e500.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310
  1. /*
  2. * QEMU PowerPC e500-based platforms
  3. *
  4. * Copyright (C) 2009 Freescale Semiconductor, Inc. All rights reserved.
  5. *
  6. * Author: Yu Liu, <yu.liu@freescale.com>
  7. *
  8. * This file is derived from hw/ppc440_bamboo.c,
  9. * the copyright for that material belongs to the original owners.
  10. *
  11. * This is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. */
  16. #include "qemu/osdep.h"
  17. #include "qemu/datadir.h"
  18. #include "qemu/units.h"
  19. #include "qemu/guest-random.h"
  20. #include "qapi/error.h"
  21. #include "e500.h"
  22. #include "e500-ccsr.h"
  23. #include "net/net.h"
  24. #include "qemu/config-file.h"
  25. #include "hw/block/flash.h"
  26. #include "hw/char/serial-mm.h"
  27. #include "hw/pci/pci.h"
  28. #include "sysemu/block-backend-io.h"
  29. #include "sysemu/sysemu.h"
  30. #include "sysemu/kvm.h"
  31. #include "sysemu/reset.h"
  32. #include "sysemu/runstate.h"
  33. #include "kvm_ppc.h"
  34. #include "sysemu/device_tree.h"
  35. #include "hw/ppc/openpic.h"
  36. #include "hw/ppc/openpic_kvm.h"
  37. #include "hw/ppc/ppc.h"
  38. #include "hw/qdev-properties.h"
  39. #include "hw/loader.h"
  40. #include "elf.h"
  41. #include "hw/sysbus.h"
  42. #include "qemu/host-utils.h"
  43. #include "qemu/option.h"
  44. #include "hw/pci-host/ppce500.h"
  45. #include "qemu/error-report.h"
  46. #include "hw/platform-bus.h"
  47. #include "hw/net/fsl_etsec/etsec.h"
  48. #include "hw/i2c/i2c.h"
  49. #include "hw/irq.h"
  50. #include "hw/sd/sdhci.h"
  51. #include "hw/misc/unimp.h"
  52. #define EPAPR_MAGIC (0x45504150)
  53. #define DTC_LOAD_PAD 0x1800000
  54. #define DTC_PAD_MASK 0xFFFFF
  55. #define DTB_MAX_SIZE (8 * MiB)
  56. #define INITRD_LOAD_PAD 0x2000000
  57. #define INITRD_PAD_MASK 0xFFFFFF
  58. #define RAM_SIZES_ALIGN (64 * MiB)
  59. /* TODO: parameterize */
  60. #define MPC8544_CCSRBAR_SIZE 0x00100000ULL
  61. #define MPC8544_MPIC_REGS_OFFSET 0x40000ULL
  62. #define MPC8544_MSI_REGS_OFFSET 0x41600ULL
  63. #define MPC8544_SERIAL0_REGS_OFFSET 0x4500ULL
  64. #define MPC8544_SERIAL1_REGS_OFFSET 0x4600ULL
  65. #define MPC8544_PCI_REGS_OFFSET 0x8000ULL
  66. #define MPC8544_PCI_REGS_SIZE 0x1000ULL
  67. #define MPC85XX_ESDHC_REGS_OFFSET 0x2e000ULL
  68. #define MPC85XX_ESDHC_REGS_SIZE 0x1000ULL
  69. #define MPC8544_UTIL_OFFSET 0xe0000ULL
  70. #define MPC8XXX_GPIO_OFFSET 0x000FF000ULL
  71. #define MPC8544_I2C_REGS_OFFSET 0x3000ULL
  72. #define MPC8XXX_GPIO_IRQ 47
  73. #define MPC8544_I2C_IRQ 43
  74. #define MPC85XX_ESDHC_IRQ 72
  75. #define RTC_REGS_OFFSET 0x68
  76. #define PLATFORM_CLK_FREQ_HZ (400 * 1000 * 1000)
  77. struct boot_info
  78. {
  79. uint32_t dt_base;
  80. uint32_t dt_size;
  81. uint32_t entry;
  82. };
  83. static uint32_t *pci_map_create(void *fdt, uint32_t mpic, int first_slot,
  84. int nr_slots, int *len)
  85. {
  86. int i = 0;
  87. int slot;
  88. int pci_irq;
  89. int host_irq;
  90. int last_slot = first_slot + nr_slots;
  91. uint32_t *pci_map;
  92. *len = nr_slots * 4 * 7 * sizeof(uint32_t);
  93. pci_map = g_malloc(*len);
  94. for (slot = first_slot; slot < last_slot; slot++) {
  95. for (pci_irq = 0; pci_irq < 4; pci_irq++) {
  96. pci_map[i++] = cpu_to_be32(slot << 11);
  97. pci_map[i++] = cpu_to_be32(0x0);
  98. pci_map[i++] = cpu_to_be32(0x0);
  99. pci_map[i++] = cpu_to_be32(pci_irq + 1);
  100. pci_map[i++] = cpu_to_be32(mpic);
  101. host_irq = ppce500_pci_map_irq_slot(slot, pci_irq);
  102. pci_map[i++] = cpu_to_be32(host_irq + 1);
  103. pci_map[i++] = cpu_to_be32(0x1);
  104. }
  105. }
  106. assert((i * sizeof(uint32_t)) == *len);
  107. return pci_map;
  108. }
  109. static void dt_serial_create(void *fdt, unsigned long long offset,
  110. const char *soc, const char *mpic,
  111. const char *alias, int idx, bool defcon)
  112. {
  113. char *ser;
  114. ser = g_strdup_printf("%s/serial@%llx", soc, offset);
  115. qemu_fdt_add_subnode(fdt, ser);
  116. qemu_fdt_setprop_string(fdt, ser, "device_type", "serial");
  117. qemu_fdt_setprop_string(fdt, ser, "compatible", "ns16550");
  118. qemu_fdt_setprop_cells(fdt, ser, "reg", offset, 0x100);
  119. qemu_fdt_setprop_cell(fdt, ser, "cell-index", idx);
  120. qemu_fdt_setprop_cell(fdt, ser, "clock-frequency", PLATFORM_CLK_FREQ_HZ);
  121. qemu_fdt_setprop_cells(fdt, ser, "interrupts", 42, 2);
  122. qemu_fdt_setprop_phandle(fdt, ser, "interrupt-parent", mpic);
  123. qemu_fdt_setprop_string(fdt, "/aliases", alias, ser);
  124. if (defcon) {
  125. /*
  126. * "linux,stdout-path" and "stdout" properties are deprecated by linux
  127. * kernel. New platforms should only use the "stdout-path" property. Set
  128. * the new property and continue using older property to remain
  129. * compatible with the existing firmware.
