1068. *
  1069. * We only care about the lower bits. uint32_t is fine for the moment.
  1070. */
  1071. static void pnv_get_pir_tir_p10(PnvChip *chip,
  1072. uint32_t core_id, uint32_t thread_id,
  1073. uint32_t *pir, uint32_t *tir)
  1074. {
  1075. if (chip->big_core) {
  1076. /* Big-core interleaves thread ID between small-cores */
  1077. thread_id <<= 1;
  1078. thread_id |= core_id & 1;
  1079. core_id >>= 1;
  1080. if (pir) {
  1081. *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
  1082. }
  1083. } else {
  1084. if (pir) {
  1085. *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
  1086. }
  1087. }
  1088. if (tir) {
  1089. *tir = thread_id;
  1090. }
  1091. }
  1092. static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
  1093. Error **errp)
  1094. {
  1095. Pnv9Chip *chip9 = PNV9_CHIP(chip);
  1096. Error *local_err = NULL;
  1097. Object *obj;
  1098. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1099. /*
  1100. * The core creates its interrupt presenter but the XIVE interrupt
  1101. * controller object is initialized afterwards. Hopefully, it's
  1102. * only used at runtime.
  1103. */
  1104. obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
  1105. &local_err);
  1106. if (local_err) {
  1107. error_propagate(errp, local_err);
  1108. return;
  1109. }
  1110. pnv_cpu->intc = obj;
  1111. }
  1112. static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
  1113. {
  1114. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1115. xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
  1116. }
  1117. static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
  1118. {
  1119. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1120. xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
  1121. pnv_cpu->intc = NULL;
  1122. }
  1123. static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
  1124. GString *buf)
  1125. {
  1126. xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
  1127. }
  1128. static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
  1129. Error **errp)
  1130. {
  1131. Pnv10Chip *chip10 = PNV10_CHIP(chip);
  1132. Error *local_err = NULL;
  1133. Object *obj;
  1134. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1135. /*
  1136. * The core creates its interrupt presenter but the XIVE2 interrupt
  1137. * controller object is initialized afterwards. Hopefully, it's
  1138. * only used at runtime.
  1139. */
  1140. obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
  1141. &local_err);
  1142. if (local_err) {
  1143. error_propagate(errp, local_err);
  1144. return;
  1145. }
  1146. pnv_cpu->intc = obj;
  1147. }
  1148. static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
  1149. {
  1150. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1151. xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
  1152. }
  1153. static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
  1154. {
  1155. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1156. xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
  1157. pnv_cpu->intc = NULL;
  1158. }
  1159. static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
  1160. GString *buf)
  1161. {
  1162. xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
  1163. }
  1164. /*
  1165. * Allowed core identifiers on a POWER8 Processor Chip :
  1166. *
  1167. * <EX0 reserved>
  1168. * EX1 - Venice only
  1169. * EX2 - Venice only
  1170. * EX3 - Venice only
  1171. * EX4
  1172. * EX5
  1173. * EX6
  1174. * <EX7,8 reserved> <reserved>
  1175. * EX9 - Venice only
  1176. * EX10 - Venice only
  1177. * EX11 - Venice only
  1178. * EX12
  1179. * EX13
  1180. * EX14
  1181. * <EX15 reserved>
  1182. */
  1183. #define POWER8E_CORE_MASK (0x7070ull)
  1184. #define POWER8_CORE_MASK (0x7e7eull)
  1185. /*
  1186. * POWER9 has 24 cores, ids starting at 0x0
  1187. */
  1188. #define POWER9_CORE_MASK (0xffffffffffffffull)
  1189. #define POWER10_CORE_MASK (0xffffffffffffffull)
  1190. static void pnv_chip_power8_instance_init(Object *obj)
  1191. {
  1192. Pnv8Chip *chip8 = PNV8_CHIP(obj);
  1193. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
  1194. int i;
  1195. object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
  1196. (Object **)&chip8->xics,
  1197. object_property_allow_set_link,
  1198. OBJ_PROP_LINK_STRONG);
  1199. object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
  1200. object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
  1201. object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
  1202. object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
  1203. if (defaults_enabled()) {
  1204. chip8->num_phbs = pcc->num_phbs;
  1205. for (i = 0; i < chip8->num_phbs; i++) {
  1206. Object *phb = object_new(TYPE_PNV_PHB);
  1207. /*
  1208. * We need the chip to parent the PHB to allow the DT
  1209. * to build correctly (via pnv_xscom_dt()).
  1210. *
  1211. * TODO: the PHB should be parented by a PEC device that, at
  1212. * this moment, is not modelled powernv8/phb3.
  1213. */
  1214. object_property_add_child(obj, "phb[*]", phb);
  1215. chip8->phbs[i] = PNV_PHB(phb);
  1216. }
  1217. }
  1218. }
  1219. static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
  1220. {
  1221. PnvChip *chip = PNV_CHIP(chip8);
  1222. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
  1223. int i, j;
  1224. char *name;
  1225. name = g_strdup_printf("icp-%x", chip->chip_id);
  1226. memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
  1227. g_free(name);
  1228. memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
  1229. &chip8->icp_mmio);
  1230. /* Map the ICP registers for each thread */
  1231. for (i = 0; i < chip->nr_cores; i++) {
  1232. PnvCore *pnv_core = chip->cores[i];
  1233. int core_hwid = CPU_CORE(pnv_core)->core_id;
  1234. for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
  1235. uint32_t pir;
  1236. PnvICPState *icp;
  1237. pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
  1238. icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
  1239. memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
  1240. &icp->mmio);
  1241. }
  1242. }
  1243. }
  1244. static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
  1245. {
  1246. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
  1247. PnvChip *chip = PNV_CHIP(dev);
  1248. Pnv8Chip *chip8 = PNV8_CHIP(dev);
  1249. Pnv8Psi *psi8 = &chip8->psi;
  1250. Error *local_err = NULL;
  1251. int i;
  1252. assert(chip8->xics);
  1253. /* XSCOM bridge is first */
  1254. pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
  1255. pcc->parent_realize(dev, &local_err);
  1256. if (local_err) {
  1257. error_propagate(errp, local_err);
  1258. return;
  1259. }
  1260. /* Processor Service Interface (PSI) Host Bridge */
  1261. object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
  1262. &error_fatal);
  1263. object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
  1264. OBJECT(chip8->xics), &error_abort);
  1265. if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
  1266. return;
  1267. }
  1268. pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
  1269. &PNV_PSI(psi8)->xscom_regs);
  1270. /* Create LPC controller */
  1271. qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
