intel_iommu.c 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926
  1. /*
  2. * QEMU emulation of an Intel IOMMU (VT-d)
  3. * (DMA Remapping device)
  4. *
  5. * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
  6. * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/error-report.h"
  21. #include "qemu/main-loop.h"
  22. #include "qapi/error.h"
  23. #include "hw/sysbus.h"
  24. #include "intel_iommu_internal.h"
  25. #include "hw/pci/pci.h"
  26. #include "hw/pci/pci_bus.h"
  27. #include "hw/qdev-properties.h"
  28. #include "hw/i386/pc.h"
  29. #include "hw/i386/apic-msidef.h"
  30. #include "hw/i386/x86-iommu.h"
  31. #include "hw/pci-host/q35.h"
  32. #include "sysemu/kvm.h"
  33. #include "sysemu/dma.h"
  34. #include "sysemu/sysemu.h"
  35. #include "hw/i386/apic_internal.h"
  36. #include "kvm/kvm_i386.h"
  37. #include "migration/vmstate.h"
  38. #include "trace.h"
  39. /* context entry operations */
  40. #define VTD_CE_GET_RID2PASID(ce) \
  41. ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  42. #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  43. ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  44. /* pe operations */
  45. #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  46. #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  47. #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
  48. if (ret_fr) { \
  49. ret_fr = -ret_fr; \
  50. if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
  51. trace_vtd_fault_disabled(); \
  52. } else { \
  53. vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
  54. } \
  55. goto error; \
  56. } \
  57. }
  58. static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  59. static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  60. static void vtd_panic_require_caching_mode(void)
  61. {
  62. error_report("We need to set caching-mode=on for intel-iommu to enable "
  63. "device assignment with IOMMU protection.");
  64. exit(1);
  65. }
  66. static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  67. uint64_t wmask, uint64_t w1cmask)
  68. {
  69. stq_le_p(&s->csr[addr], val);
  70. stq_le_p(&s->wmask[addr], wmask);
  71. stq_le_p(&s->w1cmask[addr], w1cmask);
  72. }
  73. static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  74. {
  75. stq_le_p(&s->womask[addr], mask);
  76. }
  77. static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  78. uint32_t wmask, uint32_t w1cmask)
  79. {
  80. stl_le_p(&s->csr[addr], val);
  81. stl_le_p(&s->wmask[addr], wmask);
  82. stl_le_p(&s->w1cmask[addr], w1cmask);
  83. }
  84. static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  85. {
  86. stl_le_p(&s->womask[addr], mask);
  87. }
  88. /* "External" get/set operations */
  89. static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  90. {
  91. uint64_t oldval = ldq_le_p(&s->csr[addr]);
  92. uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  93. uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  94. stq_le_p(&s->csr[addr],
  95. ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  96. }
  97. static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
  98. {
  99. uint32_t oldval = ldl_le_p(&s->csr[addr]);
  100. uint32_t wmask = ldl_le_p(&s->wmask[addr]);
  101. uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  102. stl_le_p(&s->csr[addr],
  103. ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  104. }
  105. static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
  106. {
  107. uint64_t val = ldq_le_p(&s->csr[addr]);
  108. uint64_t womask = ldq_le_p(&s->womask[addr]);
  109. return val & ~womask;
  110. }
  111. static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
  112. {
  113. uint32_t val = ldl_le_p(&s->csr[addr]);
  114. uint32_t womask = ldl_le_p(&s->womask[addr]);
  115. return val & ~womask;
  116. }
  117. /* "Internal" get/set operations */
  118. static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
  119. {
  120. return ldq_le_p(&s->csr[addr]);
  121. }
  122. static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
  123. {
  124. return ldl_le_p(&s->csr[addr]);
  125. }
  126. static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  127. {
  128. stq_le_p(&s->csr[addr], val);
  129. }
  130. static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
  131. uint32_t clear, uint32_t mask)
  132. {
  133. uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
  134. stl_le_p(&s->csr[addr], new_val);
  135. return new_val;
  136. }
  137. static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
  138. uint64_t clear, uint64_t mask)
  139. {
  140. uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
  141. stq_le_p(&s->csr[addr], new_val);
  142. return new_val;
  143. }
  144. static inline void vtd_iommu_lock(IntelIOMMUState *s)
  145. {
  146. qemu_mutex_lock(&s->iommu_lock);
  147. }
  148. static inline void vtd_iommu_unlock(IntelIOMMUState *s)
  149. {
  150. qemu_mutex_unlock(&s->iommu_lock);
  151. }
  152. static void vtd_update_scalable_state(IntelIOMMUState *s)
  153. {
  154. uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
  155. if (s->scalable_mode) {
  156. s->root_scalable = val & VTD_RTADDR_SMT;
  157. }
  158. }
  159. /* Whether the address space needs to notify new mappings */
  160. static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
  161. {
  162. return as->notifier_flags & IOMMU_NOTIFIER_MAP;
  163. }
  164. /* GHashTable functions */
  165. static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
  166. {
  167. return *((const uint64_t *)v1) == *((const uint64_t *)v2);
  168. }
  169. static guint vtd_uint64_hash(gconstpointer v)
  170. {
  171. return (guint)*(const uint64_t *)v;
  172. }
  173. static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
  174. gpointer user_data)
  175. {
  176. VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
  177. uint16_t domain_id = *(uint16_t *)user_data;
  178. return entry->domain_id == domain_id;
  179. }
  180. /* The shift of an addr for a certain level of paging structure */
  181. static inline uint32_t vtd_slpt_level_shift(uint32_t level)
  182. {
  183. assert(level != 0);
  184. return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
  185. }
  186. static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
  187. {
  188. return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
  189. }
  190. static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
  191. gpointer user_data)
  192. {
  193. VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
  194. VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
  195. uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
  196. uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
  197. return (entry->domain_id == info->domain_id) &&
  198. (((entry->gfn & info->mask) == gfn) ||
  199. (entry->gfn == gfn_tlb));
  200. }
  201. /* Reset all the gen of VTDAddressSpace to zero and set the gen of
  202. * IntelIOMMUState to 1. Must be called with IOMMU lock held.
  203. */
  204. static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
  205. {
  206. VTDAddressSpace *vtd_as;
  207. VTDBus *vtd_bus;
  208. GHashTableIter bus_it;
  209. uint32_t devfn_it;
  210. trace_vtd_context_cache_reset();
  211. g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
  212. while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
  213. for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
  214. vtd_as = vtd_bus->dev_as[devfn_it];
  215. if (!vtd_as) {
  216. continue;
  217. }
  218. vtd_as->context_cache_entry.context_cache_gen = 0;
  219. }
  220. }
  221. s->context_cache_gen = 1;
  222. }
  223. /* Must be called with IOMMU lock held. */
  224. static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
  225. {
  226. assert(s->iotlb);
  227. g_hash_table_remove_all(s->iotlb);
  228. }
  229. static void vtd_reset_iotlb(IntelIOMMUState *s)
  230. {
  231. vtd_iommu_lock(s);
  232. vtd_reset_iotlb_locked(s);
  233. vtd_iommu_unlock(s);
  234. }
  235. static void vtd_reset_caches(IntelIOMMUState *s)
  236. {
  237. vtd_iommu_lock(s);
  238. vtd_reset_iotlb_locked(s);
  239. vtd_reset_context_cache_locked(s);
  240. vtd_iommu_unlock(s);
  241. }
  242. static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
  243. uint32_t level)
  244. {
  245. return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
  246. ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
  247. }
  248. static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
  249. {
  250. return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
  251. }
  252. /* Must be called with IOMMU lock held */
  253. static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
  254. hwaddr addr)
  255. {
  256. VTDIOTLBEntry *entry;
  257. uint64_t key;
  258. int level;
  259. for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
  260. key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
  261. source_id, level);
  262. entry = g_hash_table_lookup(s->iotlb, &key);
  263. if (entry) {
  264. goto out;
  265. }
  266. }
  267. out:
  268. return entry;
  269. }
  270. /* Must be with IOMMU lock held */
  271. static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
  272. uint16_t domain_id, hwaddr addr, uint64_t slpte,
  273. uint8_t access_flags, uint32_t level)
  274. {
  275. VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
  276. uint64_t *key = g_malloc(sizeof(*key));
  277. uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
  278. trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
  279. if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
  280. trace_vtd_iotlb_reset("iotlb exceeds size limit");
  281. vtd_reset_iotlb_locked(s);
  282. }
  283. entry->gfn = gfn;
  284. entry->domain_id = domain_id;
  285. entry->slpte = slpte;
  286. entry->access_flags = access_flags;
  287. entry->mask = vtd_slpt_level_page_mask(level);
  288. *key = vtd_get_iotlb_key(gfn, source_id, level);
  289. g_hash_table_replace(s->iotlb, key, entry);
  290. }
  291. /* Given the reg addr of both the message data and address, generate an
  292. * interrupt via MSI.
  293. */
  294. static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
  295. hwaddr mesg_data_reg)
  296. {
  297. MSIMessage msi;
  298. assert(mesg_data_reg < DMAR_REG_SIZE);
  299. assert(mesg_addr_reg < DMAR_REG_SIZE);
  300. msi.address = vtd_get_long_raw(s, mesg_addr_reg);
  301. msi.data = vtd_get_long_raw(s, mesg_data_reg);
  302. trace_vtd_irq_generate(msi.address, msi.data);
  303. apic_get_class()->send_msi(&msi);
  304. }
  305. /* Generate a fault event to software via MSI if conditions are met.
  306. * Notice that the value of FSTS_REG being passed to it should be the one
  307. * before any update.
  308. */
  309. static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
  310. {
  311. if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
  312. pre_fsts & VTD_FSTS_IQE) {
  313. error_report_once("There are previous interrupt conditions "
  314. "to be serviced by software, fault event "
  315. "is not generated");
  316. return;
  317. }
  318. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
  319. if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
  320. error_report_once("Interrupt Mask set, irq is not generated");
  321. } else {
  322. vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
  323. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  324. }
  325. }
  326. /* Check if the Fault (F) field of the Fault Recording Register referenced by
  327. * @index is Set.
  328. */
  329. static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
  330. {
  331. /* Each reg is 128-bit */
  332. hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  333. addr += 8; /* Access the high 64-bit half */
  334. assert(index < DMAR_FRCD_REG_NR);
  335. return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
  336. }
  337. /* Update the PPF field of Fault Status Register.
  338. * Should be called whenever change the F field of any fault recording
  339. * registers.
  340. */
  341. static void vtd_update_fsts_ppf(IntelIOMMUState *s)
  342. {
  343. uint32_t i;
  344. uint32_t ppf_mask = 0;
  345. for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
  346. if (vtd_is_frcd_set(s, i)) {
  347. ppf_mask = VTD_FSTS_PPF;
  348. break;
  349. }
  350. }
  351. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
  352. trace_vtd_fsts_ppf(!!ppf_mask);
  353. }
  354. static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
  355. {
  356. /* Each reg is 128-bit */
  357. hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  358. addr += 8; /* Access the high 64-bit half */
  359. assert(index < DMAR_FRCD_REG_NR);
  360. vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
  361. vtd_update_fsts_ppf(s);
  362. }
  363. /* Must not update F field now, should be done later */
  364. static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
  365. uint16_t source_id, hwaddr addr,
  366. VTDFaultReason fault, bool is_write)
  367. {
  368. uint64_t hi = 0, lo;
  369. hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  370. assert(index < DMAR_FRCD_REG_NR);
  371. lo = VTD_FRCD_FI(addr);
  372. hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
  373. if (!is_write) {
  374. hi |= VTD_FRCD_T;
  375. }
  376. vtd_set_quad_raw(s, frcd_reg_addr, lo);
  377. vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
  378. trace_vtd_frr_new(index, hi, lo);
  379. }
  380. /* Try to collapse multiple pending faults from the same requester */
  381. static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
  382. {
  383. uint32_t i;
  384. uint64_t frcd_reg;
  385. hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
  386. for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
  387. frcd_reg = vtd_get_quad_raw(s, addr);
  388. if ((frcd_reg & VTD_FRCD_F) &&
  389. ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
  390. return true;
  391. }
  392. addr += 16; /* 128-bit for each */
  393. }
  394. return false;
  395. }
  396. /* Log and report an DMAR (address translation) fault to software */
  397. static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
  398. hwaddr addr, VTDFaultReason fault,
  399. bool is_write)
  400. {
  401. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  402. assert(fault < VTD_FR_MAX);
  403. if (fault == VTD_FR_RESERVED_ERR) {
  404. /* This is not a normal fault reason case. Drop it. */
  405. return;
  406. }
  407. trace_vtd_dmar_fault(source_id, fault, addr, is_write);
  408. if (fsts_reg & VTD_FSTS_PFO) {
  409. error_report_once("New fault is not recorded due to "
  410. "Primary Fault Overflow");
  411. return;
  412. }
  413. if (vtd_try_collapse_fault(s, source_id)) {
  414. error_report_once("New fault is not recorded due to "
  415. "compression of faults");
  416. return;
  417. }
  418. if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
  419. error_report_once("Next Fault Recording Reg is used, "
  420. "new fault is not recorded, set PFO field");
  421. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
  422. return;
  423. }
  424. vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
  425. if (fsts_reg & VTD_FSTS_PPF) {
  426. error_report_once("There are pending faults already, "
  427. "fault event is not generated");
  428. vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
  429. s->next_frcd_reg++;
  430. if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
  431. s->next_frcd_reg = 0;
  432. }
  433. } else {
  434. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
  435. VTD_FSTS_FRI(s->next_frcd_reg));
  436. vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
  437. s->next_frcd_reg++;
  438. if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
  439. s->next_frcd_reg = 0;
  440. }
  441. /* This case actually cause the PPF to be Set.
  442. * So generate fault event (interrupt).
  443. */
  444. vtd_generate_fault_event(s, fsts_reg);
  445. }
  446. }
  447. /* Handle Invalidation Queue Errors of queued invalidation interface error
  448. * conditions.