  130. */
  131. qemu_fdt_setprop_string(fdt, "/chosen", "linux,stdout-path", ser);
  132. qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", ser);
  133. }
  134. g_free(ser);
  135. }
  136. static void create_dt_mpc8xxx_gpio(void *fdt, const char *soc, const char *mpic)
  137. {
  138. hwaddr mmio0 = MPC8XXX_GPIO_OFFSET;
  139. int irq0 = MPC8XXX_GPIO_IRQ;
  140. gchar *node = g_strdup_printf("%s/gpio@%"PRIx64, soc, mmio0);
  141. gchar *poweroff = g_strdup_printf("%s/power-off", soc);
  142. int gpio_ph;
  143. qemu_fdt_add_subnode(fdt, node);
  144. qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,qoriq-gpio");
  145. qemu_fdt_setprop_cells(fdt, node, "reg", mmio0, 0x1000);
  146. qemu_fdt_setprop_cells(fdt, node, "interrupts", irq0, 0x2);
  147. qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic);
  148. qemu_fdt_setprop_cells(fdt, node, "#gpio-cells", 2);
  149. qemu_fdt_setprop(fdt, node, "gpio-controller", NULL, 0);
  150. gpio_ph = qemu_fdt_alloc_phandle(fdt);
  151. qemu_fdt_setprop_cell(fdt, node, "phandle", gpio_ph);
  152. qemu_fdt_setprop_cell(fdt, node, "linux,phandle", gpio_ph);
  153. /* Power Off Pin */
  154. qemu_fdt_add_subnode(fdt, poweroff);
  155. qemu_fdt_setprop_string(fdt, poweroff, "compatible", "gpio-poweroff");
  156. qemu_fdt_setprop_cells(fdt, poweroff, "gpios", gpio_ph, 0, 0);
  157. g_free(node);
  158. g_free(poweroff);
  159. }
  160. static void dt_rtc_create(void *fdt, const char *i2c, const char *alias)
  161. {
  162. int offset = RTC_REGS_OFFSET;
  163. gchar *rtc = g_strdup_printf("%s/rtc@%"PRIx32, i2c, offset);
  164. qemu_fdt_add_subnode(fdt, rtc);
  165. qemu_fdt_setprop_string(fdt, rtc, "compatible", "pericom,pt7c4338");
  166. qemu_fdt_setprop_cells(fdt, rtc, "reg", offset);
  167. qemu_fdt_setprop_string(fdt, "/aliases", alias, rtc);
  168. g_free(rtc);
  169. }
  170. static void dt_i2c_create(void *fdt, const char *soc, const char *mpic,
  171. const char *alias)
  172. {
  173. hwaddr mmio0 = MPC8544_I2C_REGS_OFFSET;
  174. int irq0 = MPC8544_I2C_IRQ;
  175. gchar *i2c = g_strdup_printf("%s/i2c@%"PRIx64, soc, mmio0);
  176. qemu_fdt_add_subnode(fdt, i2c);
  177. qemu_fdt_setprop_string(fdt, i2c, "device_type", "i2c");
  178. qemu_fdt_setprop_string(fdt, i2c, "compatible", "fsl-i2c");
  179. qemu_fdt_setprop_cells(fdt, i2c, "reg", mmio0, 0x14);
  180. qemu_fdt_setprop_cells(fdt, i2c, "cell-index", 0);
  181. qemu_fdt_setprop_cells(fdt, i2c, "interrupts", irq0, 0x2);
  182. qemu_fdt_setprop_phandle(fdt, i2c, "interrupt-parent", mpic);
  183. qemu_fdt_setprop_string(fdt, "/aliases", alias, i2c);
  184. g_free(i2c);
  185. }
  186. static void dt_sdhc_create(void *fdt, const char *parent, const char *mpic)
  187. {
  188. hwaddr mmio = MPC85XX_ESDHC_REGS_OFFSET;
  189. hwaddr size = MPC85XX_ESDHC_REGS_SIZE;
  190. int irq = MPC85XX_ESDHC_IRQ;
  191. g_autofree char *name = NULL;
  192. name = g_strdup_printf("%s/sdhc@%" PRIx64, parent, mmio);
  193. qemu_fdt_add_subnode(fdt, name);
  194. qemu_fdt_setprop(fdt, name, "sdhci,auto-cmd12", NULL, 0);
  195. qemu_fdt_setprop_phandle(fdt, name, "interrupt-parent", mpic);
  196. qemu_fdt_setprop_cells(fdt, name, "bus-width", 4);
  197. qemu_fdt_setprop_cells(fdt, name, "interrupts", irq, 0x2);
  198. qemu_fdt_setprop_cells(fdt, name, "reg", mmio, size);
  199. qemu_fdt_setprop_string(fdt, name, "compatible", "fsl,esdhc");
  200. }
  201. typedef struct PlatformDevtreeData {
  202. void *fdt;
  203. const char *mpic;
  204. int irq_start;
  205. const char *node;
  206. PlatformBusDevice *pbus;
  207. } PlatformDevtreeData;
  208. static int create_devtree_etsec(SysBusDevice *sbdev, PlatformDevtreeData *data)
  209. {
  210. eTSEC *etsec = ETSEC_COMMON(sbdev);
  211. PlatformBusDevice *pbus = data->pbus;
  212. hwaddr mmio0 = platform_bus_get_mmio_addr(pbus, sbdev, 0);
  213. int irq0 = platform_bus_get_irqn(pbus, sbdev, 0);
  214. int irq1 = platform_bus_get_irqn(pbus, sbdev, 1);
  215. int irq2 = platform_bus_get_irqn(pbus, sbdev, 2);
  216. gchar *node = g_strdup_printf("%s/ethernet@%"PRIx64, data->node, mmio0);
  217. gchar *group = g_strdup_printf("%s/queue-group", node);
  218. void *fdt = data->fdt;
  219. assert((int64_t)mmio0 >= 0);
  220. assert(irq0 >= 0);
  221. assert(irq1 >= 0);
  222. assert(irq2 >= 0);
  223. qemu_fdt_add_subnode(fdt, node);
  224. qemu_fdt_setprop(fdt, node, "ranges", NULL, 0);
  225. qemu_fdt_setprop_string(fdt, node, "device_type", "network");
  226. qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,etsec2");
  227. qemu_fdt_setprop_string(fdt, node, "model", "eTSEC");
  228. qemu_fdt_setprop(fdt, node, "local-mac-address", etsec->conf.macaddr.a, 6);
  229. qemu_fdt_setprop_cells(fdt, node, "fixed-link", 0, 1, 1000, 0, 0);
  230. qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1);
  231. qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1);
  232. qemu_fdt_add_subnode(fdt, group);
  233. qemu_fdt_setprop_cells(fdt, group, "reg", mmio0, 0x1000);
  234. qemu_fdt_setprop_cells(fdt, group, "interrupts",
  235. data->irq_start + irq0, 0x2,
  236. data->irq_start + irq1, 0x2,
  237. data->irq_start + irq2, 0x2);
  238. g_free(node);
  239. g_free(group);
  240. return 0;
  241. }
  242. static void sysbus_device_create_devtree(SysBusDevice *sbdev, void *opaque)
  243. {
  244. PlatformDevtreeData *data = opaque;
  245. bool matched = false;
  246. if (object_dynamic_cast(OBJECT(sbdev), TYPE_ETSEC_COMMON)) {
  247. create_devtree_etsec(sbdev, data);
  248. matched = true;
