2
0

virt.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. /*
  2. * SPDX-License-Identifier: GPL-2.0-or-later
  3. *
  4. * OpenRISC QEMU virtual machine.
  5. *
  6. * (c) 2022 Stafford Horne <shorne@gmail.com>
  7. */
  8. #include "qemu/osdep.h"
  9. #include "qemu/error-report.h"
  10. #include "qemu/guest-random.h"
  11. #include "qapi/error.h"
  12. #include "cpu.h"
  13. #include "exec/address-spaces.h"
  14. #include "hw/irq.h"
  15. #include "hw/boards.h"
  16. #include "hw/char/serial-mm.h"
  17. #include "hw/core/split-irq.h"
  18. #include "hw/openrisc/boot.h"
  19. #include "hw/misc/sifive_test.h"
  20. #include "hw/pci/pci.h"
  21. #include "hw/pci-host/gpex.h"
  22. #include "hw/qdev-properties.h"
  23. #include "hw/rtc/goldfish_rtc.h"
  24. #include "hw/sysbus.h"
  25. #include "hw/virtio/virtio-mmio.h"
  26. #include "sysemu/device_tree.h"
  27. #include "sysemu/sysemu.h"
  28. #include "sysemu/qtest.h"
  29. #include "sysemu/reset.h"
  30. #include <libfdt.h>
  31. #define VIRT_CPUS_MAX 4
  32. #define VIRT_CLK_MHZ 20000000
  33. #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
  34. #define VIRT_MACHINE(obj) \
  35. OBJECT_CHECK(OR1KVirtState, (obj), TYPE_VIRT_MACHINE)
  36. typedef struct OR1KVirtState {
  37. /*< private >*/
  38. MachineState parent_obj;
  39. /*< public >*/
  40. void *fdt;
  41. int fdt_size;
  42. } OR1KVirtState;
  43. enum {
  44. VIRT_DRAM,
  45. VIRT_ECAM,
  46. VIRT_MMIO,
  47. VIRT_PIO,
  48. VIRT_TEST,
  49. VIRT_RTC,
  50. VIRT_VIRTIO,
  51. VIRT_UART,
  52. VIRT_OMPIC,
  53. };
  54. enum {
  55. VIRT_OMPIC_IRQ = 1,
  56. VIRT_UART_IRQ = 2,
  57. VIRT_RTC_IRQ = 3,
  58. VIRT_VIRTIO_IRQ = 4, /* to 12 */
  59. VIRTIO_COUNT = 8,
  60. VIRT_PCI_IRQ_BASE = 13, /* to 17 */
  61. };
  62. static const struct MemmapEntry {
  63. hwaddr base;
  64. hwaddr size;
  65. } virt_memmap[] = {
  66. [VIRT_DRAM] = { 0x00000000, 0 },
  67. [VIRT_UART] = { 0x90000000, 0x100 },
  68. [VIRT_TEST] = { 0x96000000, 0x8 },
  69. [VIRT_RTC] = { 0x96005000, 0x1000 },
  70. [VIRT_VIRTIO] = { 0x97000000, 0x1000 },
  71. [VIRT_OMPIC] = { 0x98000000, VIRT_CPUS_MAX * 8 },
  72. [VIRT_ECAM] = { 0x9e000000, 0x1000000 },
  73. [VIRT_PIO] = { 0x9f000000, 0x1000000 },
  74. [VIRT_MMIO] = { 0xa0000000, 0x10000000 },
  75. };
  76. static struct openrisc_boot_info {
  77. uint32_t bootstrap_pc;
  78. uint32_t fdt_addr;
  79. } boot_info;
  80. static void main_cpu_reset(void *opaque)
  81. {
  82. OpenRISCCPU *cpu = opaque;
  83. CPUState *cs = CPU(cpu);
  84. cpu_reset(CPU(cpu));
  85. cpu_set_pc(cs, boot_info.bootstrap_pc);
  86. cpu_set_gpr(&cpu->env, 3, boot_info.fdt_addr);
  87. }
  88. static qemu_irq get_cpu_irq(OpenRISCCPU *cpus[], int cpunum, int irq_pin)
  89. {
  90. return qdev_get_gpio_in_named(DEVICE(cpus[cpunum]), "IRQ", irq_pin);
  91. }
  92. static qemu_irq get_per_cpu_irq(OpenRISCCPU *cpus[], int num_cpus, int irq_pin)
  93. {
  94. int i;
  95. if (num_cpus > 1) {
  96. DeviceState *splitter = qdev_new(TYPE_SPLIT_IRQ);
  97. qdev_prop_set_uint32(splitter, "num-lines", num_cpus);
  98. qdev_realize_and_unref(splitter, NULL, &error_fatal);
  99. for (i = 0; i < num_cpus; i++) {
  100. qdev_connect_gpio_out(splitter, i, get_cpu_irq(cpus, i, irq_pin));
  101. }
  102. return qdev_get_gpio_in(splitter, 0);
  103. } else {
  104. return get_cpu_irq(cpus, 0, irq_pin);
  105. }
  106. }
  107. static void openrisc_create_fdt(OR1KVirtState *state,
  108. const struct MemmapEntry *memmap,
  109. int num_cpus, uint64_t mem_size,
  110. const char *cmdline,
  111. int32_t *pic_phandle)
  112. {
  113. void *fdt;
  114. int cpu;
  115. char *nodename;
  116. uint8_t rng_seed[32];