  449. */
  450. static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
  451. {
  452. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  453. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
  454. vtd_generate_fault_event(s, fsts_reg);
  455. }
  456. /* Set the IWC field and try to generate an invalidation completion interrupt */
  457. static void vtd_generate_completion_event(IntelIOMMUState *s)
  458. {
  459. if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
  460. trace_vtd_inv_desc_wait_irq("One pending, skip current");
  461. return;
  462. }
  463. vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
  464. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
  465. if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
  466. trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
  467. "new event not generated");
  468. return;
  469. } else {
  470. /* Generate the interrupt event */
  471. trace_vtd_inv_desc_wait_irq("Generating complete event");
  472. vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
  473. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  474. }
  475. }
  476. static inline bool vtd_root_entry_present(IntelIOMMUState *s,
  477. VTDRootEntry *re,
  478. uint8_t devfn)
  479. {
  480. if (s->root_scalable && devfn > UINT8_MAX / 2) {
  481. return re->hi & VTD_ROOT_ENTRY_P;
  482. }
  483. return re->lo & VTD_ROOT_ENTRY_P;
  484. }
  485. static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
  486. VTDRootEntry *re)
  487. {
  488. dma_addr_t addr;
  489. addr = s->root + index * sizeof(*re);
  490. if (dma_memory_read(&address_space_memory, addr,
  491. re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
  492. re->lo = 0;
  493. return -VTD_FR_ROOT_TABLE_INV;
  494. }
  495. re->lo = le64_to_cpu(re->lo);
  496. re->hi = le64_to_cpu(re->hi);
  497. return 0;
  498. }
  499. static inline bool vtd_ce_present(VTDContextEntry *context)
  500. {
  501. return context->lo & VTD_CONTEXT_ENTRY_P;
  502. }
  503. static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
  504. VTDRootEntry *re,
  505. uint8_t index,
  506. VTDContextEntry *ce)
  507. {
  508. dma_addr_t addr, ce_size;
  509. /* we have checked that root entry is present */
  510. ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
  511. VTD_CTX_ENTRY_LEGACY_SIZE;
  512. if (s->root_scalable && index > UINT8_MAX / 2) {
  513. index = index & (~VTD_DEVFN_CHECK_MASK);
  514. addr = re->hi & VTD_ROOT_ENTRY_CTP;
  515. } else {
  516. addr = re->lo & VTD_ROOT_ENTRY_CTP;
  517. }
  518. addr = addr + index * ce_size;
  519. if (dma_memory_read(&address_space_memory, addr,
  520. ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
  521. return -VTD_FR_CONTEXT_TABLE_INV;
  522. }
  523. ce->lo = le64_to_cpu(ce->lo);
  524. ce->hi = le64_to_cpu(ce->hi);
  525. if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
  526. ce->val[2] = le64_to_cpu(ce->val[2]);
  527. ce->val[3] = le64_to_cpu(ce->val[3]);
  528. }
  529. return 0;
  530. }
  531. static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
  532. {
  533. return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
  534. }
  535. static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
  536. {
  537. return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
  538. }
  539. /* Whether the pte indicates the address of the page frame */
  540. static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
  541. {
  542. return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
  543. }
  544. /* Get the content of a spte located in @base_addr[@index] */
  545. static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
  546. {
  547. uint64_t slpte;
  548. assert(index < VTD_SL_PT_ENTRY_NR);
  549. if (dma_memory_read(&address_space_memory,
  550. base_addr + index * sizeof(slpte),
  551. &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
  552. slpte = (uint64_t)-1;
  553. return slpte;
  554. }
  555. slpte = le64_to_cpu(slpte);
  556. return slpte;
  557. }
  558. /* Given an iova and the level of paging structure, return the offset
  559. * of current level.
  560. */
  561. static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
  562. {
  563. return (iova >> vtd_slpt_level_shift(level)) &
  564. ((1ULL << VTD_SL_LEVEL_BITS) - 1);
  565. }
  566. /* Check Capability Register to see if the @level of page-table is supported */
  567. static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
  568. {
  569. return VTD_CAP_SAGAW_MASK & s->cap &
  570. (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
  571. }
  572. /* Return true if check passed, otherwise false */
  573. static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
  574. VTDPASIDEntry *pe)
  575. {
  576. switch (VTD_PE_GET_TYPE(pe)) {
  577. case VTD_SM_PASID_ENTRY_FLT:
  578. case VTD_SM_PASID_ENTRY_SLT:
  579. case VTD_SM_PASID_ENTRY_NESTED:
  580. break;
  581. case VTD_SM_PASID_ENTRY_PT:
  582. if (!x86_iommu->pt_supported) {
  583. return false;
  584. }
  585. break;
  586. default:
  587. /* Unknown type */
  588. return false;
  589. }
  590. return true;
  591. }
  592. static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
  593. {
  594. return pdire->val & 1;
  595. }
  596. /**
  597. * Caller of this function should check present bit if wants
  598. * to use pdir entry for further usage except for fpd bit check.
  599. */
  600. static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
  601. uint32_t pasid,
  602. VTDPASIDDirEntry *pdire)
  603. {
  604. uint32_t index;
  605. dma_addr_t addr, entry_size;
  606. index = VTD_PASID_DIR_INDEX(pasid);
  607. entry_size = VTD_PASID_DIR_ENTRY_SIZE;
  608. addr = pasid_dir_base + index * entry_size;
  609. if (dma_memory_read(&address_space_memory, addr,
  610. pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
  611. return -VTD_FR_PASID_TABLE_INV;
  612. }
  613. return 0;
  614. }
  615. static inline bool vtd_pe_present(VTDPASIDEntry *pe)
  616. {
  617. return pe->val[0] & VTD_PASID_ENTRY_P;
  618. }
  619. static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
  620. uint32_t pasid,
  621. dma_addr_t addr,
  622. VTDPASIDEntry *pe)
  623. {
  624. uint32_t index;
  625. dma_addr_t entry_size;
  626. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  627. index = VTD_PASID_TABLE_INDEX(pasid);
  628. entry_size = VTD_PASID_ENTRY_SIZE;
  629. addr = addr + index * entry_size;
  630. if (dma_memory_read(&address_space_memory, addr,
  631. pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
  632. return -VTD_FR_PASID_TABLE_INV;
  633. }
  634. /* Do translation type check */
  635. if (!vtd_pe_type_check(x86_iommu, pe)) {
  636. return -VTD_FR_PASID_TABLE_INV;
  637. }
  638. if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
  639. return -VTD_FR_PASID_TABLE_INV;
  640. }
  641. return 0;
  642. }
  643. /**
  644. * Caller of this function should check present bit if wants
  645. * to use pasid entry for further usage except for fpd bit check.
  646. */
  647. static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
  648. uint32_t pasid,
  649. VTDPASIDDirEntry *pdire,
  650. VTDPASIDEntry *pe)
  651. {
  652. dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
  653. return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
  654. }
  655. /**
  656. * This function gets a pasid entry from a specified pasid
  657. * table (includes dir and leaf table) with a specified pasid.
  658. * Sanity check should be done to ensure return a present
  659. * pasid entry to caller.
  660. */
  661. static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
  662. dma_addr_t pasid_dir_base,
  663. uint32_t pasid,
  664. VTDPASIDEntry *pe)
  665. {
  666. int ret;
  667. VTDPASIDDirEntry pdire;
  668. ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
  669. pasid, &pdire);
  670. if (ret) {
  671. return ret;
  672. }
  673. if (!vtd_pdire_present(&pdire)) {
  674. return -VTD_FR_PASID_TABLE_INV;
  675. }
  676. ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
  677. if (ret) {
  678. return ret;
  679. }
  680. if (!vtd_pe_present(pe)) {
  681. return -VTD_FR_PASID_TABLE_INV;
  682. }
  683. return 0;
  684. }
  685. static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
  686. VTDContextEntry *ce,
  687. VTDPASIDEntry *pe)
  688. {
  689. uint32_t pasid;
  690. dma_addr_t pasid_dir_base;
  691. int ret = 0;
  692. pasid = VTD_CE_GET_RID2PASID(ce);
  693. pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
  694. ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
  695. return ret;
  696. }
  697. static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
  698. VTDContextEntry *ce,
  699. bool *pe_fpd_set)
  700. {
  701. int ret;
  702. uint32_t pasid;
  703. dma_addr_t pasid_dir_base;
  704. VTDPASIDDirEntry pdire;
  705. VTDPASIDEntry pe;
  706. pasid = VTD_CE_GET_RID2PASID(ce);
  707. pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
  708. /*
  709. * No present bit check since fpd is meaningful even
  710. * if the present bit is clear.
  711. */
  712. ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
  713. if (ret) {
  714. return ret;
  715. }
  716. if (pdire.val & VTD_PASID_DIR_FPD) {
  717. *pe_fpd_set = true;
  718. return 0;
  719. }
  720. if (!vtd_pdire_present(&pdire)) {
  721. return -VTD_FR_PASID_TABLE_INV;
  722. }
  723. /*
  724. * No present bit check since fpd is meaningful even
  725. * if the present bit is clear.
  726. */
  727. ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
  728. if (ret) {
  729. return ret;
  730. }
  731. if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
  732. *pe_fpd_set = true;
  733. }
  734. return 0;
  735. }
  736. /* Get the page-table level that hardware should use for the second-level
  737. * page-table walk from the Address Width field of context-entry.
  738. */
  739. static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
  740. {
  741. return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
  742. }
  743. static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
  744. VTDContextEntry *ce)
  745. {
  746. VTDPASIDEntry pe;
  747. if (s->root_scalable) {
  748. vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  749. return VTD_PE_GET_LEVEL(&pe);
  750. }
  751. return vtd_ce_get_level(ce);
  752. }
  753. static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
  754. {
  755. return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
  756. }
  757. static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
  758. VTDContextEntry *ce)
  759. {
  760. VTDPASIDEntry pe;
  761. if (s->root_scalable) {
  762. vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  763. return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
  764. }
  765. return vtd_ce_get_agaw(ce);
  766. }
  767. static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
  768. {
  769. return ce->lo & VTD_CONTEXT_ENTRY_TT;
  770. }
  771. /* Only for Legacy Mode. Return true if check passed, otherwise false */
  772. static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
  773. VTDContextEntry *ce)
  774. {
  775. switch (vtd_ce_get_type(ce)) {
  776. case VTD_CONTEXT_TT_MULTI_LEVEL:
  777. /* Always supported */
  778. break;
  779. case VTD_CONTEXT_TT_DEV_IOTLB:
  780. if (!x86_iommu->dt_supported) {
  781. error_report_once("%s: DT specified but not supported", __func__);
  782. return false;
  783. }
  784. break;
  785. case VTD_CONTEXT_TT_PASS_THROUGH:
  786. if (!x86_iommu->pt_supported) {
  787. error_report_once("%s: PT specified but not supported", __func__);
  788. return false;
  789. }
  790. break;
  791. default:
  792. /* Unknown type */
  793. error_report_once("%s: unknown ce type: %"PRIu32, __func__,
  794. vtd_ce_get_type(ce));
  795. return false;
  796. }
  797. return true;
  798. }
  799. static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
  800. VTDContextEntry *ce, uint8_t aw)
  801. {
  802. uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
  803. return 1ULL << MIN(ce_agaw, aw);
  804. }
  805. /* Return true if IOVA passes range check, otherwise false. */
  806. static inline bool vtd_iova_range_check(IntelIOMMUState *s,
  807. uint64_t iova, VTDContextEntry *ce,
  808. uint8_t aw)
  809. {
  810. /*
  811. * Check if @iova is above 2^X-1, where X is the minimum of MGAW
  812. * in CAP_REG and AW in context-entry.
  813. */
  814. return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
  815. }
  816. static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
  817. VTDContextEntry *ce)
  818. {
  819. VTDPASIDEntry pe;
  820. if (s->root_scalable) {
  821. vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  822. return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
  823. }
  824. return vtd_ce_get_slpt_base(ce);
  825. }
  826. /*
  827. * Rsvd field masks for spte:
  828. * vtd_spte_rsvd 4k pages
  829. * vtd_spte_rsvd_large large pages
  830. */
  831. static uint64_t vtd_spte_rsvd[5];
  832. static uint64_t vtd_spte_rsvd_large[5];
  833. static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
  834. {
  835. uint64_t rsvd_mask = vtd_spte_rsvd[level];
  836. if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
  837. (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
  838. /* large page */
  839. rsvd_mask = vtd_spte_rsvd_large[level];
  840. }
  841. return slpte & rsvd_mask;
  842. }
  843. /* Find the VTD address space associated with a given bus number */
  844. static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
  845. {
  846. VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
  847. GHashTableIter iter;
  848. if (vtd_bus) {
  849. return vtd_bus;
  850. }
  851. /*
  852. * Iterate over the registered buses to find the one which
  853. * currently holds this bus number and update the bus_num
  854. * lookup table.
  855. */
  856. g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
  857. while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
  858. if (pci_bus_num(vtd_bus->bus) == bus_num) {
  859. s->vtd_as_by_bus_num[bus_num] = vtd_bus;
  860. return vtd_bus;
  861. }
  862. }
  863. return NULL;
  864. }
  865. /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
  866. * of the translation, can be used for deciding the size of large page.