  1272. pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
  1273. chip->fw_mr = &chip8->lpc.isa_fw;
  1274. chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
  1275. (uint64_t) PNV_XSCOM_BASE(chip),
  1276. PNV_XSCOM_LPC_BASE);
  1277. /*
  1278. * Interrupt Management Area. This is the memory region holding
  1279. * all the Interrupt Control Presenter (ICP) registers
  1280. */
  1281. pnv_chip_icp_realize(chip8, &local_err);
  1282. if (local_err) {
  1283. error_propagate(errp, local_err);
  1284. return;
  1285. }
  1286. /* Create the simplified OCC model */
  1287. if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
  1288. return;
  1289. }
  1290. pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
  1291. qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
  1292. qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
  1293. /* OCC SRAM model */
  1294. memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
  1295. &chip8->occ.sram_regs);
  1296. /* HOMER */
  1297. object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
  1298. &error_abort);
  1299. if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
  1300. return;
  1301. }
  1302. /* Homer Xscom region */
  1303. pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
  1304. /* Homer mmio region */
  1305. memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
  1306. &chip8->homer.regs);
  1307. /* PHB controllers */
  1308. for (i = 0; i < chip8->num_phbs; i++) {
  1309. PnvPHB *phb = chip8->phbs[i];
  1310. object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
  1311. object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
  1312. &error_fatal);
  1313. object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
  1314. &error_fatal);
  1315. if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
  1316. return;
  1317. }
  1318. }
  1319. }
  1320. static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
  1321. {
  1322. addr &= (PNV_XSCOM_SIZE - 1);
  1323. return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
  1324. }
  1325. static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
  1326. {
  1327. DeviceClass *dc = DEVICE_CLASS(klass);
  1328. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1329. k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
  1330. k->cores_mask = POWER8E_CORE_MASK;
  1331. k->num_phbs = 3;
  1332. k->get_pir_tir = pnv_get_pir_tir_p8;
  1333. k->intc_create = pnv_chip_power8_intc_create;
  1334. k->intc_reset = pnv_chip_power8_intc_reset;
  1335. k->intc_destroy = pnv_chip_power8_intc_destroy;
  1336. k->intc_print_info = pnv_chip_power8_intc_print_info;
  1337. k->isa_create = pnv_chip_power8_isa_create;
  1338. k->dt_populate = pnv_chip_power8_dt_populate;
  1339. k->pic_print_info = pnv_chip_power8_pic_print_info;
  1340. k->xscom_core_base = pnv_chip_power8_xscom_core_base;
  1341. k->xscom_pcba = pnv_chip_power8_xscom_pcba;
  1342. dc->desc = "PowerNV Chip POWER8E";
  1343. device_class_set_parent_realize(dc, pnv_chip_power8_realize,
  1344. &k->parent_realize);
  1345. }
  1346. static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
  1347. {
  1348. DeviceClass *dc = DEVICE_CLASS(klass);
  1349. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1350. k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
  1351. k->cores_mask = POWER8_CORE_MASK;
  1352. k->num_phbs = 3;
  1353. k->get_pir_tir = pnv_get_pir_tir_p8;
  1354. k->intc_create = pnv_chip_power8_intc_create;
  1355. k->intc_reset = pnv_chip_power8_intc_reset;
  1356. k->intc_destroy = pnv_chip_power8_intc_destroy;
  1357. k->intc_print_info = pnv_chip_power8_intc_print_info;
  1358. k->isa_create = pnv_chip_power8_isa_create;
  1359. k->dt_populate = pnv_chip_power8_dt_populate;
  1360. k->pic_print_info = pnv_chip_power8_pic_print_info;
  1361. k->xscom_core_base = pnv_chip_power8_xscom_core_base;
  1362. k->xscom_pcba = pnv_chip_power8_xscom_pcba;
  1363. dc->desc = "PowerNV Chip POWER8";
  1364. device_class_set_parent_realize(dc, pnv_chip_power8_realize,
  1365. &k->parent_realize);
  1366. }
  1367. static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
  1368. {
  1369. DeviceClass *dc = DEVICE_CLASS(klass);
  1370. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1371. k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
  1372. k->cores_mask = POWER8_CORE_MASK;
  1373. k->num_phbs = 4;
  1374. k->get_pir_tir = pnv_get_pir_tir_p8;
  1375. k->intc_create = pnv_chip_power8_intc_create;
  1376. k->intc_reset = pnv_chip_power8_intc_reset;
  1377. k->intc_destroy = pnv_chip_power8_intc_destroy;
  1378. k->intc_print_info = pnv_chip_power8_intc_print_info;
  1379. k->isa_create = pnv_chip_power8nvl_isa_create;
  1380. k->dt_populate = pnv_chip_power8_dt_populate;
  1381. k->pic_print_info = pnv_chip_power8_pic_print_info;
  1382. k->xscom_core_base = pnv_chip_power8_xscom_core_base;
  1383. k->xscom_pcba = pnv_chip_power8_xscom_pcba;
  1384. dc->desc = "PowerNV Chip POWER8NVL";
  1385. device_class_set_parent_realize(dc, pnv_chip_power8_realize,
  1386. &k->parent_realize);
  1387. }
  1388. static void pnv_chip_power9_instance_init(Object *obj)
  1389. {
  1390. PnvChip *chip = PNV_CHIP(obj);
  1391. Pnv9Chip *chip9 = PNV9_CHIP(obj);
  1392. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
  1393. int i;
  1394. object_initialize_child(obj, "adu", &chip9->adu, TYPE_PNV_ADU);
  1395. object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
  1396. object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
  1397. "xive-fabric");
  1398. object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
  1399. object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
  1400. object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
  1401. object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
  1402. object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
  1403. object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
  1404. /* Number of PECs is the chip default */
  1405. chip->num_pecs = pcc->num_pecs;
  1406. for (i = 0; i < chip->num_pecs; i++) {
  1407. object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
  1408. TYPE_PNV_PHB4_PEC);
  1409. }
  1410. for (i = 0; i < pcc->i2c_num_engines; i++) {
  1411. object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
  1412. }
  1413. }
  1414. static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
  1415. PnvCore *pnv_core,
  1416. const char *type)
  1417. {
  1418. char eq_name[32];
  1419. int core_id = CPU_CORE(pnv_core)->core_id;
  1420. snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
  1421. object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
  1422. sizeof(*eq), type,
  1423. &error_fatal, NULL);
  1424. object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
  1425. qdev_realize(DEVICE(eq), NULL, &error_fatal);
  1426. }
  1427. static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
  1428. {
  1429. PnvChip *chip = PNV_CHIP(chip9);
  1430. int i;
  1431. chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
  1432. chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
  1433. for (i = 0; i < chip9->nr_quads; i++) {
  1434. PnvQuad *eq = &chip9->quads[i];
  1435. pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