  249. }
  250. if (!matched) {
  251. error_report("Device %s is not supported by this machine yet.",
  252. qdev_fw_name(DEVICE(sbdev)));
  253. exit(1);
  254. }
  255. }
  256. static void create_devtree_flash(SysBusDevice *sbdev,
  257. PlatformDevtreeData *data)
  258. {
  259. g_autofree char *name = NULL;
  260. uint64_t num_blocks = object_property_get_uint(OBJECT(sbdev),
  261. "num-blocks",
  262. &error_fatal);
  263. uint64_t sector_length = object_property_get_uint(OBJECT(sbdev),
  264. "sector-length",
  265. &error_fatal);
  266. uint64_t bank_width = object_property_get_uint(OBJECT(sbdev),
  267. "width",
  268. &error_fatal);
  269. hwaddr flashbase = 0;
  270. hwaddr flashsize = num_blocks * sector_length;
  271. void *fdt = data->fdt;
  272. name = g_strdup_printf("%s/nor@%" PRIx64, data->node, flashbase);
  273. qemu_fdt_add_subnode(fdt, name);
  274. qemu_fdt_setprop_string(fdt, name, "compatible", "cfi-flash");
  275. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  276. 1, flashbase, 1, flashsize);
  277. qemu_fdt_setprop_cell(fdt, name, "bank-width", bank_width);
  278. }
  279. static void platform_bus_create_devtree(PPCE500MachineState *pms,
  280. void *fdt, const char *mpic)
  281. {
  282. const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
  283. gchar *node = g_strdup_printf("/platform@%"PRIx64, pmc->platform_bus_base);
  284. const char platcomp[] = "qemu,platform\0simple-bus";
  285. uint64_t addr = pmc->platform_bus_base;
  286. uint64_t size = pmc->platform_bus_size;
  287. int irq_start = pmc->platform_bus_first_irq;
  288. SysBusDevice *sbdev;
  289. bool ambiguous;
  290. /* Create a /platform node that we can put all devices into */
  291. qemu_fdt_add_subnode(fdt, node);
  292. qemu_fdt_setprop(fdt, node, "compatible", platcomp, sizeof(platcomp));
  293. /* Our platform bus region is less than 32bit big, so 1 cell is enough for
  294. address and size */
  295. qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1);
  296. qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1);
  297. qemu_fdt_setprop_cells(fdt, node, "ranges", 0, addr >> 32, addr, size);
  298. qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic);
  299. /* Create dt nodes for dynamic devices */
  300. PlatformDevtreeData data = {
  301. .fdt = fdt,
  302. .mpic = mpic,
  303. .irq_start = irq_start,
  304. .node = node,
  305. .pbus = pms->pbus_dev,
  306. };
  307. /* Loop through all dynamic sysbus devices and create nodes for them */
  308. foreach_dynamic_sysbus_device(sysbus_device_create_devtree, &data);
  309. sbdev = SYS_BUS_DEVICE(object_resolve_path_type("", TYPE_PFLASH_CFI01,
  310. &ambiguous));
  311. if (sbdev) {
  312. assert(!ambiguous);
  313. create_devtree_flash(sbdev, &data);
  314. }
  315. g_free(node);
  316. }
  317. static int ppce500_load_device_tree(PPCE500MachineState *pms,
  318. hwaddr addr,
  319. hwaddr initrd_base,
  320. hwaddr initrd_size,
  321. hwaddr kernel_base,
  322. hwaddr kernel_size,
  323. bool dry_run)
  324. {
  325. MachineState *machine = MACHINE(pms);
  326. unsigned int smp_cpus = machine->smp.cpus;
  327. const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
  328. CPUPPCState *env = cpu_env(first_cpu);
  329. int ret = -1;
  330. uint64_t mem_reg_property[] = { 0, cpu_to_be64(machine->ram_size) };
  331. int fdt_size;
  332. void *fdt;
  333. uint8_t hypercall[16];
  334. uint32_t clock_freq = PLATFORM_CLK_FREQ_HZ;
  335. uint32_t tb_freq = PLATFORM_CLK_FREQ_HZ;
  336. int i;
  337. char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus";
  338. char *soc;
  339. char *mpic;
  340. uint32_t mpic_ph;
  341. uint32_t msi_ph;
  342. char *gutil;
  343. char *pci;
  344. char *msi;
  345. uint32_t *pci_map = NULL;
  346. int len;
  347. uint32_t pci_ranges[14] =
  348. {
  349. 0x2000000, 0x0, pmc->pci_mmio_bus_base,
  350. pmc->pci_mmio_base >> 32, pmc->pci_mmio_base,
  351. 0x0, 0x20000000,
  352. 0x1000000, 0x0, 0x0,
  353. pmc->pci_pio_base >> 32, pmc->pci_pio_base,
  354. 0x0, 0x10000,
  355. };
  356. const char *dtb_file = machine->dtb;
  357. const char *toplevel_compat = machine->dt_compatible;
  358. uint8_t rng_seed[32];
  359. if (dtb_file) {
  360. char *filename;
  361. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file);
  362. if (!filename) {
  363. goto out;
  364. }
  365. fdt = load_device_tree(filename, &fdt_size);
  366. g_free(filename);
  367. if (!fdt) {
  368. goto out;
  369. }
  370. goto done;
  371. }
  372. fdt = create_device_tree(&fdt_size);
  373. if (fdt == NULL) {
  374. goto out;
  375. }
  376. /* Manipulate device tree in memory. */
  377. qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 2);
  378. qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 2);
  379. qemu_fdt_add_subnode(fdt, "/memory");
  380. qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
  381. qemu_fdt_setprop(fdt, "/memory", "reg", mem_reg_property,
  382. sizeof(mem_reg_property));
  383. qemu_fdt_add_subnode(fdt, "/chosen");
  384. if (initrd_size) {
  385. ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
  386. initrd_base);
  387. if (ret < 0) {
  388. fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
  389. }
  390. ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
  391. (initrd_base + initrd_size));
  392. if (ret < 0) {
  393. fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
  394. }
  395. }
  396. if (kernel_base != -1ULL) {
  397. qemu_fdt_setprop_cells(fdt, "/chosen", "qemu,boot-kernel",