  867. */
  868. static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
  869. uint64_t iova, bool is_write,
  870. uint64_t *slptep, uint32_t *slpte_level,
  871. bool *reads, bool *writes, uint8_t aw_bits)
  872. {
  873. dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
  874. uint32_t level = vtd_get_iova_level(s, ce);
  875. uint32_t offset;
  876. uint64_t slpte;
  877. uint64_t access_right_check;
  878. if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
  879. error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
  880. __func__, iova);
  881. return -VTD_FR_ADDR_BEYOND_MGAW;
  882. }
  883. /* FIXME: what is the Atomics request here? */
  884. access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
  885. while (true) {
  886. offset = vtd_iova_level_offset(iova, level);
  887. slpte = vtd_get_slpte(addr, offset);
  888. if (slpte == (uint64_t)-1) {
  889. error_report_once("%s: detected read error on DMAR slpte "
  890. "(iova=0x%" PRIx64 ")", __func__, iova);
  891. if (level == vtd_get_iova_level(s, ce)) {
  892. /* Invalid programming of context-entry */
  893. return -VTD_FR_CONTEXT_ENTRY_INV;
  894. } else {
  895. return -VTD_FR_PAGING_ENTRY_INV;
  896. }
  897. }
  898. *reads = (*reads) && (slpte & VTD_SL_R);
  899. *writes = (*writes) && (slpte & VTD_SL_W);
  900. if (!(slpte & access_right_check)) {
  901. error_report_once("%s: detected slpte permission error "
  902. "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
  903. "slpte=0x%" PRIx64 ", write=%d)", __func__,
  904. iova, level, slpte, is_write);
  905. return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
  906. }
  907. if (vtd_slpte_nonzero_rsvd(slpte, level)) {
  908. error_report_once("%s: detected splte reserve non-zero "
  909. "iova=0x%" PRIx64 ", level=0x%" PRIx32
  910. "slpte=0x%" PRIx64 ")", __func__, iova,
  911. level, slpte);
  912. return -VTD_FR_PAGING_ENTRY_RSVD;
  913. }
  914. if (vtd_is_last_slpte(slpte, level)) {
  915. *slptep = slpte;
  916. *slpte_level = level;
  917. return 0;
  918. }
  919. addr = vtd_get_slpte_addr(slpte, aw_bits);
  920. level--;
  921. }
  922. }
  923. typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
  924. /**
  925. * Constant information used during page walking
  926. *
  927. * @hook_fn: hook func to be called when detected page
  928. * @private: private data to be passed into hook func
  929. * @notify_unmap: whether we should notify invalid entries
  930. * @as: VT-d address space of the device
  931. * @aw: maximum address width
  932. * @domain: domain ID of the page walk
  933. */
  934. typedef struct {
  935. VTDAddressSpace *as;
  936. vtd_page_walk_hook hook_fn;
  937. void *private;
  938. bool notify_unmap;
  939. uint8_t aw;
  940. uint16_t domain_id;
  941. } vtd_page_walk_info;
  942. static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
  943. {
  944. VTDAddressSpace *as = info->as;
  945. vtd_page_walk_hook hook_fn = info->hook_fn;
  946. void *private = info->private;
  947. IOMMUTLBEntry *entry = &event->entry;
  948. DMAMap target = {
  949. .iova = entry->iova,
  950. .size = entry->addr_mask,
  951. .translated_addr = entry->translated_addr,
  952. .perm = entry->perm,
  953. };
  954. const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
  955. if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
  956. trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
  957. return 0;
  958. }
  959. assert(hook_fn);
  960. /* Update local IOVA mapped ranges */
  961. if (event->type == IOMMU_NOTIFIER_MAP) {
  962. if (mapped) {
  963. /* If it's exactly the same translation, skip */
  964. if (!memcmp(mapped, &target, sizeof(target))) {
  965. trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
  966. entry->translated_addr);
  967. return 0;
  968. } else {
  969. /*
  970. * Translation changed. Normally this should not
  971. * happen, but it can happen when with buggy guest
  972. * OSes. Note that there will be a small window that
  973. * we don't have map at all. But that's the best
  974. * effort we can do. The ideal way to emulate this is
  975. * atomically modify the PTE to follow what has
  976. * changed, but we can't. One example is that vfio
  977. * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
  978. * interface to modify a mapping (meanwhile it seems
  979. * meaningless to even provide one). Anyway, let's
  980. * mark this as a TODO in case one day we'll have
  981. * a better solution.
  982. */
  983. IOMMUAccessFlags cache_perm = entry->perm;
  984. int ret;
  985. /* Emulate an UNMAP */
  986. event->type = IOMMU_NOTIFIER_UNMAP;
  987. entry->perm = IOMMU_NONE;
  988. trace_vtd_page_walk_one(info->domain_id,
  989. entry->iova,
  990. entry->translated_addr,
  991. entry->addr_mask,
  992. entry->perm);
  993. ret = hook_fn(event, private);
  994. if (ret) {
  995. return ret;
  996. }
  997. /* Drop any existing mapping */
  998. iova_tree_remove(as->iova_tree, &target);
  999. /* Recover the correct type */
  1000. event->type = IOMMU_NOTIFIER_MAP;
  1001. entry->perm = cache_perm;
  1002. }
  1003. }
  1004. iova_tree_insert(as->iova_tree, &target);
  1005. } else {
  1006. if (!mapped) {
  1007. /* Skip since we didn't map this range at all */
  1008. trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
  1009. return 0;
  1010. }
  1011. iova_tree_remove(as->iova_tree, &target);
  1012. }
  1013. trace_vtd_page_walk_one(info->domain_id, entry->iova,
  1014. entry->translated_addr, entry->addr_mask,
  1015. entry->perm);
  1016. return hook_fn(event, private);
  1017. }
  1018. /**
  1019. * vtd_page_walk_level - walk over specific level for IOVA range
  1020. *
  1021. * @addr: base GPA addr to start the walk
  1022. * @start: IOVA range start address
  1023. * @end: IOVA range end address (start <= addr < end)
  1024. * @read: whether parent level has read permission
  1025. * @write: whether parent level has write permission
  1026. * @info: constant information for the page walk
  1027. */
  1028. static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
  1029. uint64_t end, uint32_t level, bool read,
  1030. bool write, vtd_page_walk_info *info)
  1031. {
  1032. bool read_cur, write_cur, entry_valid;
  1033. uint32_t offset;
  1034. uint64_t slpte;
  1035. uint64_t subpage_size, subpage_mask;
  1036. IOMMUTLBEvent event;
  1037. uint64_t iova = start;
  1038. uint64_t iova_next;
  1039. int ret = 0;
  1040. trace_vtd_page_walk_level(addr, level, start, end);
  1041. subpage_size = 1ULL << vtd_slpt_level_shift(level);
  1042. subpage_mask = vtd_slpt_level_page_mask(level);
  1043. while (iova < end) {
  1044. iova_next = (iova & subpage_mask) + subpage_size;
  1045. offset = vtd_iova_level_offset(iova, level);
  1046. slpte = vtd_get_slpte(addr, offset);
  1047. if (slpte == (uint64_t)-1) {
  1048. trace_vtd_page_walk_skip_read(iova, iova_next);
  1049. goto next;
  1050. }
  1051. if (vtd_slpte_nonzero_rsvd(slpte, level)) {
  1052. trace_vtd_page_walk_skip_reserve(iova, iova_next);
  1053. goto next;
  1054. }
  1055. /* Permissions are stacked with parents' */
  1056. read_cur = read && (slpte & VTD_SL_R);
  1057. write_cur = write && (slpte & VTD_SL_W);
  1058. /*
  1059. * As long as we have either read/write permission, this is a
  1060. * valid entry. The rule works for both page entries and page
  1061. * table entries.
  1062. */
  1063. entry_valid = read_cur | write_cur;
  1064. if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
  1065. /*
  1066. * This is a valid PDE (or even bigger than PDE). We need
  1067. * to walk one further level.
  1068. */
  1069. ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
  1070. iova, MIN(iova_next, end), level - 1,
  1071. read_cur, write_cur, info);
  1072. } else {
  1073. /*
  1074. * This means we are either:
  1075. *
  1076. * (1) the real page entry (either 4K page, or huge page)
  1077. * (2) the whole range is invalid
  1078. *
  1079. * In either case, we send an IOTLB notification down.
  1080. */
  1081. event.entry.target_as = &address_space_memory;
  1082. event.entry.iova = iova & subpage_mask;
  1083. event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
  1084. event.entry.addr_mask = ~subpage_mask;
  1085. /* NOTE: this is only meaningful if entry_valid == true */
  1086. event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
  1087. event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
  1088. IOMMU_NOTIFIER_UNMAP;
  1089. ret = vtd_page_walk_one(&event, info);
  1090. }
  1091. if (ret < 0) {
  1092. return ret;
  1093. }
  1094. next:
  1095. iova = iova_next;
  1096. }
  1097. return 0;
  1098. }
  1099. /**
  1100. * vtd_page_walk - walk specific IOVA range, and call the hook
  1101. *
  1102. * @s: intel iommu state
  1103. * @ce: context entry to walk upon
  1104. * @start: IOVA address to start the walk
  1105. * @end: IOVA range end address (start <= addr < end)
  1106. * @info: page walking information struct
  1107. */
  1108. static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
  1109. uint64_t start, uint64_t end,
  1110. vtd_page_walk_info *info)
  1111. {
  1112. dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
  1113. uint32_t level = vtd_get_iova_level(s, ce);
  1114. if (!vtd_iova_range_check(s, start, ce, info->aw)) {
  1115. return -VTD_FR_ADDR_BEYOND_MGAW;
  1116. }
  1117. if (!vtd_iova_range_check(s, end, ce, info->aw)) {
  1118. /* Fix end so that it reaches the maximum */
  1119. end = vtd_iova_limit(s, ce, info->aw);
  1120. }
  1121. return vtd_page_walk_level(addr, start, end, level, true, true, info);
  1122. }
  1123. static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
  1124. VTDRootEntry *re)
  1125. {
  1126. /* Legacy Mode reserved bits check */
  1127. if (!s->root_scalable &&
  1128. (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
  1129. goto rsvd_err;
  1130. /* Scalable Mode reserved bits check */
  1131. if (s->root_scalable &&
  1132. ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
  1133. (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
  1134. goto rsvd_err;
  1135. return 0;
  1136. rsvd_err:
  1137. error_report_once("%s: invalid root entry: hi=0x%"PRIx64
  1138. ", lo=0x%"PRIx64,
  1139. __func__, re->hi, re->lo);
  1140. return -VTD_FR_ROOT_ENTRY_RSVD;
  1141. }
  1142. static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
  1143. VTDContextEntry *ce)
  1144. {
  1145. if (!s->root_scalable &&
  1146. (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
  1147. ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
  1148. error_report_once("%s: invalid context entry: hi=%"PRIx64
  1149. ", lo=%"PRIx64" (reserved nonzero)",
  1150. __func__, ce->hi, ce->lo);
  1151. return -VTD_FR_CONTEXT_ENTRY_RSVD;
  1152. }
  1153. if (s->root_scalable &&
  1154. (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
  1155. ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
  1156. ce->val[2] ||
  1157. ce->val[3])) {
  1158. error_report_once("%s: invalid context entry: val[3]=%"PRIx64
  1159. ", val[2]=%"PRIx64
  1160. ", val[1]=%"PRIx64
  1161. ", val[0]=%"PRIx64" (reserved nonzero)",
  1162. __func__, ce->val[3], ce->val[2],
  1163. ce->val[1], ce->val[0]);
  1164. return -VTD_FR_CONTEXT_ENTRY_RSVD;
  1165. }
  1166. return 0;
  1167. }
  1168. static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
  1169. VTDContextEntry *ce)
  1170. {
  1171. VTDPASIDEntry pe;
  1172. /*
  1173. * Make sure in Scalable Mode, a present context entry
  1174. * has valid rid2pasid setting, which includes valid
  1175. * rid2pasid field and corresponding pasid entry setting
  1176. */
  1177. return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  1178. }
  1179. /* Map a device to its corresponding domain (context-entry) */
  1180. static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
  1181. uint8_t devfn, VTDContextEntry *ce)
  1182. {
  1183. VTDRootEntry re;
  1184. int ret_fr;
  1185. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  1186. ret_fr = vtd_get_root_entry(s, bus_num, &re);
  1187. if (ret_fr) {
  1188. return ret_fr;
  1189. }
  1190. if (!vtd_root_entry_present(s, &re, devfn)) {
  1191. /* Not error - it's okay we don't have root entry. */
  1192. trace_vtd_re_not_present(bus_num);
  1193. return -VTD_FR_ROOT_ENTRY_P;
  1194. }
  1195. ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
  1196. if (ret_fr) {
  1197. return ret_fr;
  1198. }
  1199. ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
  1200. if (ret_fr) {
  1201. return ret_fr;
  1202. }
  1203. if (!vtd_ce_present(ce)) {
  1204. /* Not error - it's okay we don't have context entry. */
  1205. trace_vtd_ce_not_present(bus_num, devfn);
  1206. return -VTD_FR_CONTEXT_ENTRY_P;
  1207. }
  1208. ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
  1209. if (ret_fr) {
  1210. return ret_fr;
  1211. }
  1212. /* Check if the programming of context-entry is valid */
  1213. if (!s->root_scalable &&
  1214. !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
  1215. error_report_once("%s: invalid context entry: hi=%"PRIx64
  1216. ", lo=%"PRIx64" (level %d not supported)",
  1217. __func__, ce->hi, ce->lo,
  1218. vtd_ce_get_level(ce));
  1219. return -VTD_FR_CONTEXT_ENTRY_INV;
  1220. }
  1221. if (!s->root_scalable) {
  1222. /* Do translation type check */
  1223. if (!vtd_ce_type_check(x86_iommu, ce)) {
  1224. /* Errors dumped in vtd_ce_type_check() */
  1225. return -VTD_FR_CONTEXT_ENTRY_INV;
  1226. }
  1227. } else {
  1228. /*
  1229. * Check if the programming of context-entry.rid2pasid
  1230. * and corresponding pasid setting is valid, and thus
  1231. * avoids to check pasid entry fetching result in future
  1232. * helper function calling.
  1233. */
  1234. ret_fr = vtd_ce_rid2pasid_check(s, ce);
  1235. if (ret_fr) {
  1236. return ret_fr;
  1237. }
  1238. }
  1239. return 0;
  1240. }
  1241. static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
  1242. void *private)
  1243. {
  1244. memory_region_notify_iommu(private, 0, *event);
  1245. return 0;
  1246. }
  1247. static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
  1248. VTDContextEntry *ce)
  1249. {
  1250. VTDPASIDEntry pe;
  1251. if (s->root_scalable) {
  1252. vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  1253. return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
  1254. }
  1255. return VTD_CONTEXT_ENTRY_DID(ce->hi);
  1256. }
  1257. static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
  1258. VTDContextEntry *ce,
  1259. hwaddr addr, hwaddr size)
  1260. {
  1261. IntelIOMMUState *s = vtd_as->iommu_state;
  1262. vtd_page_walk_info info = {
  1263. .hook_fn = vtd_sync_shadow_page_hook,
  1264. .private = (void *)&vtd_as->iommu,
  1265. .notify_unmap = true,
  1266. .aw = s->aw_bits,
  1267. .as = vtd_as,
  1268. .domain_id = vtd_get_domain_id(s, ce),
  1269. };
  1270. return vtd_page_walk(s, ce, addr, addr + size, &info);
  1271. }
  1272. static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
  1273. {
  1274. int ret;
  1275. VTDContextEntry ce;
  1276. IOMMUNotifier *n;
  1277. if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
  1278. return 0;
  1279. }
  1280. ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
  1281. pci_bus_num(vtd_as->bus),
  1282. vtd_as->devfn, &ce);
  1283. if (ret) {
  1284. if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
  1285. /*
  1286. * It's a valid scenario to have a context entry that is
  1287. * not present. For example, when a device is removed
  1288. * from an existing domain then the context entry will be
  1289. * zeroed by the guest before it was put into another
  1290. * domain. When this happens, instead of synchronizing
  1291. * the shadow pages we should invalidate all existing
  1292. * mappings and notify the backends.
  1293. */
  1294. IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
  1295. vtd_address_space_unmap(vtd_as, n);
  1296. }
  1297. ret = 0;
  1298. }
  1299. return ret;
  1300. }
  1301. return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
  1302. }
  1303. /*
  1304. * Check if specific device is configured to bypass address
  1305. * translation for DMA requests. In Scalable Mode, bypass
  1306. * 1st-level translation or 2nd-level translation, it depends
  1307. * on PGTT setting.