  1436. PNV_QUAD_TYPE_NAME("power9"));
  1437. pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
  1438. &eq->xscom_regs);
  1439. }
  1440. }
  1441. static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
  1442. {
  1443. Pnv9Chip *chip9 = PNV9_CHIP(chip);
  1444. int i;
  1445. for (i = 0; i < chip->num_pecs; i++) {
  1446. PnvPhb4PecState *pec = &chip9->pecs[i];
  1447. PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
  1448. uint32_t pec_nest_base;
  1449. uint32_t pec_pci_base;
  1450. object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
  1451. object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
  1452. &error_fatal);
  1453. object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
  1454. &error_fatal);
  1455. if (!qdev_realize(DEVICE(pec), NULL, errp)) {
  1456. return;
  1457. }
  1458. pec_nest_base = pecc->xscom_nest_base(pec);
  1459. pec_pci_base = pecc->xscom_pci_base(pec);
  1460. pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
  1461. pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
  1462. }
  1463. }
  1464. static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
  1465. {
  1466. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
  1467. Pnv9Chip *chip9 = PNV9_CHIP(dev);
  1468. PnvChip *chip = PNV_CHIP(dev);
  1469. Pnv9Psi *psi9 = &chip9->psi;
  1470. Error *local_err = NULL;
  1471. int i;
  1472. /* XSCOM bridge is first */
  1473. pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
  1474. pcc->parent_realize(dev, &local_err);
  1475. if (local_err) {
  1476. error_propagate(errp, local_err);
  1477. return;
  1478. }
  1479. /* ADU */
  1480. object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
  1481. &error_abort);
  1482. if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
  1483. return;
  1484. }
  1485. pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
  1486. &chip9->adu.xscom_regs);
  1487. pnv_chip_quad_realize(chip9, &local_err);
  1488. if (local_err) {
  1489. error_propagate(errp, local_err);
  1490. return;
  1491. }
  1492. /* XIVE interrupt controller (POWER9) */
  1493. object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
  1494. PNV9_XIVE_IC_BASE(chip), &error_fatal);
  1495. object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
  1496. PNV9_XIVE_VC_BASE(chip), &error_fatal);
  1497. object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
  1498. PNV9_XIVE_PC_BASE(chip), &error_fatal);
  1499. object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
  1500. PNV9_XIVE_TM_BASE(chip), &error_fatal);
  1501. object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
  1502. &error_abort);
  1503. if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
  1504. return;
  1505. }
  1506. pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
  1507. &chip9->xive.xscom_regs);
  1508. /* Processor Service Interface (PSI) Host Bridge */
  1509. object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
  1510. &error_fatal);
  1511. /* This is the only device with 4k ESB pages */
  1512. object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
  1513. &error_fatal);
  1514. if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
  1515. return;
  1516. }
  1517. pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
  1518. &PNV_PSI(psi9)->xscom_regs);
  1519. /* LPC */
  1520. if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
  1521. return;
  1522. }
  1523. memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
  1524. &chip9->lpc.xscom_regs);
  1525. chip->fw_mr = &chip9->lpc.isa_fw;
  1526. chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
  1527. (uint64_t) PNV9_LPCM_BASE(chip));
  1528. /* ChipTOD */
  1529. object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
  1530. chip->chip_id == 0, &error_abort);
  1531. object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
  1532. chip->chip_id == 1, &error_abort);
  1533. object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
  1534. &error_abort);
  1535. if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
  1536. return;
  1537. }
  1538. pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
  1539. &chip9->chiptod.xscom_regs);
  1540. /* Create the simplified OCC model */
  1541. if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
  1542. return;
  1543. }
  1544. pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
  1545. qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
  1546. DEVICE(psi9), PSIHB9_IRQ_OCC));
  1547. /* OCC SRAM model */
  1548. memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
  1549. &chip9->occ.sram_regs);
  1550. /* SBE */
  1551. if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
  1552. return;
  1553. }
  1554. pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
  1555. &chip9->sbe.xscom_ctrl_regs);
  1556. pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
  1557. &chip9->sbe.xscom_mbox_regs);
  1558. qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
  1559. DEVICE(psi9), PSIHB9_IRQ_PSU));
  1560. /* HOMER */
  1561. object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
  1562. &error_abort);
  1563. if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
  1564. return;
  1565. }
  1566. /* Homer Xscom region */
  1567. pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
  1568. /* Homer mmio region */
  1569. memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
  1570. &chip9->homer.regs);
  1571. /* PEC PHBs */
  1572. pnv_chip_power9_pec_realize(chip, &local_err);
  1573. if (local_err) {
  1574. error_propagate(errp, local_err);
  1575. return;
  1576. }
  1577. /*
  1578. * I2C
  1579. */
  1580. for (i = 0; i < pcc->i2c_num_engines; i++) {
  1581. Object *obj = OBJECT(&chip9->i2c[i]);
  1582. object_property_set_int(obj, "engine", i + 1, &error_fatal);
  1583. object_property_set_int(obj, "num-busses",
  1584. pcc->i2c_ports_per_engine[i],
  1585. &error_fatal);
  1586. object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
  1587. if (!qdev_realize(DEVICE(obj), NULL, errp)) {
  1588. return;
  1589. }
  1590. pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
  1591. (chip9->i2c[i].engine - 1) *
  1592. PNV9_XSCOM_I2CM_SIZE,
  1593. &chip9->i2c[i].xscom_regs);
  1594. qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
  1595. qdev_get_gpio_in(DEVICE(psi9),
  1596. PSIHB9_IRQ_SBE_I2C));
  1597. }
  1598. }
  1599. static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
  1600. {
  1601. addr &= (PNV9_XSCOM_SIZE - 1);
  1602. return addr >> 3;
  1603. }
  1604. static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
  1605. {
  1606. DeviceClass *dc = DEVICE_CLASS(klass);
  1607. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1608. static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
  1609. k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
  1610. k->cores_mask = POWER9_CORE_MASK;
  1611. k->get_pir_tir = pnv_get_pir_tir_p9;
  1612. k->intc_create = pnv_chip_power9_intc_create;
  1613. k->intc_reset = pnv_chip_power9_intc_reset;
  1614. k->intc_destroy = pnv_chip_power9_intc_destroy;
  1615. k->intc_print_info = pnv_chip_power9_intc_print_info;
  1616. k->isa_create = pnv_chip_power9_isa_create;
  1617. k->dt_populate = pnv_chip_power9_dt_populate;