  117. fdt = state->fdt = create_device_tree(&state->fdt_size);
  118. if (!fdt) {
  119. error_report("create_device_tree() failed");
  120. exit(1);
  121. }
  122. qemu_fdt_setprop_string(fdt, "/", "compatible", "opencores,or1ksim");
  123. qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
  124. qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
  125. qemu_fdt_add_subnode(fdt, "/soc");
  126. qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
  127. qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
  128. qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
  129. qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
  130. nodename = g_strdup_printf("/memory@%" HWADDR_PRIx,
  131. memmap[VIRT_DRAM].base);
  132. qemu_fdt_add_subnode(fdt, nodename);
  133. qemu_fdt_setprop_cells(fdt, nodename, "reg",
  134. memmap[VIRT_DRAM].base, mem_size);
  135. qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
  136. g_free(nodename);
  137. qemu_fdt_add_subnode(fdt, "/cpus");
  138. qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
  139. qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
  140. for (cpu = 0; cpu < num_cpus; cpu++) {
  141. nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
  142. qemu_fdt_add_subnode(fdt, nodename);
  143. qemu_fdt_setprop_string(fdt, nodename, "compatible",
  144. "opencores,or1200-rtlsvn481");
  145. qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
  146. qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
  147. VIRT_CLK_MHZ);
  148. g_free(nodename);
  149. }
  150. nodename = (char *)"/pic";
  151. qemu_fdt_add_subnode(fdt, nodename);
  152. *pic_phandle = qemu_fdt_alloc_phandle(fdt);
  153. qemu_fdt_setprop_string(fdt, nodename, "compatible",
  154. "opencores,or1k-pic-level");
  155. qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
  156. qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
  157. qemu_fdt_setprop_cell(fdt, nodename, "phandle", *pic_phandle);
  158. qemu_fdt_setprop_cell(fdt, "/", "interrupt-parent", *pic_phandle);
  159. qemu_fdt_add_subnode(fdt, "/chosen");
  160. if (cmdline) {
  161. qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
  162. }
  163. /* Pass seed to RNG. */
  164. qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
  165. qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
  166. /* Create aliases node for use by devices. */
  167. qemu_fdt_add_subnode(fdt, "/aliases");
  168. }
  169. static void openrisc_virt_ompic_init(OR1KVirtState *state, hwaddr base,
  170. hwaddr size, int num_cpus,
  171. OpenRISCCPU *cpus[], int irq_pin)
  172. {
  173. void *fdt = state->fdt;
  174. DeviceState *dev;
  175. SysBusDevice *s;
  176. char *nodename;
  177. int i;
  178. dev = qdev_new("or1k-ompic");
  179. qdev_prop_set_uint32(dev, "num-cpus", num_cpus);
  180. s = SYS_BUS_DEVICE(dev);
  181. sysbus_realize_and_unref(s, &error_fatal);
  182. for (i = 0; i < num_cpus; i++) {
  183. sysbus_connect_irq(s, i, get_cpu_irq(cpus, i, irq_pin));
  184. }
  185. sysbus_mmio_map(s, 0, base);
  186. /* Add device tree node for ompic. */
  187. nodename = g_strdup_printf("/ompic@%" HWADDR_PRIx, base);
  188. qemu_fdt_add_subnode(fdt, nodename);
  189. qemu_fdt_setprop_string(fdt, nodename, "compatible", "openrisc,ompic");
  190. qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
  191. qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
  192. qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 0);
  193. qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
  194. g_free(nodename);
  195. }
  196. static void openrisc_virt_serial_init(OR1KVirtState *state, hwaddr base,
  197. hwaddr size, int num_cpus,
  198. OpenRISCCPU *cpus[], int irq_pin)
  199. {