  1308. */
  1309. static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce)
  1310. {
  1311. VTDPASIDEntry pe;
  1312. int ret;
  1313. if (s->root_scalable) {
  1314. ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  1315. if (ret) {
  1316. error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
  1317. __func__, ret);
  1318. return false;
  1319. }
  1320. return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
  1321. }
  1322. return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
  1323. }
  1324. static bool vtd_as_pt_enabled(VTDAddressSpace *as)
  1325. {
  1326. IntelIOMMUState *s;
  1327. VTDContextEntry ce;
  1328. int ret;
  1329. assert(as);
  1330. s = as->iommu_state;
  1331. ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
  1332. as->devfn, &ce);
  1333. if (ret) {
  1334. /*
  1335. * Possibly failed to parse the context entry for some reason
  1336. * (e.g., during init, or any guest configuration errors on
  1337. * context entries). We should assume PT not enabled for
  1338. * safety.
  1339. */
  1340. return false;
  1341. }
  1342. return vtd_dev_pt_enabled(s, &ce);
  1343. }
  1344. /* Return whether the device is using IOMMU translation. */
  1345. static bool vtd_switch_address_space(VTDAddressSpace *as)
  1346. {
  1347. bool use_iommu;
  1348. /* Whether we need to take the BQL on our own */
  1349. bool take_bql = !qemu_mutex_iothread_locked();
  1350. assert(as);
  1351. use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
  1352. trace_vtd_switch_address_space(pci_bus_num(as->bus),
  1353. VTD_PCI_SLOT(as->devfn),
  1354. VTD_PCI_FUNC(as->devfn),
  1355. use_iommu);
  1356. /*
  1357. * It's possible that we reach here without BQL, e.g., when called
  1358. * from vtd_pt_enable_fast_path(). However the memory APIs need
  1359. * it. We'd better make sure we have had it already, or, take it.
  1360. */
  1361. if (take_bql) {
  1362. qemu_mutex_lock_iothread();
  1363. }
  1364. /* Turn off first then on the other */
  1365. if (use_iommu) {
  1366. memory_region_set_enabled(&as->nodmar, false);
  1367. memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
  1368. } else {
  1369. memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
  1370. memory_region_set_enabled(&as->nodmar, true);
  1371. }
  1372. if (take_bql) {
  1373. qemu_mutex_unlock_iothread();
  1374. }
  1375. return use_iommu;
  1376. }
  1377. static void vtd_switch_address_space_all(IntelIOMMUState *s)
  1378. {
  1379. GHashTableIter iter;
  1380. VTDBus *vtd_bus;
  1381. int i;
  1382. g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
  1383. while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
  1384. for (i = 0; i < PCI_DEVFN_MAX; i++) {
  1385. if (!vtd_bus->dev_as[i]) {
  1386. continue;
  1387. }
  1388. vtd_switch_address_space(vtd_bus->dev_as[i]);
  1389. }
  1390. }
  1391. }
  1392. static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
  1393. {
  1394. return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
  1395. }
  1396. static const bool vtd_qualified_faults[] = {
  1397. [VTD_FR_RESERVED] = false,
  1398. [VTD_FR_ROOT_ENTRY_P] = false,
  1399. [VTD_FR_CONTEXT_ENTRY_P] = true,
  1400. [VTD_FR_CONTEXT_ENTRY_INV] = true,
  1401. [VTD_FR_ADDR_BEYOND_MGAW] = true,
  1402. [VTD_FR_WRITE] = true,
  1403. [VTD_FR_READ] = true,
  1404. [VTD_FR_PAGING_ENTRY_INV] = true,
  1405. [VTD_FR_ROOT_TABLE_INV] = false,
  1406. [VTD_FR_CONTEXT_TABLE_INV] = false,
  1407. [VTD_FR_ROOT_ENTRY_RSVD] = false,
  1408. [VTD_FR_PAGING_ENTRY_RSVD] = true,
  1409. [VTD_FR_CONTEXT_ENTRY_TT] = true,
  1410. [VTD_FR_PASID_TABLE_INV] = false,
  1411. [VTD_FR_RESERVED_ERR] = false,
  1412. [VTD_FR_MAX] = false,
  1413. };
  1414. /* To see if a fault condition is "qualified", which is reported to software
  1415. * only if the FPD field in the context-entry used to process the faulting
  1416. * request is 0.
  1417. */
  1418. static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
  1419. {
  1420. return vtd_qualified_faults[fault];
  1421. }
  1422. static inline bool vtd_is_interrupt_addr(hwaddr addr)
  1423. {
  1424. return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
  1425. }
  1426. static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
  1427. {
  1428. VTDBus *vtd_bus;
  1429. VTDAddressSpace *vtd_as;
  1430. bool success = false;
  1431. vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
  1432. if (!vtd_bus) {
  1433. goto out;
  1434. }
  1435. vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
  1436. if (!vtd_as) {
  1437. goto out;
  1438. }
  1439. if (vtd_switch_address_space(vtd_as) == false) {
  1440. /* We switched off IOMMU region successfully. */
  1441. success = true;
  1442. }
  1443. out:
  1444. trace_vtd_pt_enable_fast_path(source_id, success);
  1445. }
  1446. /* Map dev to context-entry then do a paging-structures walk to do a iommu
  1447. * translation.
  1448. *
  1449. * Called from RCU critical section.
  1450. *
  1451. * @bus_num: The bus number
  1452. * @devfn: The devfn, which is the combined of device and function number
  1453. * @is_write: The access is a write operation
  1454. * @entry: IOMMUTLBEntry that contain the addr to be translated and result
  1455. *
  1456. * Returns true if translation is successful, otherwise false.
  1457. */
  1458. static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
  1459. uint8_t devfn, hwaddr addr, bool is_write,
  1460. IOMMUTLBEntry *entry)
  1461. {
  1462. IntelIOMMUState *s = vtd_as->iommu_state;
  1463. VTDContextEntry ce;
  1464. uint8_t bus_num = pci_bus_num(bus);
  1465. VTDContextCacheEntry *cc_entry;
  1466. uint64_t slpte, page_mask;
  1467. uint32_t level;
  1468. uint16_t source_id = vtd_make_source_id(bus_num, devfn);
  1469. int ret_fr;
  1470. bool is_fpd_set = false;
  1471. bool reads = true;
  1472. bool writes = true;
  1473. uint8_t access_flags;
  1474. VTDIOTLBEntry *iotlb_entry;
  1475. /*
  1476. * We have standalone memory region for interrupt addresses, we
  1477. * should never receive translation requests in this region.
  1478. */
  1479. assert(!vtd_is_interrupt_addr(addr));
  1480. vtd_iommu_lock(s);
  1481. cc_entry = &vtd_as->context_cache_entry;
  1482. /* Try to fetch slpte form IOTLB */
  1483. iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
  1484. if (iotlb_entry) {
  1485. trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
  1486. iotlb_entry->domain_id);
  1487. slpte = iotlb_entry->slpte;
  1488. access_flags = iotlb_entry->access_flags;
  1489. page_mask = iotlb_entry->mask;
  1490. goto out;
  1491. }
  1492. /* Try to fetch context-entry from cache first */
  1493. if (cc_entry->context_cache_gen == s->context_cache_gen) {
  1494. trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
  1495. cc_entry->context_entry.lo,
  1496. cc_entry->context_cache_gen);
  1497. ce = cc_entry->context_entry;
  1498. is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
  1499. if (!is_fpd_set && s->root_scalable) {
  1500. ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
  1501. VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
  1502. }
  1503. } else {
  1504. ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
  1505. is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
  1506. if (!ret_fr && !is_fpd_set && s->root_scalable) {
  1507. ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
  1508. }
  1509. VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
  1510. /* Update context-cache */
  1511. trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
  1512. cc_entry->context_cache_gen,
  1513. s->context_cache_gen);
  1514. cc_entry->context_entry = ce;
  1515. cc_entry->context_cache_gen = s->context_cache_gen;
  1516. }
  1517. /*
  1518. * We don't need to translate for pass-through context entries.
  1519. * Also, let's ignore IOTLB caching as well for PT devices.
  1520. */
  1521. if (vtd_dev_pt_enabled(s, &ce)) {
  1522. entry->iova = addr & VTD_PAGE_MASK_4K;
  1523. entry->translated_addr = entry->iova;
  1524. entry->addr_mask = ~VTD_PAGE_MASK_4K;
  1525. entry->perm = IOMMU_RW;
  1526. trace_vtd_translate_pt(source_id, entry->iova);
  1527. /*
  1528. * When this happens, it means firstly caching-mode is not
  1529. * enabled, and this is the first passthrough translation for
  1530. * the device. Let's enable the fast path for passthrough.
  1531. *
  1532. * When passthrough is disabled again for the device, we can
  1533. * capture it via the context entry invalidation, then the
  1534. * IOMMU region can be swapped back.
  1535. */
  1536. vtd_pt_enable_fast_path(s, source_id);
  1537. vtd_iommu_unlock(s);
  1538. return true;
  1539. }
  1540. ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
  1541. &reads, &writes, s->aw_bits);
  1542. VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
  1543. page_mask = vtd_slpt_level_page_mask(level);
  1544. access_flags = IOMMU_ACCESS_FLAG(reads, writes);
  1545. vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
  1546. access_flags, level);
  1547. out:
  1548. vtd_iommu_unlock(s);
  1549. entry->iova = addr & page_mask;
  1550. entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
  1551. entry->addr_mask = ~page_mask;
  1552. entry->perm = access_flags;
  1553. return true;
  1554. error:
  1555. vtd_iommu_unlock(s);
  1556. entry->iova = 0;
  1557. entry->translated_addr = 0;
  1558. entry->addr_mask = 0;
  1559. entry->perm = IOMMU_NONE;
  1560. return false;
  1561. }
  1562. static void vtd_root_table_setup(IntelIOMMUState *s)
  1563. {
  1564. s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
  1565. s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
  1566. vtd_update_scalable_state(s);
  1567. trace_vtd_reg_dmar_root(s->root, s->root_scalable);
  1568. }
  1569. static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
  1570. uint32_t index, uint32_t mask)
  1571. {
  1572. x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
  1573. }
  1574. static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
  1575. {
  1576. uint64_t value = 0;
  1577. value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
  1578. s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
  1579. s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
  1580. s->intr_eime = value & VTD_IRTA_EIME;
  1581. /* Notify global invalidation */
  1582. vtd_iec_notify_all(s, true, 0, 0);
  1583. trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
  1584. }
  1585. static void vtd_iommu_replay_all(IntelIOMMUState *s)
  1586. {
  1587. VTDAddressSpace *vtd_as;
  1588. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  1589. vtd_sync_shadow_page_table(vtd_as);
  1590. }
  1591. }
  1592. static void vtd_context_global_invalidate(IntelIOMMUState *s)
  1593. {
  1594. trace_vtd_inv_desc_cc_global();
  1595. /* Protects context cache */
  1596. vtd_iommu_lock(s);
  1597. s->context_cache_gen++;
  1598. if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
  1599. vtd_reset_context_cache_locked(s);
  1600. }
  1601. vtd_iommu_unlock(s);
  1602. vtd_address_space_refresh_all(s);
  1603. /*
  1604. * From VT-d spec 6.5.2.1, a global context entry invalidation
  1605. * should be followed by a IOTLB global invalidation, so we should
  1606. * be safe even without this. Hoewever, let's replay the region as
  1607. * well to be safer, and go back here when we need finer tunes for
  1608. * VT-d emulation codes.
  1609. */
  1610. vtd_iommu_replay_all(s);
  1611. }
  1612. /* Do a context-cache device-selective invalidation.
  1613. * @func_mask: FM field after shifting
  1614. */
  1615. static void vtd_context_device_invalidate(IntelIOMMUState *s,
  1616. uint16_t source_id,
  1617. uint16_t func_mask)
  1618. {
  1619. uint16_t mask;
  1620. VTDBus *vtd_bus;
  1621. VTDAddressSpace *vtd_as;
  1622. uint8_t bus_n, devfn;
  1623. uint16_t devfn_it;
  1624. trace_vtd_inv_desc_cc_devices(source_id, func_mask);
  1625. switch (func_mask & 3) {
  1626. case 0:
  1627. mask = 0; /* No bits in the SID field masked */
  1628. break;
  1629. case 1:
  1630. mask = 4; /* Mask bit 2 in the SID field */
  1631. break;
  1632. case 2:
  1633. mask = 6; /* Mask bit 2:1 in the SID field */
  1634. break;
  1635. case 3:
  1636. mask = 7; /* Mask bit 2:0 in the SID field */
  1637. break;
  1638. default:
  1639. g_assert_not_reached();
  1640. }
  1641. mask = ~mask;
  1642. bus_n = VTD_SID_TO_BUS(source_id);
  1643. vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
  1644. if (vtd_bus) {
  1645. devfn = VTD_SID_TO_DEVFN(source_id);
  1646. for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
  1647. vtd_as = vtd_bus->dev_as[devfn_it];
  1648. if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
  1649. trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
  1650. VTD_PCI_FUNC(devfn_it));
  1651. vtd_iommu_lock(s);
  1652. vtd_as->context_cache_entry.context_cache_gen = 0;
  1653. vtd_iommu_unlock(s);
  1654. /*
  1655. * Do switch address space when needed, in case if the
  1656. * device passthrough bit is switched.
  1657. */
  1658. vtd_switch_address_space(vtd_as);
  1659. /*
  1660. * So a device is moving out of (or moving into) a
  1661. * domain, resync the shadow page table.
  1662. * This won't bring bad even if we have no such
  1663. * notifier registered - the IOMMU notification
  1664. * framework will skip MAP notifications if that
  1665. * happened.
  1666. */
  1667. vtd_sync_shadow_page_table(vtd_as);
  1668. }
  1669. }
  1670. }
  1671. }
  1672. /* Context-cache invalidation
  1673. * Returns the Context Actual Invalidation Granularity.