  1618. k->pic_print_info = pnv_chip_power9_pic_print_info;
  1619. k->xscom_core_base = pnv_chip_power9_xscom_core_base;
  1620. k->xscom_pcba = pnv_chip_power9_xscom_pcba;
  1621. dc->desc = "PowerNV Chip POWER9";
  1622. k->num_pecs = PNV9_CHIP_MAX_PEC;
  1623. k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
  1624. k->i2c_ports_per_engine = i2c_ports_per_engine;
  1625. device_class_set_parent_realize(dc, pnv_chip_power9_realize,
  1626. &k->parent_realize);
  1627. }
  1628. static void pnv_chip_power10_instance_init(Object *obj)
  1629. {
  1630. PnvChip *chip = PNV_CHIP(obj);
  1631. Pnv10Chip *chip10 = PNV10_CHIP(obj);
  1632. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
  1633. int i;
  1634. object_initialize_child(obj, "adu", &chip10->adu, TYPE_PNV_ADU);
  1635. object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
  1636. object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
  1637. "xive-fabric");
  1638. object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
  1639. object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
  1640. object_initialize_child(obj, "chiptod", &chip10->chiptod,
  1641. TYPE_PNV10_CHIPTOD);
  1642. object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC);
  1643. object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE);
  1644. object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
  1645. object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
  1646. TYPE_PNV_N1_CHIPLET);
  1647. chip->num_pecs = pcc->num_pecs;
  1648. for (i = 0; i < chip->num_pecs; i++) {
  1649. object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
  1650. TYPE_PNV_PHB5_PEC);
  1651. }
  1652. for (i = 0; i < pcc->i2c_num_engines; i++) {
  1653. object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
  1654. }
  1655. for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
  1656. object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
  1657. TYPE_PNV_SPI);
  1658. }
  1659. }
  1660. static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
  1661. {
  1662. PnvChip *chip = PNV_CHIP(chip10);
  1663. int i;
  1664. chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
  1665. chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
  1666. for (i = 0; i < chip10->nr_quads; i++) {
  1667. PnvQuad *eq = &chip10->quads[i];
  1668. pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
  1669. PNV_QUAD_TYPE_NAME("power10"));
  1670. pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
  1671. &eq->xscom_regs);
  1672. pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
  1673. &eq->xscom_qme_regs);
  1674. }
  1675. }
  1676. static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
  1677. {
  1678. Pnv10Chip *chip10 = PNV10_CHIP(chip);
  1679. int i;
  1680. for (i = 0; i < chip->num_pecs; i++) {
  1681. PnvPhb4PecState *pec = &chip10->pecs[i];
  1682. PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
  1683. uint32_t pec_nest_base;
  1684. uint32_t pec_pci_base;
  1685. object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
  1686. object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
  1687. &error_fatal);
  1688. object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
  1689. &error_fatal);
  1690. if (!qdev_realize(DEVICE(pec), NULL, errp)) {
  1691. return;
  1692. }
  1693. pec_nest_base = pecc->xscom_nest_base(pec);
  1694. pec_pci_base = pecc->xscom_pci_base(pec);
  1695. pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
  1696. pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
  1697. }
  1698. }
  1699. static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
  1700. {
  1701. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
  1702. PnvChip *chip = PNV_CHIP(dev);
  1703. Pnv10Chip *chip10 = PNV10_CHIP(dev);
  1704. Error *local_err = NULL;
  1705. int i;
  1706. /* XSCOM bridge is first */
  1707. pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
  1708. pcc->parent_realize(dev, &local_err);
  1709. if (local_err) {
  1710. error_propagate(errp, local_err);
  1711. return;
  1712. }
  1713. /* ADU */
  1714. object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
  1715. &error_abort);
  1716. if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
  1717. return;
  1718. }
  1719. pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
  1720. &chip10->adu.xscom_regs);
  1721. pnv_chip_power10_quad_realize(chip10, &local_err);
  1722. if (local_err) {
  1723. error_propagate(errp, local_err);
  1724. return;
  1725. }
  1726. /* XIVE2 interrupt controller (POWER10) */
  1727. object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
  1728. PNV10_XIVE2_IC_BASE(chip), &error_fatal);
  1729. object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
  1730. PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
  1731. object_property_set_int(OBJECT(&chip10->xive), "end-bar",
  1732. PNV10_XIVE2_END_BASE(chip), &error_fatal);
  1733. object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
  1734. PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
  1735. object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
  1736. PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
  1737. object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
  1738. PNV10_XIVE2_TM_BASE(chip), &error_fatal);
  1739. object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
  1740. &error_abort);
  1741. if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
  1742. return;
  1743. }
  1744. pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
  1745. &chip10->xive.xscom_regs);
  1746. /* Processor Service Interface (PSI) Host Bridge */
  1747. object_property_set_int(OBJECT(&chip10->psi), "bar",
  1748. PNV10_PSIHB_BASE(chip), &error_fatal);
  1749. /* PSI can now be configured to use 64k ESB pages on POWER10 */
  1750. object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
  1751. &error_fatal);
  1752. if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
  1753. return;
  1754. }
  1755. pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
  1756. &PNV_PSI(&chip10->psi)->xscom_regs);
  1757. /* LPC */
  1758. if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
  1759. return;
  1760. }
  1761. memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
  1762. &chip10->lpc.xscom_regs);
  1763. chip->fw_mr = &chip10->lpc.isa_fw;
  1764. chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
  1765. (uint64_t) PNV10_LPCM_BASE(chip));
  1766. /* ChipTOD */
  1767. object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
  1768. chip->chip_id == 0, &error_abort);
  1769. object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
  1770. chip->chip_id == 1, &error_abort);
  1771. object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
  1772. &error_abort);
  1773. if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
  1774. return;
  1775. }
  1776. pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
  1777. &chip10->chiptod.xscom_regs);
  1778. /* Create the simplified OCC model */
  1779. if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
  1780. return;
  1781. }
  1782. pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
  1783. &chip10->occ.xscom_regs);
  1784. qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