  398. kernel_base >> 32, kernel_base,
  399. kernel_size >> 32, kernel_size);
  400. }
  401. ret = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
  402. machine->kernel_cmdline);
  403. if (ret < 0)
  404. fprintf(stderr, "couldn't set /chosen/bootargs\n");
  405. qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
  406. qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
  407. if (kvm_enabled()) {
  408. /* Read out host's frequencies */
  409. clock_freq = kvmppc_get_clockfreq();
  410. tb_freq = kvmppc_get_tbfreq();
  411. /* indicate KVM hypercall interface */
  412. qemu_fdt_add_subnode(fdt, "/hypervisor");
  413. qemu_fdt_setprop_string(fdt, "/hypervisor", "compatible",
  414. "linux,kvm");
  415. kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
  416. qemu_fdt_setprop(fdt, "/hypervisor", "hcall-instructions",
  417. hypercall, sizeof(hypercall));
  418. /* if KVM supports the idle hcall, set property indicating this */
  419. if (kvmppc_get_hasidle(env)) {
  420. qemu_fdt_setprop(fdt, "/hypervisor", "has-idle", NULL, 0);
  421. }
  422. }
  423. /* Create CPU nodes */
  424. qemu_fdt_add_subnode(fdt, "/cpus");
  425. qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 1);
  426. qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0);
  427. /* We need to generate the cpu nodes in reverse order, so Linux can pick
  428. the first node as boot node and be happy */
  429. for (i = smp_cpus - 1; i >= 0; i--) {
  430. CPUState *cpu;
  431. char *cpu_name;
  432. uint64_t cpu_release_addr = pmc->spin_base + (i * 0x20);
  433. cpu = qemu_get_cpu(i);
  434. if (cpu == NULL) {
  435. continue;
  436. }
  437. env = cpu_env(cpu);
  438. cpu_name = g_strdup_printf("/cpus/PowerPC,8544@%x", i);
  439. qemu_fdt_add_subnode(fdt, cpu_name);
  440. qemu_fdt_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
  441. qemu_fdt_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
  442. qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
  443. qemu_fdt_setprop_cell(fdt, cpu_name, "reg", i);
  444. qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-line-size",
  445. env->dcache_line_size);
  446. qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-line-size",
  447. env->icache_line_size);
  448. qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
  449. qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
  450. qemu_fdt_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
  451. if (cpu->cpu_index) {
  452. qemu_fdt_setprop_string(fdt, cpu_name, "status", "disabled");
  453. qemu_fdt_setprop_string(fdt, cpu_name, "enable-method",
  454. "spin-table");
  455. qemu_fdt_setprop_u64(fdt, cpu_name, "cpu-release-addr",
  456. cpu_release_addr);
  457. } else {
  458. qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
  459. }
  460. g_free(cpu_name);
  461. }
  462. qemu_fdt_add_subnode(fdt, "/aliases");
  463. /* XXX These should go into their respective devices' code */
  464. soc = g_strdup_printf("/soc@%"PRIx64, pmc->ccsrbar_base);
  465. qemu_fdt_add_subnode(fdt, soc);
  466. qemu_fdt_setprop_string(fdt, soc, "device_type", "soc");
  467. qemu_fdt_setprop(fdt, soc, "compatible", compatible_sb,
  468. sizeof(compatible_sb));
  469. qemu_fdt_setprop_cell(fdt, soc, "#address-cells", 1);
  470. qemu_fdt_setprop_cell(fdt, soc, "#size-cells", 1);
  471. qemu_fdt_setprop_cells(fdt, soc, "ranges", 0x0,
  472. pmc->ccsrbar_base >> 32, pmc->ccsrbar_base,
  473. MPC8544_CCSRBAR_SIZE);
  474. /* XXX should contain a reasonable value */
  475. qemu_fdt_setprop_cell(fdt, soc, "bus-frequency", 0);
  476. mpic = g_strdup_printf("%s/pic@%llx", soc, MPC8544_MPIC_REGS_OFFSET);
  477. qemu_fdt_add_subnode(fdt, mpic);
  478. qemu_fdt_setprop_string(fdt, mpic, "device_type", "open-pic");
  479. qemu_fdt_setprop_string(fdt, mpic, "compatible", "fsl,mpic");
  480. qemu_fdt_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_OFFSET,
  481. 0x40000);
  482. qemu_fdt_setprop_cell(fdt, mpic, "#address-cells", 0);
  483. qemu_fdt_setprop_cell(fdt, mpic, "#interrupt-cells", 2);
  484. mpic_ph = qemu_fdt_alloc_phandle(fdt);
  485. qemu_fdt_setprop_cell(fdt, mpic, "phandle", mpic_ph);
  486. qemu_fdt_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph);
  487. qemu_fdt_setprop(fdt, mpic, "interrupt-controller", NULL, 0);
  488. /*
  489. * We have to generate ser1 first, because Linux takes the first
  490. * device it finds in the dt as serial output device. And we generate
  491. * devices in reverse order to the dt.
  492. */
  493. if (serial_hd(1)) {
  494. dt_serial_create(fdt, MPC8544_SERIAL1_REGS_OFFSET,
  495. soc, mpic, "serial1", 1, false);
  496. }
  497. if (serial_hd(0)) {
  498. dt_serial_create(fdt, MPC8544_SERIAL0_REGS_OFFSET,
  499. soc, mpic, "serial0", 0, true);
  500. }
  501. /* i2c */
  502. dt_i2c_create(fdt, soc, mpic, "i2c");
  503. dt_rtc_create(fdt, "i2c", "rtc");
  504. /* sdhc */
  505. if (pmc->has_esdhc) {
  506. dt_sdhc_create(fdt, soc, mpic);
  507. }
  508. gutil = g_strdup_printf("%s/global-utilities@%llx", soc,
  509. MPC8544_UTIL_OFFSET);
  510. qemu_fdt_add_subnode(fdt, gutil);
  511. qemu_fdt_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts");
  512. qemu_fdt_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_OFFSET, 0x1000);
  513. qemu_fdt_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0);
  514. g_free(gutil);
  515. msi = g_strdup_printf("/%s/msi@%llx", soc, MPC8544_MSI_REGS_OFFSET);
  516. qemu_fdt_add_subnode(fdt, msi);