  200. void *fdt = state->fdt;
  201. char *nodename;
  202. qemu_irq serial_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
  203. serial_mm_init(get_system_memory(), base, 0, serial_irq, 115200,
  204. serial_hd(0), DEVICE_NATIVE_ENDIAN);
  205. /* Add device tree node for serial. */
  206. nodename = g_strdup_printf("/serial@%" HWADDR_PRIx, base);
  207. qemu_fdt_add_subnode(fdt, nodename);
  208. qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
  209. qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
  210. qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
  211. qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", VIRT_CLK_MHZ);
  212. qemu_fdt_setprop(fdt, nodename, "big-endian", NULL, 0);
  213. /* The /chosen node is created during fdt creation. */
  214. qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
  215. qemu_fdt_setprop_string(fdt, "/aliases", "uart0", nodename);
  216. g_free(nodename);
  217. }
  218. static void openrisc_virt_test_init(OR1KVirtState *state, hwaddr base,
  219. hwaddr size)
  220. {
  221. void *fdt = state->fdt;
  222. int test_ph;
  223. char *nodename;
  224. /* SiFive Test MMIO device */
  225. sifive_test_create(base);
  226. /* SiFive Test MMIO Reset device FDT */
  227. nodename = g_strdup_printf("/soc/test@%" HWADDR_PRIx, base);
  228. qemu_fdt_add_subnode(fdt, nodename);
  229. qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon");
  230. test_ph = qemu_fdt_alloc_phandle(fdt);
  231. qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
  232. qemu_fdt_setprop_cell(fdt, nodename, "phandle", test_ph);
  233. qemu_fdt_setprop(fdt, nodename, "big-endian", NULL, 0);
  234. g_free(nodename);
  235. nodename = g_strdup_printf("/soc/reboot");
  236. qemu_fdt_add_subnode(fdt, nodename);
  237. qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-reboot");
  238. qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_ph);
  239. qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0);
  240. qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_RESET);
  241. g_free(nodename);
  242. nodename = g_strdup_printf("/soc/poweroff");
  243. qemu_fdt_add_subnode(fdt, nodename);
  244. qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-poweroff");
  245. qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_ph);
  246. qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0);
  247. qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_PASS);
  248. g_free(nodename);
  249. }
  250. static void openrisc_virt_rtc_init(OR1KVirtState *state, hwaddr base,
  251. hwaddr size, int num_cpus,
  252. OpenRISCCPU *cpus[], int irq_pin)
  253. {
  254. void *fdt = state->fdt;
  255. char *nodename;
  256. qemu_irq rtc_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
  257. /* Goldfish RTC */
  258. sysbus_create_simple(TYPE_GOLDFISH_RTC, base, rtc_irq);
  259. /* Goldfish RTC FDT */
  260. nodename = g_strdup_printf("/soc/rtc@%" HWADDR_PRIx, base);
  261. qemu_fdt_add_subnode(fdt, nodename);
  262. qemu_fdt_setprop_string(fdt, nodename, "compatible",
  263. "google,goldfish-rtc");
  264. qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
  265. qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
  266. g_free(nodename);
  267. }
  268. static void create_pcie_irq_map(void *fdt, char *nodename, int irq_base,
  269. uint32_t irqchip_phandle)
  270. {
  271. int pin, dev;
  272. uint32_t irq_map_stride = 0;
  273. uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * 6] = {};
  274. uint32_t *irq_map = full_irq_map;
  275. /*
  276. * This code creates a standard swizzle of interrupts such that
  277. * each device's first interrupt is based on it's PCI_SLOT number.