  1674. * @val: the content of the CCMD_REG
  1675. */
  1676. static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
  1677. {
  1678. uint64_t caig;
  1679. uint64_t type = val & VTD_CCMD_CIRG_MASK;
  1680. switch (type) {
  1681. case VTD_CCMD_DOMAIN_INVL:
  1682. /* Fall through */
  1683. case VTD_CCMD_GLOBAL_INVL:
  1684. caig = VTD_CCMD_GLOBAL_INVL_A;
  1685. vtd_context_global_invalidate(s);
  1686. break;
  1687. case VTD_CCMD_DEVICE_INVL:
  1688. caig = VTD_CCMD_DEVICE_INVL_A;
  1689. vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
  1690. break;
  1691. default:
  1692. error_report_once("%s: invalid context: 0x%" PRIx64,
  1693. __func__, val);
  1694. caig = 0;
  1695. }
  1696. return caig;
  1697. }
  1698. static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
  1699. {
  1700. trace_vtd_inv_desc_iotlb_global();
  1701. vtd_reset_iotlb(s);
  1702. vtd_iommu_replay_all(s);
  1703. }
  1704. static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
  1705. {
  1706. VTDContextEntry ce;
  1707. VTDAddressSpace *vtd_as;
  1708. trace_vtd_inv_desc_iotlb_domain(domain_id);
  1709. vtd_iommu_lock(s);
  1710. g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
  1711. &domain_id);
  1712. vtd_iommu_unlock(s);
  1713. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  1714. if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
  1715. vtd_as->devfn, &ce) &&
  1716. domain_id == vtd_get_domain_id(s, &ce)) {
  1717. vtd_sync_shadow_page_table(vtd_as);
  1718. }
  1719. }
  1720. }
  1721. static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
  1722. uint16_t domain_id, hwaddr addr,
  1723. uint8_t am)
  1724. {
  1725. VTDAddressSpace *vtd_as;
  1726. VTDContextEntry ce;
  1727. int ret;
  1728. hwaddr size = (1 << am) * VTD_PAGE_SIZE;
  1729. QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
  1730. ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
  1731. vtd_as->devfn, &ce);
  1732. if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
  1733. if (vtd_as_has_map_notifier(vtd_as)) {
  1734. /*
  1735. * As long as we have MAP notifications registered in
  1736. * any of our IOMMU notifiers, we need to sync the
  1737. * shadow page table.
  1738. */
  1739. vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
  1740. } else {
  1741. /*
  1742. * For UNMAP-only notifiers, we don't need to walk the
  1743. * page tables. We just deliver the PSI down to
  1744. * invalidate caches.
  1745. */
  1746. IOMMUTLBEvent event = {
  1747. .type = IOMMU_NOTIFIER_UNMAP,
  1748. .entry = {
  1749. .target_as = &address_space_memory,
  1750. .iova = addr,
  1751. .translated_addr = 0,
  1752. .addr_mask = size - 1,
  1753. .perm = IOMMU_NONE,
  1754. },
  1755. };
  1756. memory_region_notify_iommu(&vtd_as->iommu, 0, event);
  1757. }
  1758. }
  1759. }
  1760. }
  1761. static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
  1762. hwaddr addr, uint8_t am)
  1763. {
  1764. VTDIOTLBPageInvInfo info;
  1765. trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
  1766. assert(am <= VTD_MAMV);
  1767. info.domain_id = domain_id;
  1768. info.addr = addr;
  1769. info.mask = ~((1 << am) - 1);
  1770. vtd_iommu_lock(s);
  1771. g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
  1772. vtd_iommu_unlock(s);
  1773. vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
  1774. }
  1775. /* Flush IOTLB
  1776. * Returns the IOTLB Actual Invalidation Granularity.
  1777. * @val: the content of the IOTLB_REG
  1778. */
  1779. static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
  1780. {
  1781. uint64_t iaig;
  1782. uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
  1783. uint16_t domain_id;
  1784. hwaddr addr;
  1785. uint8_t am;
  1786. switch (type) {
  1787. case VTD_TLB_GLOBAL_FLUSH:
  1788. iaig = VTD_TLB_GLOBAL_FLUSH_A;
  1789. vtd_iotlb_global_invalidate(s);
  1790. break;
  1791. case VTD_TLB_DSI_FLUSH:
  1792. domain_id = VTD_TLB_DID(val);
  1793. iaig = VTD_TLB_DSI_FLUSH_A;
  1794. vtd_iotlb_domain_invalidate(s, domain_id);
  1795. break;
  1796. case VTD_TLB_PSI_FLUSH:
  1797. domain_id = VTD_TLB_DID(val);
  1798. addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
  1799. am = VTD_IVA_AM(addr);
  1800. addr = VTD_IVA_ADDR(addr);
  1801. if (am > VTD_MAMV) {
  1802. error_report_once("%s: address mask overflow: 0x%" PRIx64,
  1803. __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
  1804. iaig = 0;
  1805. break;
  1806. }
  1807. iaig = VTD_TLB_PSI_FLUSH_A;
  1808. vtd_iotlb_page_invalidate(s, domain_id, addr, am);
  1809. break;
  1810. default:
  1811. error_report_once("%s: invalid granularity: 0x%" PRIx64,
  1812. __func__, val);
  1813. iaig = 0;
  1814. }
  1815. return iaig;
  1816. }
  1817. static void vtd_fetch_inv_desc(IntelIOMMUState *s);
  1818. static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
  1819. {
  1820. return s->qi_enabled && (s->iq_tail == s->iq_head) &&
  1821. (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
  1822. }
  1823. static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
  1824. {
  1825. uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
  1826. trace_vtd_inv_qi_enable(en);
  1827. if (en) {
  1828. s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
  1829. /* 2^(x+8) entries */
  1830. s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
  1831. s->qi_enabled = true;
  1832. trace_vtd_inv_qi_setup(s->iq, s->iq_size);
  1833. /* Ok - report back to driver */
  1834. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
  1835. if (s->iq_tail != 0) {
  1836. /*
  1837. * This is a spec violation but Windows guests are known to set up
  1838. * Queued Invalidation this way so we allow the write and process
  1839. * Invalidation Descriptors right away.
  1840. */
  1841. trace_vtd_warn_invalid_qi_tail(s->iq_tail);
  1842. if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
  1843. vtd_fetch_inv_desc(s);
  1844. }
  1845. }
  1846. } else {
  1847. if (vtd_queued_inv_disable_check(s)) {
  1848. /* disable Queued Invalidation */
  1849. vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
  1850. s->iq_head = 0;
  1851. s->qi_enabled = false;
  1852. /* Ok - report back to driver */
  1853. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
  1854. } else {
  1855. error_report_once("%s: detected improper state when disable QI "
  1856. "(head=0x%x, tail=0x%x, last_type=%d)",
  1857. __func__,
  1858. s->iq_head, s->iq_tail, s->iq_last_desc_type);
  1859. }
  1860. }
  1861. }
  1862. /* Set Root Table Pointer */
  1863. static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
  1864. {
  1865. vtd_root_table_setup(s);
  1866. /* Ok - report back to driver */
  1867. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
  1868. vtd_reset_caches(s);
  1869. vtd_address_space_refresh_all(s);
  1870. }
  1871. /* Set Interrupt Remap Table Pointer */
  1872. static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
  1873. {
  1874. vtd_interrupt_remap_table_setup(s);
  1875. /* Ok - report back to driver */
  1876. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
  1877. }
  1878. /* Handle Translation Enable/Disable */
  1879. static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
  1880. {
  1881. if (s->dmar_enabled == en) {
  1882. return;
  1883. }
  1884. trace_vtd_dmar_enable(en);
  1885. if (en) {
  1886. s->dmar_enabled = true;
  1887. /* Ok - report back to driver */
  1888. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
  1889. } else {
  1890. s->dmar_enabled = false;
  1891. /* Clear the index of Fault Recording Register */
  1892. s->next_frcd_reg = 0;
  1893. /* Ok - report back to driver */
  1894. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
  1895. }
  1896. vtd_reset_caches(s);
  1897. vtd_address_space_refresh_all(s);
  1898. }
  1899. /* Handle Interrupt Remap Enable/Disable */
  1900. static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
  1901. {
  1902. trace_vtd_ir_enable(en);
  1903. if (en) {
  1904. s->intr_enabled = true;
  1905. /* Ok - report back to driver */
  1906. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
  1907. } else {
  1908. s->intr_enabled = false;
  1909. /* Ok - report back to driver */
  1910. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
  1911. }
  1912. }
  1913. /* Handle write to Global Command Register */
  1914. static void vtd_handle_gcmd_write(IntelIOMMUState *s)
  1915. {
  1916. uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
  1917. uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
  1918. uint32_t changed = status ^ val;
  1919. trace_vtd_reg_write_gcmd(status, val);
  1920. if (changed & VTD_GCMD_TE) {
  1921. /* Translation enable/disable */
  1922. vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
  1923. }
  1924. if (val & VTD_GCMD_SRTP) {
  1925. /* Set/update the root-table pointer */
  1926. vtd_handle_gcmd_srtp(s);
  1927. }
  1928. if (changed & VTD_GCMD_QIE) {
  1929. /* Queued Invalidation Enable */
  1930. vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
  1931. }
  1932. if (val & VTD_GCMD_SIRTP) {
  1933. /* Set/update the interrupt remapping root-table pointer */
  1934. vtd_handle_gcmd_sirtp(s);
  1935. }
  1936. if (changed & VTD_GCMD_IRE) {
  1937. /* Interrupt remap enable/disable */
  1938. vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
  1939. }
  1940. }
  1941. /* Handle write to Context Command Register */
  1942. static void vtd_handle_ccmd_write(IntelIOMMUState *s)
  1943. {
  1944. uint64_t ret;
  1945. uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
  1946. /* Context-cache invalidation request */
  1947. if (val & VTD_CCMD_ICC) {
  1948. if (s->qi_enabled) {
  1949. error_report_once("Queued Invalidation enabled, "
  1950. "should not use register-based invalidation");
  1951. return;
  1952. }
  1953. ret = vtd_context_cache_invalidate(s, val);
  1954. /* Invalidation completed. Change something to show */
  1955. vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
  1956. ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
  1957. ret);
  1958. }
  1959. }
  1960. /* Handle write to IOTLB Invalidation Register */
  1961. static void vtd_handle_iotlb_write(IntelIOMMUState *s)
  1962. {
  1963. uint64_t ret;
  1964. uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
  1965. /* IOTLB invalidation request */
  1966. if (val & VTD_TLB_IVT) {
  1967. if (s->qi_enabled) {
  1968. error_report_once("Queued Invalidation enabled, "
  1969. "should not use register-based invalidation");
  1970. return;
  1971. }
  1972. ret = vtd_iotlb_flush(s, val);
  1973. /* Invalidation completed. Change something to show */
  1974. vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
  1975. ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
  1976. VTD_TLB_FLUSH_GRANU_MASK_A, ret);
  1977. }
  1978. }
  1979. /* Fetch an Invalidation Descriptor from the Invalidation Queue */
  1980. static bool vtd_get_inv_desc(IntelIOMMUState *s,
  1981. VTDInvDesc *inv_desc)
  1982. {
  1983. dma_addr_t base_addr = s->iq;
  1984. uint32_t offset = s->iq_head;
  1985. uint32_t dw = s->iq_dw ? 32 : 16;
  1986. dma_addr_t addr = base_addr + offset * dw;
  1987. if (dma_memory_read(&address_space_memory, addr,
  1988. inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
  1989. error_report_once("Read INV DESC failed.");
  1990. return false;
  1991. }
  1992. inv_desc->lo = le64_to_cpu(inv_desc->lo);
  1993. inv_desc->hi = le64_to_cpu(inv_desc->hi);
  1994. if (dw == 32) {
  1995. inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
  1996. inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
  1997. }
  1998. return true;
  1999. }
  2000. static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
  2001. {
  2002. if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
  2003. (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
  2004. error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
  2005. " (reserved nonzero)", __func__, inv_desc->hi,
  2006. inv_desc->lo);
  2007. return false;
  2008. }
  2009. if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
  2010. /* Status Write */
  2011. uint32_t status_data = (uint32_t)(inv_desc->lo >>
  2012. VTD_INV_DESC_WAIT_DATA_SHIFT);
  2013. assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
  2014. /* FIXME: need to be masked with HAW? */
  2015. dma_addr_t status_addr = inv_desc->hi;
  2016. trace_vtd_inv_desc_wait_sw(status_addr, status_data);
  2017. status_data = cpu_to_le32(status_data);
  2018. if (dma_memory_write(&address_space_memory, status_addr,
  2019. &status_data, sizeof(status_data),
  2020. MEMTXATTRS_UNSPECIFIED)) {
  2021. trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
  2022. return false;
  2023. }
  2024. } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
  2025. /* Interrupt flag */
  2026. vtd_generate_completion_event(s);
  2027. } else {
  2028. error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
  2029. " (unknown type)", __func__, inv_desc->hi,
  2030. inv_desc->lo);
  2031. return false;
  2032. }
  2033. return true;
  2034. }
  2035. static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
  2036. VTDInvDesc *inv_desc)
  2037. {
  2038. uint16_t sid, fmask;
  2039. if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
  2040. error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
  2041. " (reserved nonzero)", __func__, inv_desc->hi,
  2042. inv_desc->lo);
  2043. return false;
  2044. }
  2045. switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
  2046. case VTD_INV_DESC_CC_DOMAIN:
  2047. trace_vtd_inv_desc_cc_domain(
  2048. (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
  2049. /* Fall through */
  2050. case VTD_INV_DESC_CC_GLOBAL:
  2051. vtd_context_global_invalidate(s);
  2052. break;
  2053. case VTD_INV_DESC_CC_DEVICE:
  2054. sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
  2055. fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
  2056. vtd_context_device_invalidate(s, sid, fmask);
  2057. break;
  2058. default:
  2059. error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
  2060. " (invalid type)", __func__, inv_desc->hi,
  2061. inv_desc->lo);
  2062. return false;
  2063. }
  2064. return true;
  2065. }
  2066. static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
  2067. {
  2068. uint16_t domain_id;
  2069. uint8_t am;
  2070. hwaddr addr;
  2071. if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
  2072. (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
  2073. error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
  2074. ", lo=0x%"PRIx64" (reserved bits unzero)",
  2075. __func__, inv_desc->hi, inv_desc->lo);
  2076. return false;
  2077. }
  2078. switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
  2079. case VTD_INV_DESC_IOTLB_GLOBAL:
  2080. vtd_iotlb_global_invalidate(s);
  2081. break;
  2082. case VTD_INV_DESC_IOTLB_DOMAIN:
  2083. domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
  2084. vtd_iotlb_domain_invalidate(s, domain_id);
  2085. break;
  2086. case VTD_INV_DESC_IOTLB_PAGE:
  2087. domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
  2088. addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
  2089. am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
  2090. if (am > VTD_MAMV) {
  2091. error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
  2092. ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
  2093. __func__, inv_desc->hi, inv_desc->lo,
  2094. am, (unsigned)VTD_MAMV);
  2095. return false;
  2096. }
  2097. vtd_iotlb_page_invalidate(s, domain_id, addr, am);
  2098. break;
  2099. default:
  2100. error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
  2101. ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
  2102. __func__, inv_desc->hi, inv_desc->lo,
  2103. inv_desc->lo & VTD_INV_DESC_IOTLB_G);
  2104. return false;
  2105. }
  2106. return true;
  2107. }
  2108. static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
  2109. VTDInvDesc *inv_desc)
  2110. {
  2111. trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
  2112. inv_desc->iec.index,
  2113. inv_desc->iec.index_mask);
  2114. vtd_iec_notify_all(s, !inv_desc->iec.granularity,
  2115. inv_desc->iec.index,
  2116. inv_desc->iec.index_mask);
  2117. return true;
  2118. }
  2119. static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
  2120. VTDInvDesc *inv_desc)
  2121. {
  2122. VTDAddressSpace *vtd_dev_as;
  2123. IOMMUTLBEvent event;
  2124. struct VTDBus *vtd_bus;
  2125. hwaddr addr;
  2126. uint64_t sz;
  2127. uint16_t sid;
  2128. uint8_t devfn;
  2129. bool size;
  2130. uint8_t bus_num;
  2131. addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
  2132. sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
  2133. devfn = sid & 0xff;
  2134. bus_num = sid >> 8;
  2135. size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
  2136. if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
  2137. (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
  2138. error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
  2139. ", lo=%"PRIx64" (reserved nonzero)", __func__,
  2140. inv_desc->hi, inv_desc->lo);
  2141. return false;
  2142. }
  2143. vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
  2144. if (!vtd_bus) {
  2145. goto done;
  2146. }
  2147. vtd_dev_as = vtd_bus->dev_as[devfn];
  2148. if (!vtd_dev_as) {
  2149. goto done;
  2150. }
  2151. /* According to ATS spec table 2.4:
  2152. * S = 0, bits 15:12 = xxxx range size: 4K
  2153. * S = 1, bits 15:12 = xxx0 range size: 8K
  2154. * S = 1, bits 15:12 = xx01 range size: 16K
  2155. * S = 1, bits 15:12 = x011 range size: 32K
  2156. * S = 1, bits 15:12 = 0111 range size: 64K
  2157. * ...