  517. qemu_fdt_setprop_string(fdt, msi, "compatible", "fsl,mpic-msi");
  518. qemu_fdt_setprop_cells(fdt, msi, "reg", MPC8544_MSI_REGS_OFFSET, 0x200);
  519. msi_ph = qemu_fdt_alloc_phandle(fdt);
  520. qemu_fdt_setprop_cells(fdt, msi, "msi-available-ranges", 0x0, 0x100);
  521. qemu_fdt_setprop_phandle(fdt, msi, "interrupt-parent", mpic);
  522. qemu_fdt_setprop_cells(fdt, msi, "interrupts",
  523. 0xe0, 0x0,
  524. 0xe1, 0x0,
  525. 0xe2, 0x0,
  526. 0xe3, 0x0,
  527. 0xe4, 0x0,
  528. 0xe5, 0x0,
  529. 0xe6, 0x0,
  530. 0xe7, 0x0);
  531. qemu_fdt_setprop_cell(fdt, msi, "phandle", msi_ph);
  532. qemu_fdt_setprop_cell(fdt, msi, "linux,phandle", msi_ph);
  533. g_free(msi);
  534. pci = g_strdup_printf("/pci@%llx",
  535. pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET);
  536. qemu_fdt_add_subnode(fdt, pci);
  537. qemu_fdt_setprop_cell(fdt, pci, "cell-index", 0);
  538. qemu_fdt_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci");
  539. qemu_fdt_setprop_string(fdt, pci, "device_type", "pci");
  540. qemu_fdt_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0,
  541. 0x0, 0x7);
  542. pci_map = pci_map_create(fdt, qemu_fdt_get_phandle(fdt, mpic),
  543. pmc->pci_first_slot, pmc->pci_nr_slots,
  544. &len);
  545. qemu_fdt_setprop(fdt, pci, "interrupt-map", pci_map, len);
  546. qemu_fdt_setprop_phandle(fdt, pci, "interrupt-parent", mpic);
  547. qemu_fdt_setprop_cells(fdt, pci, "interrupts", 24, 2);
  548. qemu_fdt_setprop_cells(fdt, pci, "bus-range", 0, 255);
  549. for (i = 0; i < 14; i++) {
  550. pci_ranges[i] = cpu_to_be32(pci_ranges[i]);
  551. }
  552. qemu_fdt_setprop_cell(fdt, pci, "fsl,msi", msi_ph);
  553. qemu_fdt_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges));
  554. qemu_fdt_setprop_cells(fdt, pci, "reg",
  555. (pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET) >> 32,
  556. (pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET),
  557. 0, 0x1000);
  558. qemu_fdt_setprop_cell(fdt, pci, "clock-frequency", 66666666);
  559. qemu_fdt_setprop_cell(fdt, pci, "#interrupt-cells", 1);
  560. qemu_fdt_setprop_cell(fdt, pci, "#size-cells", 2);
  561. qemu_fdt_setprop_cell(fdt, pci, "#address-cells", 3);
  562. qemu_fdt_setprop_string(fdt, "/aliases", "pci0", pci);
  563. g_free(pci);
  564. if (pmc->has_mpc8xxx_gpio) {
  565. create_dt_mpc8xxx_gpio(fdt, soc, mpic);
  566. }
  567. g_free(soc);
  568. platform_bus_create_devtree(pms, fdt, mpic);
  569. g_free(mpic);
  570. pmc->fixup_devtree(fdt);
  571. if (toplevel_compat) {
  572. qemu_fdt_setprop(fdt, "/", "compatible", toplevel_compat,
  573. strlen(toplevel_compat) + 1);
  574. }
  575. done:
  576. if (!dry_run) {
  577. qemu_fdt_dumpdtb(fdt, fdt_size);
  578. cpu_physical_memory_write(addr, fdt, fdt_size);
  579. /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
  580. g_free(machine->fdt);
  581. machine->fdt = fdt;
  582. } else {
  583. g_free(fdt);
  584. }
  585. ret = fdt_size;
  586. out:
  587. g_free(pci_map);
  588. return ret;
  589. }
  590. typedef struct DeviceTreeParams {
  591. PPCE500MachineState *machine;
  592. hwaddr addr;
  593. hwaddr initrd_base;
  594. hwaddr initrd_size;
  595. hwaddr kernel_base;
  596. hwaddr kernel_size;
  597. Notifier notifier;
  598. } DeviceTreeParams;
  599. static void ppce500_reset_device_tree(void *opaque)
  600. {
  601. DeviceTreeParams *p = opaque;
  602. ppce500_load_device_tree(p->machine, p->addr, p->initrd_base,
  603. p->initrd_size, p->kernel_base, p->kernel_size,
  604. false);
  605. }
  606. static void ppce500_init_notify(Notifier *notifier, void *data)
  607. {
  608. DeviceTreeParams *p = container_of(notifier, DeviceTreeParams, notifier);
  609. ppce500_reset_device_tree(p);
  610. }
  611. static int ppce500_prep_device_tree(PPCE500MachineState *machine,
  612. hwaddr addr,
  613. hwaddr initrd_base,
  614. hwaddr initrd_size,
  615. hwaddr kernel_base,
  616. hwaddr kernel_size)
  617. {
  618. DeviceTreeParams *p = g_new(DeviceTreeParams, 1);
  619. p->machine = machine;
  620. p->addr = addr;
  621. p->initrd_base = initrd_base;
  622. p->initrd_size = initrd_size;
  623. p->kernel_base = kernel_base;
  624. p->kernel_size = kernel_size;
  625. qemu_register_reset_nosnapshotload(ppce500_reset_device_tree, p);
  626. p->notifier.notify = ppce500_init_notify;
  627. qemu_add_machine_init_done_notifier(&p->notifier);
  628. /* Issue the device tree loader once, so that we get the size of the blob */
  629. return ppce500_load_device_tree(machine, addr, initrd_base, initrd_size,
  630. kernel_base, kernel_size, true);
  631. }
  632. hwaddr booke206_page_size_to_tlb(uint64_t size)
  633. {
  634. return 63 - clz64(size / KiB);
  635. }
  636. static int booke206_initial_map_tsize(CPUPPCState *env)
  637. {
  638. struct boot_info *bi = env->load_info;
  639. hwaddr dt_end;
  640. int ps;
  641. /* Our initial TLB entry needs to cover everything from 0 to
  642. the device tree top */
  643. dt_end = bi->dt_base + bi->dt_size;
  644. ps = booke206_page_size_to_tlb(dt_end) + 1;
  645. if (ps & 1) {
  646. /* e500v2 can only do even TLB size bits */
  647. ps++;
  648. }
  649. return ps;
  650. }
  651. static uint64_t mmubooke_initial_mapsize(CPUPPCState *env)
  652. {
  653. int tsize;
  654. tsize = booke206_initial_map_tsize(env);
  655. return (1ULL << 10 << tsize);
  656. }
  657. /* Create -kernel TLB entries for BookE. */
  658. static void mmubooke_create_initial_mapping(CPUPPCState *env)
  659. {