  278. * (See pci_swizzle_map_irq_fn())
  279. *
  280. * We only need one entry per interrupt in the table (not one per
  281. * possible slot) seeing the interrupt-map-mask will allow the table
  282. * to wrap to any number of devices.
  283. */
  284. for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
  285. int devfn = dev << 3;
  286. for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
  287. int irq_nr = irq_base + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
  288. int i = 0;
  289. /* Fill PCI address cells */
  290. irq_map[i++] = cpu_to_be32(devfn << 8);
  291. irq_map[i++] = 0;
  292. irq_map[i++] = 0;
  293. /* Fill PCI Interrupt cells */
  294. irq_map[i++] = cpu_to_be32(pin + 1);
  295. /* Fill interrupt controller phandle and cells */
  296. irq_map[i++] = cpu_to_be32(irqchip_phandle);
  297. irq_map[i++] = cpu_to_be32(irq_nr);
  298. if (!irq_map_stride) {
  299. irq_map_stride = i;
  300. }
  301. irq_map += irq_map_stride;
  302. }
  303. }
  304. qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
  305. GPEX_NUM_IRQS * GPEX_NUM_IRQS *
  306. irq_map_stride * sizeof(uint32_t));
  307. qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
  308. 0x1800, 0, 0, 0x7);
  309. }
  310. static void openrisc_virt_pcie_init(OR1KVirtState *state,
  311. hwaddr ecam_base, hwaddr ecam_size,
  312. hwaddr pio_base, hwaddr pio_size,
  313. hwaddr mmio_base, hwaddr mmio_size,
  314. int num_cpus, OpenRISCCPU *cpus[],
  315. int irq_base, int32_t pic_phandle)
  316. {
  317. void *fdt = state->fdt;
  318. char *nodename;
  319. MemoryRegion *alias;
  320. MemoryRegion *reg;
  321. DeviceState *dev;
  322. qemu_irq pcie_irq;
  323. int i;
  324. dev = qdev_new(TYPE_GPEX_HOST);
  325. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  326. /* Map ECAM space. */
  327. alias = g_new0(MemoryRegion, 1);
  328. reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
  329. memory_region_init_alias(alias, OBJECT(dev), "pcie-ecam",
  330. reg, 0, ecam_size);
  331. memory_region_add_subregion(get_system_memory(), ecam_base, alias);
  332. /*
  333. * Map the MMIO window into system address space so as to expose
  334. * the section of PCI MMIO space which starts at the same base address
  335. * (ie 1:1 mapping for that part of PCI MMIO space visible through
  336. * the window).