  1785. DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
  1786. /* OCC SRAM model */
  1787. memory_region_add_subregion(get_system_memory(),
  1788. PNV10_OCC_SENSOR_BASE(chip),
  1789. &chip10->occ.sram_regs);
  1790. /* SBE */
  1791. if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
  1792. return;
  1793. }
  1794. pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
  1795. &chip10->sbe.xscom_ctrl_regs);
  1796. pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
  1797. &chip10->sbe.xscom_mbox_regs);
  1798. qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
  1799. DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
  1800. /* HOMER */
  1801. object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
  1802. &error_abort);
  1803. if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
  1804. return;
  1805. }
  1806. /* Homer Xscom region */
  1807. pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
  1808. &chip10->homer.pba_regs);
  1809. /* Homer mmio region */
  1810. memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
  1811. &chip10->homer.regs);
  1812. /* N1 chiplet */
  1813. if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
  1814. return;
  1815. }
  1816. pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
  1817. &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
  1818. pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
  1819. &chip10->n1_chiplet.xscom_pb_eq_mr);
  1820. pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
  1821. &chip10->n1_chiplet.xscom_pb_es_mr);
  1822. /* PHBs */
  1823. pnv_chip_power10_phb_realize(chip, &local_err);
  1824. if (local_err) {
  1825. error_propagate(errp, local_err);
  1826. return;
  1827. }
  1828. /*
  1829. * I2C
  1830. */
  1831. for (i = 0; i < pcc->i2c_num_engines; i++) {
  1832. Object *obj = OBJECT(&chip10->i2c[i]);
  1833. object_property_set_int(obj, "engine", i + 1, &error_fatal);
  1834. object_property_set_int(obj, "num-busses",
  1835. pcc->i2c_ports_per_engine[i],
  1836. &error_fatal);
  1837. object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
  1838. if (!qdev_realize(DEVICE(obj), NULL, errp)) {
  1839. return;
  1840. }
  1841. pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
  1842. (chip10->i2c[i].engine - 1) *
  1843. PNV10_XSCOM_I2CM_SIZE,
  1844. &chip10->i2c[i].xscom_regs);
  1845. qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
  1846. qdev_get_gpio_in(DEVICE(&chip10->psi),
  1847. PSIHB9_IRQ_SBE_I2C));
  1848. }
  1849. /* PIB SPI Controller */
  1850. for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
  1851. object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
  1852. i, &error_fatal);
  1853. /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
  1854. object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
  1855. (i == 2) ? 1 : 4, &error_fatal);
  1856. if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
  1857. (&chip10->pib_spic[i])), errp)) {
  1858. return;
  1859. }
  1860. pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
  1861. i * PNV10_XSCOM_PIB_SPIC_SIZE,
  1862. &chip10->pib_spic[i].xscom_spic_regs);
  1863. }
  1864. }
  1865. static void pnv_rainier_i2c_init(PnvMachineState *pnv)
  1866. {
  1867. int i;
  1868. for (i = 0; i < pnv->num_chips; i++) {
  1869. Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
  1870. /*
  1871. * Add a PCA9552 I2C device for PCIe hotplug control
  1872. * to engine 2, bus 1, address 0x63
  1873. */
  1874. I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
  1875. "pca9552", 0x63);
  1876. /*
  1877. * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
  1878. * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
  1879. * after hypervisor code sets a SLOTx_EN pin high.
  1880. */
  1881. qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
  1882. qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
  1883. qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
  1884. qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
  1885. qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
  1886. /*
  1887. * Add a PCA9554 I2C device for cable card presence detection
  1888. * to engine 2, bus 1, address 0x25
  1889. */
  1890. i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
  1891. }
  1892. }
  1893. static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
  1894. {
  1895. addr &= (PNV10_XSCOM_SIZE - 1);
  1896. return addr >> 3;
  1897. }
  1898. static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
  1899. {
  1900. DeviceClass *dc = DEVICE_CLASS(klass);
  1901. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1902. static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
  1903. k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
  1904. k->cores_mask = POWER10_CORE_MASK;
  1905. k->get_pir_tir = pnv_get_pir_tir_p10;
  1906. k->intc_create = pnv_chip_power10_intc_create;
  1907. k->intc_reset = pnv_chip_power10_intc_reset;
  1908. k->intc_destroy = pnv_chip_power10_intc_destroy;
  1909. k->intc_print_info = pnv_chip_power10_intc_print_info;
  1910. k->isa_create = pnv_chip_power10_isa_create;
  1911. k->dt_populate = pnv_chip_power10_dt_populate;
  1912. k->pic_print_info = pnv_chip_power10_pic_print_info;
  1913. k->xscom_core_base = pnv_chip_power10_xscom_core_base;
  1914. k->xscom_pcba = pnv_chip_power10_xscom_pcba;
  1915. dc->desc = "PowerNV Chip POWER10";
  1916. k->num_pecs = PNV10_CHIP_MAX_PEC;
  1917. k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
  1918. k->i2c_ports_per_engine = i2c_ports_per_engine;
  1919. device_class_set_parent_realize(dc, pnv_chip_power10_realize,
  1920. &k->parent_realize);
  1921. }
  1922. static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
  1923. Error **errp)
  1924. {
  1925. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
  1926. int cores_max;
  1927. /*
  1928. * No custom mask for this chip, let's use the default one from *
  1929. * the chip class
  1930. */
  1931. if (!chip->cores_mask) {
  1932. chip->cores_mask = pcc->cores_mask;
  1933. }
  1934. /* filter alien core ids ! some are reserved */
  1935. if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
  1936. error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
  1937. chip->cores_mask);
  1938. return;
  1939. }
  1940. chip->cores_mask &= pcc->cores_mask;
  1941. /* Ensure small-cores a paired up in big-core mode */
  1942. if (pnv->big_core) {
  1943. uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
  1944. uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
  1945. if (even_cores ^ (odd_cores >> 1)) {
  1946. error_setg(errp, "warning: unpaired cores in big-core mode !");
  1947. return;
  1948. }
  1949. }
  1950. /* now that we have a sane layout, let check the number of cores */
  1951. cores_max = ctpop64(chip->cores_mask);
  1952. if (chip->nr_cores > cores_max) {
  1953. error_setg(errp, "warning: too many cores for chip ! Limit is %d",
  1954. cores_max);
  1955. return;
  1956. }
  1957. }
  1958. static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
  1959. {
  1960. PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
  1961. PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
  1962. Error *error = NULL;
  1963. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