  660. ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 0);
  661. hwaddr size;
  662. int ps;
  663. ps = booke206_initial_map_tsize(env);
  664. size = (ps << MAS1_TSIZE_SHIFT);
  665. tlb->mas1 = MAS1_VALID | size;
  666. tlb->mas2 = 0;
  667. tlb->mas7_3 = 0;
  668. tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
  669. #ifdef CONFIG_KVM
  670. env->tlb_dirty = true;
  671. #endif
  672. }
  673. static void ppce500_cpu_reset_sec(void *opaque)
  674. {
  675. PowerPCCPU *cpu = opaque;
  676. CPUState *cs = CPU(cpu);
  677. cpu_reset(cs);
  678. cs->exception_index = EXCP_HLT;
  679. }
  680. static void ppce500_cpu_reset(void *opaque)
  681. {
  682. PowerPCCPU *cpu = opaque;
  683. CPUState *cs = CPU(cpu);
  684. CPUPPCState *env = &cpu->env;
  685. struct boot_info *bi = env->load_info;
  686. cpu_reset(cs);
  687. /* Set initial guest state. */
  688. cs->halted = 0;
  689. env->gpr[1] = (16 * MiB) - 8;
  690. env->gpr[3] = bi->dt_base;
  691. env->gpr[4] = 0;
  692. env->gpr[5] = 0;
  693. env->gpr[6] = EPAPR_MAGIC;
  694. env->gpr[7] = mmubooke_initial_mapsize(env);
  695. env->gpr[8] = 0;
  696. env->gpr[9] = 0;
  697. env->nip = bi->entry;
  698. mmubooke_create_initial_mapping(env);
  699. }
  700. static DeviceState *ppce500_init_mpic_qemu(PPCE500MachineState *pms,
  701. IrqLines *irqs)
  702. {
  703. DeviceState *dev;
  704. SysBusDevice *s;
  705. int i, j, k;
  706. MachineState *machine = MACHINE(pms);
  707. unsigned int smp_cpus = machine->smp.cpus;
  708. const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
  709. dev = qdev_new(TYPE_OPENPIC);
  710. object_property_add_child(OBJECT(machine), "pic", OBJECT(dev));
  711. qdev_prop_set_uint32(dev, "model", pmc->mpic_version);
  712. qdev_prop_set_uint32(dev, "nb_cpus", smp_cpus);
  713. s = SYS_BUS_DEVICE(dev);
  714. sysbus_realize_and_unref(s, &error_fatal);
  715. k = 0;
  716. for (i = 0; i < smp_cpus; i++) {
  717. for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
  718. sysbus_connect_irq(s, k++, irqs[i].irq[j]);
  719. }
  720. }
  721. return dev;
  722. }
  723. static DeviceState *ppce500_init_mpic_kvm(const PPCE500MachineClass *pmc,
  724. IrqLines *irqs, Error **errp)
  725. {
  726. #ifdef CONFIG_KVM
  727. DeviceState *dev;
  728. CPUState *cs;
  729. dev = qdev_new(TYPE_KVM_OPENPIC);
  730. qdev_prop_set_uint32(dev, "model", pmc->mpic_version);
  731. if (!sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), errp)) {
  732. object_unparent(OBJECT(dev));
  733. return NULL;
  734. }
  735. CPU_FOREACH(cs) {
  736. if (kvm_openpic_connect_vcpu(dev, cs)) {
  737. fprintf(stderr, "%s: failed to connect vcpu to irqchip\n",
  738. __func__);
  739. abort();
  740. }
  741. }
  742. return dev;
  743. #else
  744. g_assert_not_reached();
  745. #endif
  746. }
  747. static DeviceState *ppce500_init_mpic(PPCE500MachineState *pms,
  748. MemoryRegion *ccsr,
  749. IrqLines *irqs)
  750. {
  751. const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
  752. DeviceState *dev = NULL;
  753. SysBusDevice *s;
  754. if (kvm_enabled()) {
  755. Error *err = NULL;
  756. if (kvm_kernel_irqchip_allowed()) {
  757. dev = ppce500_init_mpic_kvm(pmc, irqs, &err);
  758. }
  759. if (kvm_kernel_irqchip_required() && !dev) {
  760. error_reportf_err(err,
  761. "kernel_irqchip requested but unavailable: ");
  762. exit(1);
  763. }
  764. }
  765. if (!dev) {
  766. dev = ppce500_init_mpic_qemu(pms, irqs);
  767. }
  768. s = SYS_BUS_DEVICE(dev);
  769. memory_region_add_subregion(ccsr, MPC8544_MPIC_REGS_OFFSET,
  770. s->mmio[0].memory);
  771. return dev;
  772. }
  773. static void ppce500_power_off(void *opaque, int line, int on)
  774. {
  775. if (on) {
  776. qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
  777. }
  778. }
  779. void ppce500_init(MachineState *machine)
  780. {
  781. MemoryRegion *address_space_mem = get_system_memory();
  782. PPCE500MachineState *pms = PPCE500_MACHINE(machine);
  783. const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(machine);
  784. MachineClass *mc = MACHINE_CLASS(pmc);
  785. PCIBus *pci_bus;
  786. CPUPPCState *env = NULL;
  787. uint64_t loadaddr;
  788. hwaddr kernel_base = -1LL;
  789. int kernel_size = 0;
  790. hwaddr dt_base = 0;
  791. hwaddr initrd_base = 0;
  792. int initrd_size = 0;
  793. hwaddr cur_base = 0;
  794. char *filename;
  795. const char *payload_name;
  796. bool kernel_as_payload;
  797. hwaddr bios_entry = 0;
  798. target_long payload_size;
  799. struct boot_info *boot_info = NULL;
  800. int dt_size;
  801. int i;
  802. unsigned int smp_cpus = machine->smp.cpus;
  803. /* irq num for pin INTA, INTB, INTC and INTD is 1, 2, 3 and
  804. * 4 respectively */
  805. unsigned int pci_irq_nrs[PCI_NUM_PINS] = {1, 2, 3, 4};
  806. IrqLines *irqs;
  807. DeviceState *dev, *mpicdev;
  808. DriveInfo *dinfo;
  809. CPUPPCState *firstenv = NULL;
  810. MemoryRegion *ccsr_addr_space;
  811. SysBusDevice *s;
  812. PPCE500CCSRState *ccsr;
  813. I2CBus *i2c;
  814. irqs = g_new0(IrqLines, smp_cpus);
  815. for (i = 0; i < smp_cpus; i++) {
  816. PowerPCCPU *cpu;
  817. CPUState *cs;
  818. cpu = POWERPC_CPU(object_new(machine->cpu_type));
  819. env = &cpu->env;
  820. cs = CPU(cpu);
  821. if (env->mmu_model != POWERPC_MMU_BOOKE206) {
  822. error_report("MMU model %i not supported by this machine",
  823. env->mmu_model);
  824. exit(1);
  825. }
  826. /*
  827. * Secondary CPU starts in halted state for now. Needs to change
  828. * when implementing non-kernel boot.