  337. */
  338. alias = g_new0(MemoryRegion, 1);
  339. reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
  340. memory_region_init_alias(alias, OBJECT(dev), "pcie-mmio",
  341. reg, mmio_base, mmio_size);
  342. memory_region_add_subregion(get_system_memory(), mmio_base, alias);
  343. /* Map IO port space. */
  344. alias = g_new0(MemoryRegion, 1);
  345. reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 2);
  346. memory_region_init_alias(alias, OBJECT(dev), "pcie-pio",
  347. reg, 0, pio_size);
  348. memory_region_add_subregion(get_system_memory(), pio_base, alias);
  349. /* Connect IRQ lines. */
  350. for (i = 0; i < GPEX_NUM_IRQS; i++) {
  351. pcie_irq = get_per_cpu_irq(cpus, num_cpus, irq_base + i);
  352. sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pcie_irq);
  353. gpex_set_irq_num(GPEX_HOST(dev), i, irq_base + i);
  354. }
  355. nodename = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, ecam_base);
  356. qemu_fdt_add_subnode(fdt, nodename);
  357. qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
  358. qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", 3);
  359. qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 2);
  360. qemu_fdt_setprop_string(fdt, nodename, "compatible",
  361. "pci-host-ecam-generic");
  362. qemu_fdt_setprop_string(fdt, nodename, "device_type", "pci");
  363. qemu_fdt_setprop_cell(fdt, nodename, "linux,pci-domain", 0);
  364. qemu_fdt_setprop_cells(fdt, nodename, "bus-range", 0,
  365. ecam_size / PCIE_MMCFG_SIZE_MIN - 1);
  366. qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0);
  367. qemu_fdt_setprop_cells(fdt, nodename, "reg", ecam_base, ecam_size);
  368. /* pci-address(3) cpu-address(1) pci-size(2) */
  369. qemu_fdt_setprop_cells(fdt, nodename, "ranges",
  370. FDT_PCI_RANGE_IOPORT, 0, 0,
  371. pio_base, 0, pio_size,
  372. FDT_PCI_RANGE_MMIO, 0, mmio_base,
  373. mmio_base, 0, mmio_size);
  374. create_pcie_irq_map(fdt, nodename, irq_base, pic_phandle);
  375. g_free(nodename);
  376. }
  377. static void openrisc_virt_virtio_init(OR1KVirtState *state, hwaddr base,
  378. hwaddr size, int num_cpus,
  379. OpenRISCCPU *cpus[], int irq_pin)
  380. {
  381. void *fdt = state->fdt;
  382. char *nodename;
  383. DeviceState *dev;
  384. SysBusDevice *sysbus;
  385. qemu_irq virtio_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
  386. /* VirtIO MMIO devices */
  387. dev = qdev_new(TYPE_VIRTIO_MMIO);
  388. qdev_prop_set_bit(dev, "force-legacy", false);
  389. sysbus = SYS_BUS_DEVICE(dev);
  390. sysbus_realize_and_unref(sysbus, &error_fatal);
  391. sysbus_connect_irq(sysbus, 0, virtio_irq);
  392. sysbus_mmio_map(sysbus, 0, base);
  393. /* VirtIO MMIO devices FDT */
  394. nodename = g_strdup_printf("/soc/virtio_mmio@%" HWADDR_PRIx, base);
  395. qemu_fdt_add_subnode(fdt, nodename);
  396. qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio");
  397. qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
  398. qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
  399. g_free(nodename);
  400. }
  401. static void openrisc_virt_init(MachineState *machine)
  402. {
  403. ram_addr_t ram_size = machine->ram_size;
  404. const char *kernel_filename = machine->kernel_filename;