  1964. const char *typename = pnv_chip_core_typename(chip);
  1965. int i, core_hwid;
  1966. if (!object_class_by_name(typename)) {
  1967. error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
  1968. return;
  1969. }
  1970. /* Cores */
  1971. pnv_chip_core_sanitize(pnv, chip, &error);
  1972. if (error) {
  1973. error_propagate(errp, error);
  1974. return;
  1975. }
  1976. chip->cores = g_new0(PnvCore *, chip->nr_cores);
  1977. for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
  1978. && (i < chip->nr_cores); core_hwid++) {
  1979. char core_name[32];
  1980. PnvCore *pnv_core;
  1981. uint64_t xscom_core_base;
  1982. if (!(chip->cores_mask & (1ull << core_hwid))) {
  1983. continue;
  1984. }
  1985. pnv_core = PNV_CORE(object_new(typename));
  1986. snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
  1987. object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
  1988. chip->cores[i] = pnv_core;
  1989. object_property_set_int(OBJECT(pnv_core), "nr-threads",
  1990. chip->nr_threads, &error_fatal);
  1991. object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
  1992. core_hwid, &error_fatal);
  1993. object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
  1994. &error_fatal);
  1995. object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
  1996. &error_fatal);
  1997. object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
  1998. &error_fatal);
  1999. object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
  2000. pmc->quirk_tb_big_core, &error_fatal);
  2001. object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
  2002. chip->lpar_per_core, &error_fatal);
  2003. object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
  2004. &error_abort);
  2005. qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
  2006. /* Each core has an XSCOM MMIO region */
  2007. xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
  2008. pnv_xscom_add_subregion(chip, xscom_core_base,
  2009. &pnv_core->xscom_regs);
  2010. i++;
  2011. }
  2012. }
  2013. static void pnv_chip_realize(DeviceState *dev, Error **errp)
  2014. {
  2015. PnvChip *chip = PNV_CHIP(dev);
  2016. Error *error = NULL;
  2017. /* Cores */
  2018. pnv_chip_core_realize(chip, &error);
  2019. if (error) {
  2020. error_propagate(errp, error);
  2021. return;
  2022. }
  2023. }
  2024. static Property pnv_chip_properties[] = {
  2025. DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
  2026. DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
  2027. DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
  2028. DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
  2029. DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
  2030. DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
  2031. DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
  2032. DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
  2033. DEFINE_PROP_END_OF_LIST(),
  2034. };
  2035. static void pnv_chip_class_init(ObjectClass *klass, void *data)
  2036. {
  2037. DeviceClass *dc = DEVICE_CLASS(klass);
  2038. set_bit(DEVICE_CATEGORY_CPU, dc->categories);
  2039. dc->realize = pnv_chip_realize;
  2040. device_class_set_props(dc, pnv_chip_properties);
  2041. dc->desc = "PowerNV Chip";
  2042. }
  2043. PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
  2044. {
  2045. int i;
  2046. for (i = 0; i < chip->nr_cores; i++) {
  2047. PnvCore *pc = chip->cores[i];
  2048. CPUCore *cc = CPU_CORE(pc);
  2049. if (cc->core_id == core_id) {
  2050. return pc;
  2051. }
  2052. }
  2053. return NULL;
  2054. }
  2055. PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
  2056. {
  2057. int i, j;
  2058. for (i = 0; i < chip->nr_cores; i++) {
  2059. PnvCore *pc = chip->cores[i];
  2060. CPUCore *cc = CPU_CORE(pc);
  2061. for (j = 0; j < cc->nr_threads; j++) {
  2062. if (ppc_cpu_pir(pc->threads[j]) == pir) {
  2063. return pc->threads[j];
  2064. }
  2065. }
  2066. }
  2067. return NULL;
  2068. }
  2069. static void pnv_chip_foreach_cpu(PnvChip *chip,
  2070. void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
  2071. void *opaque)
  2072. {
  2073. int i, j;
  2074. for (i = 0; i < chip->nr_cores; i++) {
  2075. PnvCore *pc = chip->cores[i];
  2076. for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
  2077. fn(chip, pc->threads[j], opaque);
  2078. }
  2079. }
  2080. }
  2081. static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
  2082. {
  2083. PnvMachineState *pnv = PNV_MACHINE(xi);
  2084. int i, j;
  2085. for (i = 0; i < pnv->num_chips; i++) {
  2086. Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
  2087. if (ics_valid_irq(&chip8->psi.ics, irq)) {
  2088. return &chip8->psi.ics;
  2089. }
  2090. for (j = 0; j < chip8->num_phbs; j++) {
  2091. PnvPHB *phb = chip8->phbs[j];
  2092. PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
  2093. if (ics_valid_irq(&phb3->lsis, irq)) {
  2094. return &phb3->lsis;
  2095. }
  2096. if (ics_valid_irq(ICS(&phb3->msis), irq)) {
  2097. return ICS(&phb3->msis);
  2098. }
  2099. }
  2100. }
  2101. return NULL;
  2102. }
  2103. PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
  2104. {
  2105. int i;
  2106. for (i = 0; i < pnv->num_chips; i++) {
  2107. PnvChip *chip = pnv->chips[i];
  2108. if (chip->chip_id == chip_id) {
  2109. return chip;
  2110. }
  2111. }
  2112. return NULL;
  2113. }
  2114. static void pnv_ics_resend(XICSFabric *xi)
  2115. {
  2116. PnvMachineState *pnv = PNV_MACHINE(xi);
  2117. int i, j;
  2118. for (i = 0; i < pnv->num_chips; i++) {
  2119. Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
  2120. ics_resend(&chip8->psi.ics);
  2121. for (j = 0; j < chip8->num_phbs; j++) {
  2122. PnvPHB *phb = chip8->phbs[j];
  2123. PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
  2124. ics_resend(&phb3->lsis);
  2125. ics_resend(ICS(&phb3->msis));
  2126. }
  2127. }
  2128. }
  2129. static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
  2130. {
  2131. PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
  2132. return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
  2133. }
  2134. static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
  2135. void *opaque)
  2136. {
  2137. PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
  2138. }
  2139. static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
  2140. {
  2141. PnvMachineState *pnv = PNV_MACHINE(obj);
  2142. int i;
  2143. for (i = 0; i < pnv->num_chips; i++) {
  2144. PnvChip *chip = pnv->chips[i];
  2145. /* First CPU presenters */
  2146. pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
  2147. /* Then other devices, PHB, PSI, XIVE */
  2148. PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
  2149. }
  2150. }
  2151. static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
  2152. uint8_t nvt_blk, uint32_t nvt_idx,
  2153. bool cam_ignore, uint8_t priority,
  2154. uint32_t logic_serv,
  2155. XiveTCTXMatch *match)
  2156. {
  2157. PnvMachineState *pnv = PNV_MACHINE(xfb);
  2158. int total_count = 0;
  2159. int i;
  2160. for (i = 0; i < pnv->num_chips; i++) {
  2161. Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
  2162. XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
  2163. XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
  2164. int count;