  2158. */
  2159. if (size) {
  2160. sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
  2161. addr &= ~(sz - 1);
  2162. } else {
  2163. sz = VTD_PAGE_SIZE;
  2164. }
  2165. event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
  2166. event.entry.target_as = &vtd_dev_as->as;
  2167. event.entry.addr_mask = sz - 1;
  2168. event.entry.iova = addr;
  2169. event.entry.perm = IOMMU_NONE;
  2170. event.entry.translated_addr = 0;
  2171. memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
  2172. done:
  2173. return true;
  2174. }
  2175. static bool vtd_process_inv_desc(IntelIOMMUState *s)
  2176. {
  2177. VTDInvDesc inv_desc;
  2178. uint8_t desc_type;
  2179. trace_vtd_inv_qi_head(s->iq_head);
  2180. if (!vtd_get_inv_desc(s, &inv_desc)) {
  2181. s->iq_last_desc_type = VTD_INV_DESC_NONE;
  2182. return false;
  2183. }
  2184. desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
  2185. /* FIXME: should update at first or at last? */
  2186. s->iq_last_desc_type = desc_type;
  2187. switch (desc_type) {
  2188. case VTD_INV_DESC_CC:
  2189. trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
  2190. if (!vtd_process_context_cache_desc(s, &inv_desc)) {
  2191. return false;
  2192. }
  2193. break;
  2194. case VTD_INV_DESC_IOTLB:
  2195. trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
  2196. if (!vtd_process_iotlb_desc(s, &inv_desc)) {
  2197. return false;
  2198. }
  2199. break;
  2200. /*
  2201. * TODO: the entity of below two cases will be implemented in future series.
  2202. * To make guest (which integrates scalable mode support patch set in
  2203. * iommu driver) work, just return true is enough so far.
  2204. */
  2205. case VTD_INV_DESC_PC:
  2206. break;
  2207. case VTD_INV_DESC_PIOTLB:
  2208. break;
  2209. case VTD_INV_DESC_WAIT:
  2210. trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
  2211. if (!vtd_process_wait_desc(s, &inv_desc)) {
  2212. return false;
  2213. }
  2214. break;
  2215. case VTD_INV_DESC_IEC:
  2216. trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
  2217. if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
  2218. return false;
  2219. }
  2220. break;
  2221. case VTD_INV_DESC_DEVICE:
  2222. trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
  2223. if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
  2224. return false;
  2225. }
  2226. break;
  2227. default:
  2228. error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
  2229. " (unknown type)", __func__, inv_desc.hi,
  2230. inv_desc.lo);
  2231. return false;
  2232. }
  2233. s->iq_head++;
  2234. if (s->iq_head == s->iq_size) {
  2235. s->iq_head = 0;
  2236. }
  2237. return true;
  2238. }
  2239. /* Try to fetch and process more Invalidation Descriptors */
  2240. static void vtd_fetch_inv_desc(IntelIOMMUState *s)
  2241. {
  2242. int qi_shift;
  2243. /* Refer to 10.4.23 of VT-d spec 3.0 */
  2244. qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
  2245. trace_vtd_inv_qi_fetch();
  2246. if (s->iq_tail >= s->iq_size) {
  2247. /* Detects an invalid Tail pointer */
  2248. error_report_once("%s: detected invalid QI tail "
  2249. "(tail=0x%x, size=0x%x)",
  2250. __func__, s->iq_tail, s->iq_size);
  2251. vtd_handle_inv_queue_error(s);
  2252. return;
  2253. }
  2254. while (s->iq_head != s->iq_tail) {
  2255. if (!vtd_process_inv_desc(s)) {
  2256. /* Invalidation Queue Errors */
  2257. vtd_handle_inv_queue_error(s);
  2258. break;
  2259. }
  2260. /* Must update the IQH_REG in time */
  2261. vtd_set_quad_raw(s, DMAR_IQH_REG,
  2262. (((uint64_t)(s->iq_head)) << qi_shift) &
  2263. VTD_IQH_QH_MASK);
  2264. }
  2265. }
  2266. /* Handle write to Invalidation Queue Tail Register */
  2267. static void vtd_handle_iqt_write(IntelIOMMUState *s)
  2268. {
  2269. uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
  2270. if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
  2271. error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
  2272. __func__, val);
  2273. return;
  2274. }
  2275. s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
  2276. trace_vtd_inv_qi_tail(s->iq_tail);
  2277. if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
  2278. /* Process Invalidation Queue here */
  2279. vtd_fetch_inv_desc(s);
  2280. }
  2281. }
  2282. static void vtd_handle_fsts_write(IntelIOMMUState *s)
  2283. {
  2284. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  2285. uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
  2286. uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
  2287. if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
  2288. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  2289. trace_vtd_fsts_clear_ip();
  2290. }
  2291. /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
  2292. * Descriptors if there are any when Queued Invalidation is enabled?
  2293. */
  2294. }
  2295. static void vtd_handle_fectl_write(IntelIOMMUState *s)
  2296. {
  2297. uint32_t fectl_reg;
  2298. /* FIXME: when software clears the IM field, check the IP field. But do we
  2299. * need to compare the old value and the new value to conclude that
  2300. * software clears the IM field? Or just check if the IM field is zero?
  2301. */
  2302. fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
  2303. trace_vtd_reg_write_fectl(fectl_reg);
  2304. if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
  2305. vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
  2306. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  2307. }
  2308. }
  2309. static void vtd_handle_ics_write(IntelIOMMUState *s)
  2310. {
  2311. uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
  2312. uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
  2313. if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
  2314. trace_vtd_reg_ics_clear_ip();
  2315. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  2316. }
  2317. }
  2318. static void vtd_handle_iectl_write(IntelIOMMUState *s)
  2319. {
  2320. uint32_t iectl_reg;
  2321. /* FIXME: when software clears the IM field, check the IP field. But do we
  2322. * need to compare the old value and the new value to conclude that
  2323. * software clears the IM field? Or just check if the IM field is zero?
  2324. */
  2325. iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
  2326. trace_vtd_reg_write_iectl(iectl_reg);
  2327. if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
  2328. vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
  2329. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  2330. }
  2331. }
  2332. static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
  2333. {
  2334. IntelIOMMUState *s = opaque;
  2335. uint64_t val;
  2336. trace_vtd_reg_read(addr, size);
  2337. if (addr + size > DMAR_REG_SIZE) {
  2338. error_report_once("%s: MMIO over range: addr=0x%" PRIx64
  2339. " size=0x%x", __func__, addr, size);
  2340. return (uint64_t)-1;
  2341. }
  2342. switch (addr) {
  2343. /* Root Table Address Register, 64-bit */
  2344. case DMAR_RTADDR_REG:
  2345. val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
  2346. if (size == 4) {
  2347. val = val & ((1ULL << 32) - 1);
  2348. }
  2349. break;
  2350. case DMAR_RTADDR_REG_HI:
  2351. assert(size == 4);
  2352. val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
  2353. break;
  2354. /* Invalidation Queue Address Register, 64-bit */
  2355. case DMAR_IQA_REG:
  2356. val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
  2357. if (size == 4) {
  2358. val = val & ((1ULL << 32) - 1);
  2359. }
  2360. break;
  2361. case DMAR_IQA_REG_HI:
  2362. assert(size == 4);
  2363. val = s->iq >> 32;
  2364. break;
  2365. default:
  2366. if (size == 4) {
  2367. val = vtd_get_long(s, addr);
  2368. } else {
  2369. val = vtd_get_quad(s, addr);
  2370. }
  2371. }
  2372. return val;
  2373. }
  2374. static void vtd_mem_write(void *opaque, hwaddr addr,
  2375. uint64_t val, unsigned size)
  2376. {
  2377. IntelIOMMUState *s = opaque;
  2378. trace_vtd_reg_write(addr, size, val);
  2379. if (addr + size > DMAR_REG_SIZE) {
  2380. error_report_once("%s: MMIO over range: addr=0x%" PRIx64
  2381. " size=0x%x", __func__, addr, size);
  2382. return;
  2383. }
  2384. switch (addr) {
  2385. /* Global Command Register, 32-bit */
  2386. case DMAR_GCMD_REG:
  2387. vtd_set_long(s, addr, val);
  2388. vtd_handle_gcmd_write(s);
  2389. break;
  2390. /* Context Command Register, 64-bit */
  2391. case DMAR_CCMD_REG:
  2392. if (size == 4) {
  2393. vtd_set_long(s, addr, val);
  2394. } else {
  2395. vtd_set_quad(s, addr, val);
  2396. vtd_handle_ccmd_write(s);
  2397. }
  2398. break;
  2399. case DMAR_CCMD_REG_HI:
  2400. assert(size == 4);
  2401. vtd_set_long(s, addr, val);
  2402. vtd_handle_ccmd_write(s);
  2403. break;
  2404. /* IOTLB Invalidation Register, 64-bit */
  2405. case DMAR_IOTLB_REG:
  2406. if (size == 4) {
  2407. vtd_set_long(s, addr, val);
  2408. } else {
  2409. vtd_set_quad(s, addr, val);
  2410. vtd_handle_iotlb_write(s);
  2411. }
  2412. break;
  2413. case DMAR_IOTLB_REG_HI:
  2414. assert(size == 4);
  2415. vtd_set_long(s, addr, val);
  2416. vtd_handle_iotlb_write(s);
  2417. break;
  2418. /* Invalidate Address Register, 64-bit */
  2419. case DMAR_IVA_REG:
  2420. if (size == 4) {
  2421. vtd_set_long(s, addr, val);
  2422. } else {
  2423. vtd_set_quad(s, addr, val);
  2424. }
  2425. break;
  2426. case DMAR_IVA_REG_HI:
  2427. assert(size == 4);
  2428. vtd_set_long(s, addr, val);
  2429. break;
  2430. /* Fault Status Register, 32-bit */
  2431. case DMAR_FSTS_REG:
  2432. assert(size == 4);
  2433. vtd_set_long(s, addr, val);
  2434. vtd_handle_fsts_write(s);
  2435. break;
  2436. /* Fault Event Control Register, 32-bit */
  2437. case DMAR_FECTL_REG:
  2438. assert(size == 4);
  2439. vtd_set_long(s, addr, val);
  2440. vtd_handle_fectl_write(s);
  2441. break;
  2442. /* Fault Event Data Register, 32-bit */
  2443. case DMAR_FEDATA_REG:
  2444. assert(size == 4);
  2445. vtd_set_long(s, addr, val);
  2446. break;
  2447. /* Fault Event Address Register, 32-bit */
  2448. case DMAR_FEADDR_REG:
  2449. if (size == 4) {
  2450. vtd_set_long(s, addr, val);
  2451. } else {
  2452. /*
  2453. * While the register is 32-bit only, some guests (Xen...) write to
  2454. * it with 64-bit.