  405. OpenRISCCPU *cpus[VIRT_CPUS_MAX] = {};
  406. OR1KVirtState *state = VIRT_MACHINE(machine);
  407. MemoryRegion *ram;
  408. hwaddr load_addr;
  409. int n;
  410. unsigned int smp_cpus = machine->smp.cpus;
  411. int32_t pic_phandle;
  412. assert(smp_cpus >= 1 && smp_cpus <= VIRT_CPUS_MAX);
  413. for (n = 0; n < smp_cpus; n++) {
  414. cpus[n] = OPENRISC_CPU(cpu_create(machine->cpu_type));
  415. if (cpus[n] == NULL) {
  416. fprintf(stderr, "Unable to find CPU definition!\n");
  417. exit(1);
  418. }
  419. cpu_openrisc_clock_init(cpus[n]);
  420. qemu_register_reset(main_cpu_reset, cpus[n]);
  421. }
  422. ram = g_malloc(sizeof(*ram));
  423. memory_region_init_ram(ram, NULL, "openrisc.ram", ram_size, &error_fatal);
  424. memory_region_add_subregion(get_system_memory(), 0, ram);
  425. openrisc_create_fdt(state, virt_memmap, smp_cpus, machine->ram_size,
  426. machine->kernel_cmdline, &pic_phandle);
  427. if (smp_cpus > 1) {
  428. openrisc_virt_ompic_init(state, virt_memmap[VIRT_OMPIC].base,
  429. virt_memmap[VIRT_OMPIC].size,
  430. smp_cpus, cpus, VIRT_OMPIC_IRQ);
  431. }
  432. openrisc_virt_serial_init(state, virt_memmap[VIRT_UART].base,
  433. virt_memmap[VIRT_UART].size,
  434. smp_cpus, cpus, VIRT_UART_IRQ);
  435. openrisc_virt_test_init(state, virt_memmap[VIRT_TEST].base,
  436. virt_memmap[VIRT_TEST].size);
  437. openrisc_virt_rtc_init(state, virt_memmap[VIRT_RTC].base,
  438. virt_memmap[VIRT_RTC].size, smp_cpus, cpus,
  439. VIRT_RTC_IRQ);
  440. openrisc_virt_pcie_init(state, virt_memmap[VIRT_ECAM].base,
  441. virt_memmap[VIRT_ECAM].size,
  442. virt_memmap[VIRT_PIO].base,
  443. virt_memmap[VIRT_PIO].size,
  444. virt_memmap[VIRT_MMIO].base,
  445. virt_memmap[VIRT_MMIO].size,
  446. smp_cpus, cpus,
  447. VIRT_PCI_IRQ_BASE, pic_phandle);
  448. for (n = 0; n < VIRTIO_COUNT; n++) {
  449. openrisc_virt_virtio_init(state, virt_memmap[VIRT_VIRTIO].base
  450. + n * virt_memmap[VIRT_VIRTIO].size,
  451. virt_memmap[VIRT_VIRTIO].size,
  452. smp_cpus, cpus, VIRT_VIRTIO_IRQ + n);
  453. }
  454. load_addr = openrisc_load_kernel(ram_size, kernel_filename,
  455. &boot_info.bootstrap_pc);
  456. if (load_addr > 0) {
  457. if (machine->initrd_filename) {
  458. load_addr = openrisc_load_initrd(state->fdt,
  459. machine->initrd_filename,
  460. load_addr, machine->ram_size);
  461. }
  462. boot_info.fdt_addr = openrisc_load_fdt(state->fdt, load_addr,
  463. machine->ram_size);
  464. }
  465. }
  466. static void openrisc_virt_machine_init(ObjectClass *oc, void *data)
  467. {
  468. MachineClass *mc = MACHINE_CLASS(oc);
  469. mc->desc = "or1k virtual machine";
  470. mc->init = openrisc_virt_init;
  471. mc->max_cpus = VIRT_CPUS_MAX;
  472. mc->is_default = false;
  473. mc->default_cpu_type = OPENRISC_CPU_TYPE_NAME("or1200");
  474. }
  475. static const TypeInfo or1ksim_machine_typeinfo = {
  476. .name = TYPE_VIRT_MACHINE,
  477. .parent = TYPE_MACHINE,
  478. .class_init = openrisc_virt_machine_init,
  479. .instance_size = sizeof(OR1KVirtState),
  480. };
  481. static void or1ksim_machine_init_register_types(void)
  482. {
  483. type_register_static(&or1ksim_machine_typeinfo);
  484. }
  485. type_init(or1ksim_machine_init_register_types)