  829. */
  830. object_property_set_bool(OBJECT(cs), "start-powered-off", i != 0,
  831. &error_abort);
  832. qdev_realize_and_unref(DEVICE(cs), NULL, &error_fatal);
  833. if (!firstenv) {
  834. firstenv = env;
  835. }
  836. irqs[i].irq[OPENPIC_OUTPUT_INT] =
  837. qdev_get_gpio_in(DEVICE(cpu), PPCE500_INPUT_INT);
  838. irqs[i].irq[OPENPIC_OUTPUT_CINT] =
  839. qdev_get_gpio_in(DEVICE(cpu), PPCE500_INPUT_CINT);
  840. env->spr_cb[SPR_BOOKE_PIR].default_value = cs->cpu_index = i;
  841. env->mpic_iack = pmc->ccsrbar_base + MPC8544_MPIC_REGS_OFFSET + 0xa0;
  842. ppc_booke_timers_init(cpu, PLATFORM_CLK_FREQ_HZ, PPC_TIMER_E500);
  843. /* Register reset handler */
  844. if (!i) {
  845. /* Primary CPU */
  846. boot_info = g_new0(struct boot_info, 1);
  847. qemu_register_reset(ppce500_cpu_reset, cpu);
  848. env->load_info = boot_info;
  849. } else {
  850. /* Secondary CPUs */
  851. qemu_register_reset(ppce500_cpu_reset_sec, cpu);
  852. }
  853. }
  854. env = firstenv;
  855. if (!QEMU_IS_ALIGNED(machine->ram_size, RAM_SIZES_ALIGN)) {
  856. error_report("RAM size must be multiple of %" PRIu64, RAM_SIZES_ALIGN);
  857. exit(EXIT_FAILURE);
  858. }
  859. /* Register Memory */
  860. memory_region_add_subregion(address_space_mem, 0, machine->ram);
  861. dev = qdev_new("e500-ccsr");
  862. object_property_add_child(OBJECT(machine), "e500-ccsr", OBJECT(dev));
  863. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  864. ccsr = CCSR(dev);
  865. ccsr_addr_space = &ccsr->ccsr_space;
  866. memory_region_add_subregion(address_space_mem, pmc->ccsrbar_base,
  867. ccsr_addr_space);
  868. mpicdev = ppce500_init_mpic(pms, ccsr_addr_space, irqs);
  869. g_free(irqs);
  870. /* Serial */
  871. if (serial_hd(0)) {
  872. serial_mm_init(ccsr_addr_space, MPC8544_SERIAL0_REGS_OFFSET,
  873. 0, qdev_get_gpio_in(mpicdev, 42), 399193,
  874. serial_hd(0), DEVICE_BIG_ENDIAN);
  875. }
  876. if (serial_hd(1)) {
  877. serial_mm_init(ccsr_addr_space, MPC8544_SERIAL1_REGS_OFFSET,
  878. 0, qdev_get_gpio_in(mpicdev, 42), 399193,
  879. serial_hd(1), DEVICE_BIG_ENDIAN);
  880. }
  881. /* I2C */
  882. dev = qdev_new("mpc-i2c");
  883. s = SYS_BUS_DEVICE(dev);
  884. sysbus_realize_and_unref(s, &error_fatal);
  885. sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC8544_I2C_IRQ));
  886. memory_region_add_subregion(ccsr_addr_space, MPC8544_I2C_REGS_OFFSET,
  887. sysbus_mmio_get_region(s, 0));
  888. i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
  889. i2c_slave_create_simple(i2c, "ds1338", RTC_REGS_OFFSET);
  890. /* eSDHC */
  891. if (pmc->has_esdhc) {
  892. dev = qdev_new(TYPE_UNIMPLEMENTED_DEVICE);
  893. qdev_prop_set_string(dev, "name", "esdhc");
  894. qdev_prop_set_uint64(dev, "size", MPC85XX_ESDHC_REGS_SIZE);
  895. s = SYS_BUS_DEVICE(dev);
  896. sysbus_realize_and_unref(s, &error_fatal);
  897. memory_region_add_subregion(ccsr_addr_space, MPC85XX_ESDHC_REGS_OFFSET,
  898. sysbus_mmio_get_region(s, 0));
  899. /*
  900. * Compatible with:
  901. * - SD Host Controller Specification Version 2.0 Part A2
  902. * (See MPC8569E Reference Manual)
  903. */
  904. dev = qdev_new(TYPE_SYSBUS_SDHCI);
  905. qdev_prop_set_uint8(dev, "sd-spec-version", 2);
  906. qdev_prop_set_uint8(dev, "endianness", DEVICE_BIG_ENDIAN);
  907. s = SYS_BUS_DEVICE(dev);
  908. sysbus_realize_and_unref(s, &error_fatal);
  909. sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC85XX_ESDHC_IRQ));
  910. memory_region_add_subregion(ccsr_addr_space, MPC85XX_ESDHC_REGS_OFFSET,
  911. sysbus_mmio_get_region(s, 0));
  912. }
  913. /* General Utility device */
  914. dev = qdev_new("mpc8544-guts");
  915. s = SYS_BUS_DEVICE(dev);
  916. sysbus_realize_and_unref(s, &error_fatal);
  917. memory_region_add_subregion(ccsr_addr_space, MPC8544_UTIL_OFFSET,
  918. sysbus_mmio_get_region(s, 0));
  919. /* PCI */
  920. dev = qdev_new("e500-pcihost");
  921. object_property_add_child(OBJECT(machine), "pci-host", OBJECT(dev));
  922. qdev_prop_set_uint32(dev, "first_slot", pmc->pci_first_slot);
  923. qdev_prop_set_uint32(dev, "first_pin_irq", pci_irq_nrs[0]);
  924. s = SYS_BUS_DEVICE(dev);
  925. sysbus_realize_and_unref(s, &error_fatal);
  926. for (i = 0; i < PCI_NUM_PINS; i++) {
  927. sysbus_connect_irq(s, i, qdev_get_gpio_in(mpicdev, pci_irq_nrs[i]));
  928. }
  929. memory_region_add_subregion(ccsr_addr_space, MPC8544_PCI_REGS_OFFSET,
  930. sysbus_mmio_get_region(s, 0));
  931. pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
  932. if (!pci_bus)
  933. printf("couldn't create PCI controller!\n");
  934. if (pci_bus) {
  935. /* Register network interfaces. */
  936. pci_init_nic_devices(pci_bus, mc->default_nic);
  937. }
  938. /* Register spinning region */
  939. sysbus_create_simple("e500-spin", pmc->spin_base, NULL);
  940. if (pmc->has_mpc8xxx_gpio) {
  941. qemu_irq poweroff_irq;
  942. dev = qdev_new("mpc8xxx_gpio");
  943. s = SYS_BUS_DEVICE(dev);
  944. sysbus_realize_and_unref(s, &error_fatal);
  945. sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC8XXX_GPIO_IRQ));
  946. memory_region_add_subregion(ccsr_addr_space, MPC8XXX_GPIO_OFFSET,
  947. sysbus_mmio_get_region(s, 0));
  948. /* Power Off GPIO at Pin 0 */
  949. poweroff_irq = qemu_allocate_irq(ppce500_power_off, NULL, 0);
  950. qdev_connect_gpio_out(dev, 0, poweroff_irq);
  951. }
  952. /* Platform Bus Device */
  953. dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
  954. dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
  955. qdev_prop_set_uint32(dev, "num_irqs", pmc->platform_bus_num_irqs);
  956. qdev_prop_set_uint32(dev, "mmio_size", pmc->platform_bus_size);
  957. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  958. pms->pbus_dev = PLATFORM_BUS_DEVICE(dev);
  959. s = SYS_BUS_DEVICE(pms->pbus_dev);
  960. for (i = 0; i < pmc->platform_bus_num_irqs; i++) {
  961. int irqn = pmc->platform_bus_first_irq + i;
  962. sysbus_connect_irq(s, i, qdev_get_gpio_in(mpicdev, irqn));
  963. }
  964. memory_region_add_subregion(address_space_mem,
  965. pmc->platform_bus_base,
  966. &pms->pbus_dev->mmio);
  967. dinfo = drive_get(IF_PFLASH, 0, 0);
  968. if (dinfo) {
  969. BlockBackend *blk = blk_by_legacy_dinfo(dinfo);
  970. BlockDriverState *bs = blk_bs(blk);
  971. uint64_t mmio_size = memory_region_size(&pms->pbus_dev->mmio);
  972. uint64_t size = bdrv_getlength(bs);
  973. uint32_t sector_len = 64 * KiB;
  974. if (!is_power_of_2(size)) {
  975. error_report("Size of pflash file must be a power of two.");
  976. exit(1);
  977. }
  978. if (size > mmio_size) {
  979. error_report("Size of pflash file must not be bigger than %" PRIu64
  980. " bytes.", mmio_size);
  981. exit(1);
  982. }
  983. if (!QEMU_IS_ALIGNED(size, sector_len)) {
  984. error_report("Size of pflash file must be a multiple of %" PRIu32
  985. ".", sector_len);
  986. exit(1);
  987. }
  988. dev = qdev_new(TYPE_PFLASH_CFI01);
  989. qdev_prop_set_drive(dev, "drive", blk);
  990. qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
  991. qdev_prop_set_uint64(dev, "sector-length", sector_len);
  992. qdev_prop_set_uint8(dev, "width", 2);
  993. qdev_prop_set_bit(dev, "big-endian", true);
  994. qdev_prop_set_uint16(dev, "id0", 0x89);
  995. qdev_prop_set_uint16(dev, "id1", 0x18);
  996. qdev_prop_set_uint16(dev, "id2", 0x0000);
  997. qdev_prop_set_uint16(dev, "id3", 0x0);
  998. qdev_prop_set_string(dev, "name", "e500.flash");
  999. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  1000. memory_region_add_subregion(&pms->pbus_dev->mmio, 0,
  1001. pflash_cfi01_get_memory(PFLASH_CFI01(dev)));
  1002. }
  1003. /*
  1004. * Smart firmware defaults ahead!