  2165. count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
  2166. priority, logic_serv, match);
  2167. if (count < 0) {
  2168. return count;
  2169. }
  2170. total_count += count;
  2171. }
  2172. return total_count;
  2173. }
  2174. static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
  2175. uint8_t nvt_blk, uint32_t nvt_idx,
  2176. bool cam_ignore, uint8_t priority,
  2177. uint32_t logic_serv,
  2178. XiveTCTXMatch *match)
  2179. {
  2180. PnvMachineState *pnv = PNV_MACHINE(xfb);
  2181. int total_count = 0;
  2182. int i;
  2183. for (i = 0; i < pnv->num_chips; i++) {
  2184. Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
  2185. XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
  2186. XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
  2187. int count;
  2188. count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
  2189. priority, logic_serv, match);
  2190. if (count < 0) {
  2191. return count;
  2192. }
  2193. total_count += count;
  2194. }
  2195. return total_count;
  2196. }
  2197. static bool pnv_machine_get_big_core(Object *obj, Error **errp)
  2198. {
  2199. PnvMachineState *pnv = PNV_MACHINE(obj);
  2200. return pnv->big_core;
  2201. }
  2202. static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
  2203. {
  2204. PnvMachineState *pnv = PNV_MACHINE(obj);
  2205. pnv->big_core = value;
  2206. }
  2207. static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
  2208. {
  2209. PnvMachineState *pnv = PNV_MACHINE(obj);
  2210. return pnv->lpar_per_core;
  2211. }
  2212. static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
  2213. {
  2214. PnvMachineState *pnv = PNV_MACHINE(obj);
  2215. pnv->lpar_per_core = value;
  2216. }
  2217. static bool pnv_machine_get_hb(Object *obj, Error **errp)
  2218. {
  2219. PnvMachineState *pnv = PNV_MACHINE(obj);
  2220. return !!pnv->fw_load_addr;
  2221. }
  2222. static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
  2223. {
  2224. PnvMachineState *pnv = PNV_MACHINE(obj);
  2225. if (value) {
  2226. pnv->fw_load_addr = 0x8000000;
  2227. }
  2228. }
  2229. static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
  2230. {
  2231. MachineClass *mc = MACHINE_CLASS(oc);
  2232. XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
  2233. PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
  2234. static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
  2235. static GlobalProperty phb_compat[] = {
  2236. { TYPE_PNV_PHB, "version", "3" },
  2237. { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
  2238. };
  2239. mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
  2240. mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
  2241. compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
  2242. xic->icp_get = pnv_icp_get;
  2243. xic->ics_get = pnv_ics_get;
  2244. xic->ics_resend = pnv_ics_resend;
  2245. pmc->compat = compat;
  2246. pmc->compat_size = sizeof(compat);
  2247. pmc->max_smt_threads = 8;
  2248. /* POWER8 is always lpar-per-core mode */
  2249. pmc->has_lpar_per_thread = false;
  2250. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
  2251. }
  2252. static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
  2253. {
  2254. MachineClass *mc = MACHINE_CLASS(oc);
  2255. XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
  2256. PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
  2257. static const char compat[] = "qemu,powernv9\0ibm,powernv";
  2258. static GlobalProperty phb_compat[] = {
  2259. { TYPE_PNV_PHB, "version", "4" },
  2260. { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
  2261. };
  2262. mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
  2263. mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
  2264. compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
  2265. xfc->match_nvt = pnv_match_nvt;
  2266. pmc->compat = compat;
  2267. pmc->compat_size = sizeof(compat);
  2268. pmc->max_smt_threads = 4;
  2269. pmc->has_lpar_per_thread = true;
  2270. pmc->dt_power_mgt = pnv_dt_power_mgt;
  2271. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
  2272. object_class_property_add_bool(oc, "big-core",
  2273. pnv_machine_get_big_core,
  2274. pnv_machine_set_big_core);
  2275. object_class_property_set_description(oc, "big-core",
  2276. "Use big-core (aka fused-core) mode");
  2277. object_class_property_add_bool(oc, "lpar-per-core",
  2278. pnv_machine_get_lpar_per_core,
  2279. pnv_machine_set_lpar_per_core);
  2280. object_class_property_set_description(oc, "lpar-per-core",
  2281. "Use 1 LPAR per core mode");
  2282. }
  2283. static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
  2284. {
  2285. MachineClass *mc = MACHINE_CLASS(oc);
  2286. PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
  2287. XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
  2288. static const char compat[] = "qemu,powernv10\0ibm,powernv";
  2289. static GlobalProperty phb_compat[] = {
  2290. { TYPE_PNV_PHB, "version", "5" },
  2291. { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
  2292. };
  2293. mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
  2294. compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
  2295. mc->alias = "powernv";
  2296. pmc->compat = compat;
  2297. pmc->compat_size = sizeof(compat);
  2298. pmc->max_smt_threads = 4;
  2299. pmc->has_lpar_per_thread = true;
  2300. pmc->quirk_tb_big_core = true;
  2301. pmc->dt_power_mgt = pnv_dt_power_mgt;
  2302. xfc->match_nvt = pnv10_xive_match_nvt;
  2303. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
  2304. }
  2305. static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
  2306. {
  2307. MachineClass *mc = MACHINE_CLASS(oc);
  2308. pnv_machine_p10_common_class_init(oc, data);
  2309. mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
  2310. /*
  2311. * This is the parent of POWER10 Rainier class, so properies go here
  2312. * rather than common init (which would add them to both parent and
  2313. * child which is invalid).
  2314. */
  2315. object_class_property_add_bool(oc, "big-core",
  2316. pnv_machine_get_big_core,
  2317. pnv_machine_set_big_core);
  2318. object_class_property_set_description(oc, "big-core",
  2319. "Use big-core (aka fused-core) mode");
  2320. object_class_property_add_bool(oc, "lpar-per-core",
  2321. pnv_machine_get_lpar_per_core,
  2322. pnv_machine_set_lpar_per_core);
  2323. object_class_property_set_description(oc, "lpar-per-core",
  2324. "Use 1 LPAR per core mode");
  2325. }
  2326. static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
  2327. {
  2328. MachineClass *mc = MACHINE_CLASS(oc);
  2329. PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
  2330. pnv_machine_p10_common_class_init(oc, data);
  2331. mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
  2332. pmc->i2c_init = pnv_rainier_i2c_init;
  2333. }
  2334. static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
  2335. {
  2336. CPUPPCState *env = cpu_env(cs);
  2337. cpu_synchronize_state(cs);
  2338. ppc_cpu_do_system_reset(cs);
  2339. if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
  2340. /*
  2341. * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
  2342. * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
  2343. * (PPC_BIT(43)).