  2455. */
  2456. vtd_set_quad(s, addr, val);
  2457. }
  2458. break;
  2459. /* Fault Event Upper Address Register, 32-bit */
  2460. case DMAR_FEUADDR_REG:
  2461. assert(size == 4);
  2462. vtd_set_long(s, addr, val);
  2463. break;
  2464. /* Protected Memory Enable Register, 32-bit */
  2465. case DMAR_PMEN_REG:
  2466. assert(size == 4);
  2467. vtd_set_long(s, addr, val);
  2468. break;
  2469. /* Root Table Address Register, 64-bit */
  2470. case DMAR_RTADDR_REG:
  2471. if (size == 4) {
  2472. vtd_set_long(s, addr, val);
  2473. } else {
  2474. vtd_set_quad(s, addr, val);
  2475. }
  2476. break;
  2477. case DMAR_RTADDR_REG_HI:
  2478. assert(size == 4);
  2479. vtd_set_long(s, addr, val);
  2480. break;
  2481. /* Invalidation Queue Tail Register, 64-bit */
  2482. case DMAR_IQT_REG:
  2483. if (size == 4) {
  2484. vtd_set_long(s, addr, val);
  2485. } else {
  2486. vtd_set_quad(s, addr, val);
  2487. }
  2488. vtd_handle_iqt_write(s);
  2489. break;
  2490. case DMAR_IQT_REG_HI:
  2491. assert(size == 4);
  2492. vtd_set_long(s, addr, val);
  2493. /* 19:63 of IQT_REG is RsvdZ, do nothing here */
  2494. break;
  2495. /* Invalidation Queue Address Register, 64-bit */
  2496. case DMAR_IQA_REG:
  2497. if (size == 4) {
  2498. vtd_set_long(s, addr, val);
  2499. } else {
  2500. vtd_set_quad(s, addr, val);
  2501. }
  2502. if (s->ecap & VTD_ECAP_SMTS &&
  2503. val & VTD_IQA_DW_MASK) {
  2504. s->iq_dw = true;
  2505. } else {
  2506. s->iq_dw = false;
  2507. }
  2508. break;
  2509. case DMAR_IQA_REG_HI:
  2510. assert(size == 4);
  2511. vtd_set_long(s, addr, val);
  2512. break;
  2513. /* Invalidation Completion Status Register, 32-bit */
  2514. case DMAR_ICS_REG:
  2515. assert(size == 4);
  2516. vtd_set_long(s, addr, val);
  2517. vtd_handle_ics_write(s);
  2518. break;
  2519. /* Invalidation Event Control Register, 32-bit */
  2520. case DMAR_IECTL_REG:
  2521. assert(size == 4);
  2522. vtd_set_long(s, addr, val);
  2523. vtd_handle_iectl_write(s);
  2524. break;
  2525. /* Invalidation Event Data Register, 32-bit */
  2526. case DMAR_IEDATA_REG:
  2527. assert(size == 4);
  2528. vtd_set_long(s, addr, val);
  2529. break;
  2530. /* Invalidation Event Address Register, 32-bit */
  2531. case DMAR_IEADDR_REG:
  2532. assert(size == 4);
  2533. vtd_set_long(s, addr, val);
  2534. break;
  2535. /* Invalidation Event Upper Address Register, 32-bit */
  2536. case DMAR_IEUADDR_REG:
  2537. assert(size == 4);
  2538. vtd_set_long(s, addr, val);
  2539. break;
  2540. /* Fault Recording Registers, 128-bit */
  2541. case DMAR_FRCD_REG_0_0:
  2542. if (size == 4) {
  2543. vtd_set_long(s, addr, val);
  2544. } else {
  2545. vtd_set_quad(s, addr, val);
  2546. }
  2547. break;
  2548. case DMAR_FRCD_REG_0_1:
  2549. assert(size == 4);
  2550. vtd_set_long(s, addr, val);
  2551. break;
  2552. case DMAR_FRCD_REG_0_2:
  2553. if (size == 4) {
  2554. vtd_set_long(s, addr, val);
  2555. } else {
  2556. vtd_set_quad(s, addr, val);
  2557. /* May clear bit 127 (Fault), update PPF */
  2558. vtd_update_fsts_ppf(s);
  2559. }
  2560. break;
  2561. case DMAR_FRCD_REG_0_3:
  2562. assert(size == 4);
  2563. vtd_set_long(s, addr, val);
  2564. /* May clear bit 127 (Fault), update PPF */
  2565. vtd_update_fsts_ppf(s);
  2566. break;
  2567. case DMAR_IRTA_REG:
  2568. if (size == 4) {
  2569. vtd_set_long(s, addr, val);
  2570. } else {
  2571. vtd_set_quad(s, addr, val);
  2572. }
  2573. break;
  2574. case DMAR_IRTA_REG_HI:
  2575. assert(size == 4);
  2576. vtd_set_long(s, addr, val);
  2577. break;
  2578. default:
  2579. if (size == 4) {
  2580. vtd_set_long(s, addr, val);
  2581. } else {
  2582. vtd_set_quad(s, addr, val);
  2583. }
  2584. }
  2585. }
  2586. static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
  2587. IOMMUAccessFlags flag, int iommu_idx)
  2588. {
  2589. VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
  2590. IntelIOMMUState *s = vtd_as->iommu_state;
  2591. IOMMUTLBEntry iotlb = {
  2592. /* We'll fill in the rest later. */
  2593. .target_as = &address_space_memory,
  2594. };
  2595. bool success;
  2596. if (likely(s->dmar_enabled)) {
  2597. success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
  2598. addr, flag & IOMMU_WO, &iotlb);
  2599. } else {
  2600. /* DMAR disabled, passthrough, use 4k-page*/
  2601. iotlb.iova = addr & VTD_PAGE_MASK_4K;
  2602. iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
  2603. iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
  2604. iotlb.perm = IOMMU_RW;
  2605. success = true;
  2606. }
  2607. if (likely(success)) {
  2608. trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
  2609. VTD_PCI_SLOT(vtd_as->devfn),
  2610. VTD_PCI_FUNC(vtd_as->devfn),
  2611. iotlb.iova, iotlb.translated_addr,
  2612. iotlb.addr_mask);
  2613. } else {
  2614. error_report_once("%s: detected translation failure "
  2615. "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
  2616. __func__, pci_bus_num(vtd_as->bus),
  2617. VTD_PCI_SLOT(vtd_as->devfn),
  2618. VTD_PCI_FUNC(vtd_as->devfn),
  2619. addr);
  2620. }
  2621. return iotlb;
  2622. }
  2623. static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
  2624. IOMMUNotifierFlag old,
  2625. IOMMUNotifierFlag new,
  2626. Error **errp)
  2627. {
  2628. VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
  2629. IntelIOMMUState *s = vtd_as->iommu_state;
  2630. /* TODO: add support for VFIO and vhost users */
  2631. if (s->snoop_control) {
  2632. error_setg_errno(errp, -ENOTSUP,
  2633. "Snoop Control with vhost or VFIO is not supported");
  2634. return -ENOTSUP;
  2635. }
  2636. /* Update per-address-space notifier flags */
  2637. vtd_as->notifier_flags = new;
  2638. if (old == IOMMU_NOTIFIER_NONE) {
  2639. QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
  2640. } else if (new == IOMMU_NOTIFIER_NONE) {
  2641. QLIST_REMOVE(vtd_as, next);
  2642. }
  2643. return 0;
  2644. }
  2645. static int vtd_post_load(void *opaque, int version_id)
  2646. {
  2647. IntelIOMMUState *iommu = opaque;
  2648. /*
  2649. * Memory regions are dynamically turned on/off depending on
  2650. * context entry configurations from the guest. After migration,
  2651. * we need to make sure the memory regions are still correct.
  2652. */
  2653. vtd_switch_address_space_all(iommu);
  2654. /*
  2655. * We don't need to migrate the root_scalable because we can
  2656. * simply do the calculation after the loading is complete. We
  2657. * can actually do similar things with root, dmar_enabled, etc.
  2658. * however since we've had them already so we'd better keep them
  2659. * for compatibility of migration.
  2660. */
  2661. vtd_update_scalable_state(iommu);
  2662. return 0;
  2663. }
  2664. static const VMStateDescription vtd_vmstate = {
  2665. .name = "iommu-intel",
  2666. .version_id = 1,
  2667. .minimum_version_id = 1,
  2668. .priority = MIG_PRI_IOMMU,
  2669. .post_load = vtd_post_load,
  2670. .fields = (VMStateField[]) {
  2671. VMSTATE_UINT64(root, IntelIOMMUState),
  2672. VMSTATE_UINT64(intr_root, IntelIOMMUState),
  2673. VMSTATE_UINT64(iq, IntelIOMMUState),
  2674. VMSTATE_UINT32(intr_size, IntelIOMMUState),
  2675. VMSTATE_UINT16(iq_head, IntelIOMMUState),
  2676. VMSTATE_UINT16(iq_tail, IntelIOMMUState),
  2677. VMSTATE_UINT16(iq_size, IntelIOMMUState),
  2678. VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
  2679. VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
  2680. VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
  2681. VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
  2682. VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
  2683. VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
  2684. VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
  2685. VMSTATE_BOOL(intr_eime, IntelIOMMUState),
  2686. VMSTATE_END_OF_LIST()
  2687. }
  2688. };
  2689. static const MemoryRegionOps vtd_mem_ops = {
  2690. .read = vtd_mem_read,
  2691. .write = vtd_mem_write,
  2692. .endianness = DEVICE_LITTLE_ENDIAN,
  2693. .impl = {
  2694. .min_access_size = 4,
  2695. .max_access_size = 8,
  2696. },
  2697. .valid = {
  2698. .min_access_size = 4,
  2699. .max_access_size = 8,
  2700. },
  2701. };
  2702. static Property vtd_properties[] = {
  2703. DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
  2704. DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
  2705. ON_OFF_AUTO_AUTO),
  2706. DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
  2707. DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
  2708. VTD_HOST_ADDRESS_WIDTH),
  2709. DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
  2710. DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
  2711. DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
  2712. DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
  2713. DEFINE_PROP_END_OF_LIST(),
  2714. };
  2715. /* Read IRTE entry with specific index */
  2716. static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
  2717. VTD_IR_TableEntry *entry, uint16_t sid)
  2718. {
  2719. static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
  2720. {0xffff, 0xfffb, 0xfff9, 0xfff8};
  2721. dma_addr_t addr = 0x00;
  2722. uint16_t mask, source_id;
  2723. uint8_t bus, bus_max, bus_min;
  2724. if (index >= iommu->intr_size) {
  2725. error_report_once("%s: index too large: ind=0x%x",
  2726. __func__, index);
  2727. return -VTD_FR_IR_INDEX_OVER;
  2728. }
  2729. addr = iommu->intr_root + index * sizeof(*entry);
  2730. if (dma_memory_read(&address_space_memory, addr,
  2731. entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
  2732. error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
  2733. __func__, index, addr);
  2734. return -VTD_FR_IR_ROOT_INVAL;
  2735. }
  2736. trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
  2737. le64_to_cpu(entry->data[0]));
  2738. if (!entry->irte.present) {
  2739. error_report_once("%s: detected non-present IRTE "
  2740. "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
  2741. __func__, index, le64_to_cpu(entry->data[1]),
  2742. le64_to_cpu(entry->data[0]));
  2743. return -VTD_FR_IR_ENTRY_P;
  2744. }
  2745. if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
  2746. entry->irte.__reserved_2) {
  2747. error_report_once("%s: detected non-zero reserved IRTE "
  2748. "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
  2749. __func__, index, le64_to_cpu(entry->data[1]),
  2750. le64_to_cpu(entry->data[0]));
  2751. return -VTD_FR_IR_IRTE_RSVD;
  2752. }
  2753. if (sid != X86_IOMMU_SID_INVALID) {
  2754. /* Validate IRTE SID */
  2755. source_id = le32_to_cpu(entry->irte.source_id);
  2756. switch (entry->irte.sid_vtype) {
  2757. case VTD_SVT_NONE:
  2758. break;
  2759. case VTD_SVT_ALL:
  2760. mask = vtd_svt_mask[entry->irte.sid_q];
  2761. if ((source_id & mask) != (sid & mask)) {
  2762. error_report_once("%s: invalid IRTE SID "
  2763. "(index=%u, sid=%u, source_id=%u)",
  2764. __func__, index, sid, source_id);
  2765. return -VTD_FR_IR_SID_ERR;
  2766. }
  2767. break;
  2768. case VTD_SVT_BUS:
  2769. bus_max = source_id >> 8;
  2770. bus_min = source_id & 0xff;
  2771. bus = sid >> 8;
  2772. if (bus > bus_max || bus < bus_min) {
  2773. error_report_once("%s: invalid SVT_BUS "
  2774. "(index=%u, bus=%u, min=%u, max=%u)",
  2775. __func__, index, bus, bus_min, bus_max);
  2776. return -VTD_FR_IR_SID_ERR;
  2777. }
  2778. break;
  2779. default:
  2780. error_report_once("%s: detected invalid IRTE SVT "
  2781. "(index=%u, type=%d)", __func__,
  2782. index, entry->irte.sid_vtype);
  2783. /* Take this as verification failure. */
  2784. return -VTD_FR_IR_SID_ERR;
  2785. }
  2786. }
  2787. return 0;
  2788. }
  2789. /* Fetch IRQ information of specific IR index */
  2790. static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
  2791. X86IOMMUIrq *irq, uint16_t sid)
  2792. {
  2793. VTD_IR_TableEntry irte = {};
  2794. int ret = 0;
  2795. ret = vtd_irte_get(iommu, index, &irte, sid);
  2796. if (ret) {
  2797. return ret;
  2798. }
  2799. irq->trigger_mode = irte.irte.trigger_mode;
  2800. irq->vector = irte.irte.vector;
  2801. irq->delivery_mode = irte.irte.delivery_mode;
  2802. irq->dest = le32_to_cpu(irte.irte.dest_id);
  2803. if (!iommu->intr_eime) {
  2804. #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
  2805. #define VTD_IR_APIC_DEST_SHIFT (8)
  2806. irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
  2807. VTD_IR_APIC_DEST_SHIFT;
  2808. }
  2809. irq->dest_mode = irte.irte.dest_mode;
  2810. irq->redir_hint = irte.irte.redir_hint;
  2811. trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
  2812. irq->delivery_mode, irq->dest, irq->dest_mode);
  2813. return 0;
  2814. }
  2815. /* Interrupt remapping for MSI/MSI-X entry */
  2816. static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
  2817. MSIMessage *origin,
  2818. MSIMessage *translated,
  2819. uint16_t sid)
  2820. {
  2821. int ret = 0;
  2822. VTD_IR_MSIAddress addr;
  2823. uint16_t index;
  2824. X86IOMMUIrq irq = {};
  2825. assert(origin && translated);
  2826. trace_vtd_ir_remap_msi_req(origin->address, origin->data);
  2827. if (!iommu || !iommu->intr_enabled) {
  2828. memcpy(translated, origin, sizeof(*origin));
  2829. goto out;
  2830. }
  2831. if (origin->address & VTD_MSI_ADDR_HI_MASK) {
  2832. error_report_once("%s: MSI address high 32 bits non-zero detected: "
  2833. "address=0x%" PRIx64, __func__, origin->address);
  2834. return -VTD_FR_IR_REQ_RSVD;
  2835. }
  2836. addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
  2837. if (addr.addr.__head != 0xfee) {
  2838. error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
  2839. __func__, addr.data);
  2840. return -VTD_FR_IR_REQ_RSVD;
  2841. }
  2842. /* This is compatible mode. */
  2843. if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
  2844. memcpy(translated, origin, sizeof(*origin));
  2845. goto out;
  2846. }
  2847. index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
  2848. #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
  2849. #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
  2850. if (addr.addr.sub_valid) {
  2851. /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
  2852. index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
  2853. }
  2854. ret = vtd_remap_irq_get(iommu, index, &irq, sid);
  2855. if (ret) {
  2856. return ret;
  2857. }
  2858. if (addr.addr.sub_valid) {
  2859. trace_vtd_ir_remap_type("MSI");
  2860. if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
  2861. error_report_once("%s: invalid IR MSI "
  2862. "(sid=%u, address=0x%" PRIx64
  2863. ", data=0x%" PRIx32 ")",
  2864. __func__, sid, origin->address, origin->data);
  2865. return -VTD_FR_IR_REQ_RSVD;
  2866. }
  2867. } else {
  2868. uint8_t vector = origin->data & 0xff;
  2869. uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
  2870. trace_vtd_ir_remap_type("IOAPIC");
  2871. /* IOAPIC entry vector should be aligned with IRTE vector
  2872. * (see vt-d spec 5.1.5.1). */
  2873. if (vector != irq.vector) {
  2874. trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
  2875. }
  2876. /* The Trigger Mode field must match the Trigger Mode in the IRTE.