  1005. *
  1006. * We follow the following table to select which payload we execute.
  1007. *
  1008. * -kernel | -bios | payload
  1009. * ---------+-------+---------
  1010. * N | Y | u-boot
  1011. * N | N | u-boot
  1012. * Y | Y | u-boot
  1013. * Y | N | kernel
  1014. *
  1015. * This ensures backwards compatibility with how we used to expose
  1016. * -kernel to users but allows them to run through u-boot as well.
  1017. */
  1018. kernel_as_payload = false;
  1019. if (machine->firmware == NULL) {
  1020. if (machine->kernel_filename) {
  1021. payload_name = machine->kernel_filename;
  1022. kernel_as_payload = true;
  1023. } else {
  1024. payload_name = "u-boot.e500";
  1025. }
  1026. } else {
  1027. payload_name = machine->firmware;
  1028. }
  1029. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, payload_name);
  1030. if (!filename) {
  1031. error_report("could not find firmware/kernel file '%s'", payload_name);
  1032. exit(1);
  1033. }
  1034. payload_size = load_elf(filename, NULL, NULL, NULL,
  1035. &bios_entry, &loadaddr, NULL, NULL,
  1036. 1, PPC_ELF_MACHINE, 0, 0);
  1037. if (payload_size < 0) {
  1038. /*
  1039. * Hrm. No ELF image? Try a uImage, maybe someone is giving us an
  1040. * ePAPR compliant kernel
  1041. */
  1042. loadaddr = LOAD_UIMAGE_LOADADDR_INVALID;
  1043. payload_size = load_uimage(filename, &bios_entry, &loadaddr, NULL,
  1044. NULL, NULL);
  1045. if (payload_size < 0) {
  1046. error_report("could not load firmware '%s'", filename);
  1047. exit(1);
  1048. }
  1049. }
  1050. g_free(filename);
  1051. if (kernel_as_payload) {
  1052. kernel_base = loadaddr;
  1053. kernel_size = payload_size;
  1054. }
  1055. cur_base = loadaddr + payload_size;
  1056. if (cur_base < 32 * MiB) {
  1057. /* u-boot occupies memory up to 32MB, so load blobs above */
  1058. cur_base = 32 * MiB;
  1059. }
  1060. /* Load bare kernel only if no bios/u-boot has been provided */
  1061. if (machine->kernel_filename && !kernel_as_payload) {
  1062. kernel_base = cur_base;
  1063. kernel_size = load_image_targphys(machine->kernel_filename,
  1064. cur_base,
  1065. machine->ram_size - cur_base);
  1066. if (kernel_size < 0) {
  1067. error_report("could not load kernel '%s'",
  1068. machine->kernel_filename);
  1069. exit(1);
  1070. }
  1071. cur_base += kernel_size;
  1072. }
  1073. /* Load initrd. */
  1074. if (machine->initrd_filename) {
  1075. initrd_base = (cur_base + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
  1076. initrd_size = load_image_targphys(machine->initrd_filename, initrd_base,
  1077. machine->ram_size - initrd_base);
  1078. if (initrd_size < 0) {
  1079. error_report("could not load initial ram disk '%s'",
  1080. machine->initrd_filename);
  1081. exit(1);
  1082. }
  1083. cur_base = initrd_base + initrd_size;
  1084. }
  1085. /*
  1086. * Reserve space for dtb behind the kernel image because Linux has a bug
  1087. * where it can only handle the dtb if it's within the first 64MB of where
  1088. * <kernel> starts. dtb cannot not reach initrd_base because INITRD_LOAD_PAD
  1089. * ensures enough space between kernel and initrd.
  1090. */
  1091. dt_base = (loadaddr + payload_size + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
  1092. if (dt_base + DTB_MAX_SIZE > machine->ram_size) {
  1093. error_report("not enough memory for device tree");
  1094. exit(1);
  1095. }
  1096. dt_size = ppce500_prep_device_tree(pms, dt_base,
  1097. initrd_base, initrd_size,
  1098. kernel_base, kernel_size);
  1099. if (dt_size < 0) {
  1100. error_report("couldn't load device tree");
  1101. exit(1);
  1102. }
  1103. assert(dt_size < DTB_MAX_SIZE);
  1104. boot_info->entry = bios_entry;
  1105. boot_info->dt_base = dt_base;
  1106. boot_info->dt_size = dt_size;
  1107. }
  1108. static void e500_ccsr_initfn(Object *obj)
  1109. {
  1110. PPCE500CCSRState *ccsr = CCSR(obj);
  1111. memory_region_init(&ccsr->ccsr_space, obj, "e500-ccsr",
  1112. MPC8544_CCSRBAR_SIZE);
  1113. }
  1114. static const TypeInfo e500_ccsr_info = {
  1115. .name = TYPE_CCSR,
  1116. .parent = TYPE_SYS_BUS_DEVICE,
  1117. .instance_size = sizeof(PPCE500CCSRState),
  1118. .instance_init = e500_ccsr_initfn,
  1119. };
  1120. static const TypeInfo ppce500_info = {
  1121. .name = TYPE_PPCE500_MACHINE,
  1122. .parent = TYPE_MACHINE,
  1123. .abstract = true,
  1124. .instance_size = sizeof(PPCE500MachineState),
  1125. .class_size = sizeof(PPCE500MachineClass),
  1126. };
  1127. static void e500_register_types(void)
  1128. {
  1129. type_register_static(&e500_ccsr_info);
  1130. type_register_static(&ppce500_info);
  1131. }
  1132. type_init(e500_register_types)