  2344. */
  2345. if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
  2346. warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
  2347. env->spr[SPR_SRR1] |= SRR1_WAKERESET;
  2348. }
  2349. } else {
  2350. /*
  2351. * For non-powersave system resets, SRR1[42:45] are defined to be
  2352. * implementation-dependent. The POWER9 User Manual specifies that
  2353. * an external (SCOM driven, which may come from a BMC nmi command or
  2354. * another CPU requesting a NMI IPI) system reset exception should be
  2355. * 0b0010 (PPC_BIT(44)).
  2356. */
  2357. env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
  2358. }
  2359. if (arg.host_int == 1) {
  2360. cpu_resume(cs);
  2361. }
  2362. }
  2363. /*
  2364. * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
  2365. * paused.
  2366. */
  2367. void pnv_cpu_do_nmi_resume(CPUState *cs)
  2368. {
  2369. async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
  2370. }
  2371. static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
  2372. {
  2373. async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
  2374. }
  2375. static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
  2376. {
  2377. PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
  2378. int i;
  2379. for (i = 0; i < pnv->num_chips; i++) {
  2380. pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
  2381. }
  2382. }
  2383. static void pnv_machine_class_init(ObjectClass *oc, void *data)
  2384. {
  2385. MachineClass *mc = MACHINE_CLASS(oc);
  2386. InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
  2387. NMIClass *nc = NMI_CLASS(oc);
  2388. mc->desc = "IBM PowerNV (Non-Virtualized)";
  2389. mc->init = pnv_init;
  2390. mc->reset = pnv_reset;
  2391. mc->max_cpus = MAX_CPUS;
  2392. /* Pnv provides a AHCI device for storage */
  2393. mc->block_default_type = IF_IDE;
  2394. mc->no_parallel = 1;
  2395. mc->default_boot_order = NULL;
  2396. /*
  2397. * RAM defaults to less than 2048 for 32-bit hosts, and large
  2398. * enough to fit the maximum initrd size at it's load address
  2399. */
  2400. mc->default_ram_size = 1 * GiB;
  2401. mc->default_ram_id = "pnv.ram";
  2402. ispc->print_info = pnv_pic_print_info;
  2403. nc->nmi_monitor_handler = pnv_nmi;
  2404. object_class_property_add_bool(oc, "hb-mode",
  2405. pnv_machine_get_hb, pnv_machine_set_hb);
  2406. object_class_property_set_description(oc, "hb-mode",
  2407. "Use a hostboot like boot loader");
  2408. }
  2409. #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
  2410. { \
  2411. .name = type, \
  2412. .class_init = class_initfn, \
  2413. .parent = TYPE_PNV8_CHIP, \
  2414. }
  2415. #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
  2416. { \
  2417. .name = type, \
  2418. .class_init = class_initfn, \
  2419. .parent = TYPE_PNV9_CHIP, \
  2420. }
  2421. #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
  2422. { \
  2423. .name = type, \
  2424. .class_init = class_initfn, \
  2425. .parent = TYPE_PNV10_CHIP, \
  2426. }
  2427. static const TypeInfo types[] = {
  2428. {
  2429. .name = MACHINE_TYPE_NAME("powernv10-rainier"),
  2430. .parent = MACHINE_TYPE_NAME("powernv10"),
  2431. .class_init = pnv_machine_p10_rainier_class_init,
  2432. },
  2433. {
  2434. .name = MACHINE_TYPE_NAME("powernv10"),
  2435. .parent = TYPE_PNV_MACHINE,
  2436. .class_init = pnv_machine_power10_class_init,
  2437. .interfaces = (InterfaceInfo[]) {
  2438. { TYPE_XIVE_FABRIC },
  2439. { },
  2440. },
  2441. },
  2442. {
  2443. .name = MACHINE_TYPE_NAME("powernv9"),
  2444. .parent = TYPE_PNV_MACHINE,
  2445. .class_init = pnv_machine_power9_class_init,
  2446. .interfaces = (InterfaceInfo[]) {
  2447. { TYPE_XIVE_FABRIC },
  2448. { },
  2449. },
  2450. },
  2451. {
  2452. .name = MACHINE_TYPE_NAME("powernv8"),
  2453. .parent = TYPE_PNV_MACHINE,
  2454. .class_init = pnv_machine_power8_class_init,
  2455. .interfaces = (InterfaceInfo[]) {
  2456. { TYPE_XICS_FABRIC },
  2457. { },
  2458. },
  2459. },
  2460. {
  2461. .name = TYPE_PNV_MACHINE,
  2462. .parent = TYPE_MACHINE,
  2463. .abstract = true,
  2464. .instance_size = sizeof(PnvMachineState),
  2465. .class_init = pnv_machine_class_init,
  2466. .class_size = sizeof(PnvMachineClass),
  2467. .interfaces = (InterfaceInfo[]) {
  2468. { TYPE_INTERRUPT_STATS_PROVIDER },
  2469. { TYPE_NMI },
  2470. { },
  2471. },
  2472. },
  2473. {
  2474. .name = TYPE_PNV_CHIP,
  2475. .parent = TYPE_SYS_BUS_DEVICE,
  2476. .class_init = pnv_chip_class_init,
  2477. .instance_size = sizeof(PnvChip),
  2478. .class_size = sizeof(PnvChipClass),
  2479. .abstract = true,
  2480. },
  2481. /*
  2482. * P10 chip and variants
  2483. */
  2484. {
  2485. .name = TYPE_PNV10_CHIP,
  2486. .parent = TYPE_PNV_CHIP,
  2487. .instance_init = pnv_chip_power10_instance_init,
  2488. .instance_size = sizeof(Pnv10Chip),
  2489. },
  2490. DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
  2491. /*
  2492. * P9 chip and variants
  2493. */
  2494. {
  2495. .name = TYPE_PNV9_CHIP,
  2496. .parent = TYPE_PNV_CHIP,
  2497. .instance_init = pnv_chip_power9_instance_init,
  2498. .instance_size = sizeof(Pnv9Chip),
  2499. },
  2500. DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
  2501. /*
  2502. * P8 chip and variants
  2503. */
  2504. {
  2505. .name = TYPE_PNV8_CHIP,
  2506. .parent = TYPE_PNV_CHIP,
  2507. .instance_init = pnv_chip_power8_instance_init,
  2508. .instance_size = sizeof(Pnv8Chip),
  2509. },
  2510. DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
  2511. DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
  2512. DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
  2513. pnv_chip_power8nvl_class_init),
  2514. };
  2515. DEFINE_TYPES(types)