  2877. * (see vt-d spec 5.1.5.1). */
  2878. if (trigger_mode != irq.trigger_mode) {
  2879. trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
  2880. irq.trigger_mode);
  2881. }
  2882. }
  2883. /*
  2884. * We'd better keep the last two bits, assuming that guest OS
  2885. * might modify it. Keep it does not hurt after all.
  2886. */
  2887. irq.msi_addr_last_bits = addr.addr.__not_care;
  2888. /* Translate X86IOMMUIrq to MSI message */
  2889. x86_iommu_irq_to_msi_message(&irq, translated);
  2890. out:
  2891. trace_vtd_ir_remap_msi(origin->address, origin->data,
  2892. translated->address, translated->data);
  2893. return 0;
  2894. }
  2895. static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
  2896. MSIMessage *dst, uint16_t sid)
  2897. {
  2898. return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
  2899. src, dst, sid);
  2900. }
  2901. static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
  2902. uint64_t *data, unsigned size,
  2903. MemTxAttrs attrs)
  2904. {
  2905. return MEMTX_OK;
  2906. }
  2907. static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
  2908. uint64_t value, unsigned size,
  2909. MemTxAttrs attrs)
  2910. {
  2911. int ret = 0;
  2912. MSIMessage from = {}, to = {};
  2913. uint16_t sid = X86_IOMMU_SID_INVALID;
  2914. from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
  2915. from.data = (uint32_t) value;
  2916. if (!attrs.unspecified) {
  2917. /* We have explicit Source ID */
  2918. sid = attrs.requester_id;
  2919. }
  2920. ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
  2921. if (ret) {
  2922. /* TODO: report error */
  2923. /* Drop this interrupt */
  2924. return MEMTX_ERROR;
  2925. }
  2926. apic_get_class()->send_msi(&to);
  2927. return MEMTX_OK;
  2928. }
  2929. static const MemoryRegionOps vtd_mem_ir_ops = {
  2930. .read_with_attrs = vtd_mem_ir_read,
  2931. .write_with_attrs = vtd_mem_ir_write,
  2932. .endianness = DEVICE_LITTLE_ENDIAN,
  2933. .impl = {
  2934. .min_access_size = 4,
  2935. .max_access_size = 4,
  2936. },
  2937. .valid = {
  2938. .min_access_size = 4,
  2939. .max_access_size = 4,
  2940. },
  2941. };
  2942. VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
  2943. {
  2944. uintptr_t key = (uintptr_t)bus;
  2945. VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
  2946. VTDAddressSpace *vtd_dev_as;
  2947. char name[128];
  2948. if (!vtd_bus) {
  2949. uintptr_t *new_key = g_malloc(sizeof(*new_key));
  2950. *new_key = (uintptr_t)bus;
  2951. /* No corresponding free() */
  2952. vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
  2953. PCI_DEVFN_MAX);
  2954. vtd_bus->bus = bus;
  2955. g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
  2956. }
  2957. vtd_dev_as = vtd_bus->dev_as[devfn];
  2958. if (!vtd_dev_as) {
  2959. snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
  2960. PCI_FUNC(devfn));
  2961. vtd_bus->dev_as[devfn] = vtd_dev_as = g_new0(VTDAddressSpace, 1);
  2962. vtd_dev_as->bus = bus;
  2963. vtd_dev_as->devfn = (uint8_t)devfn;
  2964. vtd_dev_as->iommu_state = s;
  2965. vtd_dev_as->context_cache_entry.context_cache_gen = 0;
  2966. vtd_dev_as->iova_tree = iova_tree_new();
  2967. memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
  2968. address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
  2969. /*
  2970. * Build the DMAR-disabled container with aliases to the
  2971. * shared MRs. Note that aliasing to a shared memory region
  2972. * could help the memory API to detect same FlatViews so we
  2973. * can have devices to share the same FlatView when DMAR is
  2974. * disabled (either by not providing "intel_iommu=on" or with
  2975. * "iommu=pt"). It will greatly reduce the total number of
  2976. * FlatViews of the system hence VM runs faster.
  2977. */
  2978. memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
  2979. "vtd-nodmar", &s->mr_nodmar, 0,
  2980. memory_region_size(&s->mr_nodmar));
  2981. /*
  2982. * Build the per-device DMAR-enabled container.
  2983. *
  2984. * TODO: currently we have per-device IOMMU memory region only
  2985. * because we have per-device IOMMU notifiers for devices. If
  2986. * one day we can abstract the IOMMU notifiers out of the
  2987. * memory regions then we can also share the same memory
  2988. * region here just like what we've done above with the nodmar
  2989. * region.
  2990. */
  2991. strcat(name, "-dmar");
  2992. memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
  2993. TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
  2994. name, UINT64_MAX);
  2995. memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
  2996. &s->mr_ir, 0, memory_region_size(&s->mr_ir));
  2997. memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
  2998. VTD_INTERRUPT_ADDR_FIRST,
  2999. &vtd_dev_as->iommu_ir, 1);
  3000. /*
  3001. * Hook both the containers under the root container, we
  3002. * switch between DMAR & noDMAR by enable/disable
  3003. * corresponding sub-containers
  3004. */
  3005. memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
  3006. MEMORY_REGION(&vtd_dev_as->iommu),
  3007. 0);
  3008. memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
  3009. &vtd_dev_as->nodmar, 0);
  3010. vtd_switch_address_space(vtd_dev_as);
  3011. }
  3012. return vtd_dev_as;
  3013. }
  3014. /* Unmap the whole range in the notifier's scope. */
  3015. static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
  3016. {
  3017. hwaddr size, remain;
  3018. hwaddr start = n->start;
  3019. hwaddr end = n->end;
  3020. IntelIOMMUState *s = as->iommu_state;
  3021. DMAMap map;
  3022. /*
  3023. * Note: all the codes in this function has a assumption that IOVA
  3024. * bits are no more than VTD_MGAW bits (which is restricted by
  3025. * VT-d spec), otherwise we need to consider overflow of 64 bits.
  3026. */
  3027. if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
  3028. /*
  3029. * Don't need to unmap regions that is bigger than the whole
  3030. * VT-d supported address space size
  3031. */
  3032. end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
  3033. }
  3034. assert(start <= end);
  3035. size = remain = end - start + 1;
  3036. while (remain >= VTD_PAGE_SIZE) {
  3037. IOMMUTLBEvent event;
  3038. uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
  3039. uint64_t size = mask + 1;
  3040. assert(size);
  3041. event.type = IOMMU_NOTIFIER_UNMAP;
  3042. event.entry.iova = start;
  3043. event.entry.addr_mask = mask;
  3044. event.entry.target_as = &address_space_memory;
  3045. event.entry.perm = IOMMU_NONE;
  3046. /* This field is meaningless for unmap */
  3047. event.entry.translated_addr = 0;
  3048. memory_region_notify_iommu_one(n, &event);
  3049. start += size;
  3050. remain -= size;
  3051. }
  3052. assert(!remain);
  3053. trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
  3054. VTD_PCI_SLOT(as->devfn),
  3055. VTD_PCI_FUNC(as->devfn),
  3056. n->start, size);
  3057. map.iova = n->start;
  3058. map.size = size;
  3059. iova_tree_remove(as->iova_tree, &map);
  3060. }
  3061. static void vtd_address_space_unmap_all(IntelIOMMUState *s)
  3062. {
  3063. VTDAddressSpace *vtd_as;
  3064. IOMMUNotifier *n;
  3065. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  3066. IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
  3067. vtd_address_space_unmap(vtd_as, n);
  3068. }
  3069. }
  3070. }
  3071. static void vtd_address_space_refresh_all(IntelIOMMUState *s)
  3072. {
  3073. vtd_address_space_unmap_all(s);
  3074. vtd_switch_address_space_all(s);
  3075. }
  3076. static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
  3077. {
  3078. memory_region_notify_iommu_one(private, event);
  3079. return 0;
  3080. }
  3081. static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
  3082. {
  3083. VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
  3084. IntelIOMMUState *s = vtd_as->iommu_state;
  3085. uint8_t bus_n = pci_bus_num(vtd_as->bus);
  3086. VTDContextEntry ce;
  3087. /*
  3088. * The replay can be triggered by either a invalidation or a newly
  3089. * created entry. No matter what, we release existing mappings
  3090. * (it means flushing caches for UNMAP-only registers).
  3091. */
  3092. vtd_address_space_unmap(vtd_as, n);
  3093. if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
  3094. trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
  3095. "legacy mode",
  3096. bus_n, PCI_SLOT(vtd_as->devfn),
  3097. PCI_FUNC(vtd_as->devfn),
  3098. vtd_get_domain_id(s, &ce),
  3099. ce.hi, ce.lo);
  3100. if (vtd_as_has_map_notifier(vtd_as)) {
  3101. /* This is required only for MAP typed notifiers */
  3102. vtd_page_walk_info info = {
  3103. .hook_fn = vtd_replay_hook,
  3104. .private = (void *)n,
  3105. .notify_unmap = false,
  3106. .aw = s->aw_bits,
  3107. .as = vtd_as,
  3108. .domain_id = vtd_get_domain_id(s, &ce),
  3109. };
  3110. vtd_page_walk(s, &ce, 0, ~0ULL, &info);
  3111. }
  3112. } else {
  3113. trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
  3114. PCI_FUNC(vtd_as->devfn));
  3115. }
  3116. return;
  3117. }
  3118. /* Do the initialization. It will also be called when reset, so pay
  3119. * attention when adding new initialization stuff.
  3120. */
  3121. static void vtd_init(IntelIOMMUState *s)
  3122. {
  3123. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  3124. memset(s->csr, 0, DMAR_REG_SIZE);
  3125. memset(s->wmask, 0, DMAR_REG_SIZE);
  3126. memset(s->w1cmask, 0, DMAR_REG_SIZE);
  3127. memset(s->womask, 0, DMAR_REG_SIZE);
  3128. s->root = 0;
  3129. s->root_scalable = false;
  3130. s->dmar_enabled = false;
  3131. s->intr_enabled = false;
  3132. s->iq_head = 0;
  3133. s->iq_tail = 0;
  3134. s->iq = 0;
  3135. s->iq_size = 0;
  3136. s->qi_enabled = false;
  3137. s->iq_last_desc_type = VTD_INV_DESC_NONE;
  3138. s->iq_dw = false;
  3139. s->next_frcd_reg = 0;
  3140. s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
  3141. VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
  3142. VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
  3143. if (s->dma_drain) {
  3144. s->cap |= VTD_CAP_DRAIN;
  3145. }
  3146. if (s->aw_bits == VTD_HOST_AW_48BIT) {
  3147. s->cap |= VTD_CAP_SAGAW_48bit;
  3148. }
  3149. s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
  3150. /*
  3151. * Rsvd field masks for spte
  3152. */
  3153. vtd_spte_rsvd[0] = ~0ULL;
  3154. vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
  3155. x86_iommu->dt_supported);
  3156. vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
  3157. vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
  3158. vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
  3159. vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
  3160. x86_iommu->dt_supported);
  3161. vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
  3162. x86_iommu->dt_supported);
  3163. if (s->scalable_mode || s->snoop_control) {
  3164. vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
  3165. vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
  3166. vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
  3167. }
  3168. if (x86_iommu_ir_supported(x86_iommu)) {
  3169. s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
  3170. if (s->intr_eim == ON_OFF_AUTO_ON) {
  3171. s->ecap |= VTD_ECAP_EIM;
  3172. }
  3173. assert(s->intr_eim != ON_OFF_AUTO_AUTO);
  3174. }
  3175. if (x86_iommu->dt_supported) {
  3176. s->ecap |= VTD_ECAP_DT;
  3177. }
  3178. if (x86_iommu->pt_supported) {
  3179. s->ecap |= VTD_ECAP_PT;
  3180. }
  3181. if (s->caching_mode) {
  3182. s->cap |= VTD_CAP_CM;
  3183. }
  3184. /* TODO: read cap/ecap from host to decide which cap to be exposed. */
  3185. if (s->scalable_mode) {
  3186. s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
  3187. }
  3188. if (s->snoop_control) {
  3189. s->ecap |= VTD_ECAP_SC;
  3190. }
  3191. vtd_reset_caches(s);
  3192. /* Define registers with default values and bit semantics */
  3193. vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
  3194. vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
  3195. vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
  3196. vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
  3197. vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
  3198. vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
  3199. vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
  3200. vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
  3201. vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
  3202. /* Advanced Fault Logging not supported */
  3203. vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
  3204. vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
  3205. vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
  3206. vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
  3207. /* Treated as RsvdZ when EIM in ECAP_REG is not supported
  3208. * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
  3209. */
  3210. vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
  3211. /* Treated as RO for implementations that PLMR and PHMR fields reported
  3212. * as Clear in the CAP_REG.
  3213. * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
  3214. */
  3215. vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
  3216. vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
  3217. vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
  3218. vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
  3219. vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
  3220. vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
  3221. vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
  3222. vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
  3223. /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
  3224. vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
  3225. /* IOTLB registers */
  3226. vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
  3227. vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
  3228. vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
  3229. /* Fault Recording Registers, 128-bit */
  3230. vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
  3231. vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
  3232. /*
  3233. * Interrupt remapping registers.
  3234. */
  3235. vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
  3236. }
  3237. /* Should not reset address_spaces when reset because devices will still use
  3238. * the address space they got at first (won't ask the bus again).
  3239. */
  3240. static void vtd_reset(DeviceState *dev)
  3241. {
  3242. IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
  3243. vtd_init(s);
  3244. vtd_address_space_refresh_all(s);
  3245. }
  3246. static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
  3247. {
  3248. IntelIOMMUState *s = opaque;
  3249. VTDAddressSpace *vtd_as;
  3250. assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
  3251. vtd_as = vtd_find_add_as(s, bus, devfn);
  3252. return &vtd_as->as;
  3253. }
  3254. static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
  3255. {
  3256. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  3257. if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
  3258. error_setg(errp, "eim=on cannot be selected without intremap=on");
  3259. return false;
  3260. }
  3261. if (s->intr_eim == ON_OFF_AUTO_AUTO) {
  3262. s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
  3263. && x86_iommu_ir_supported(x86_iommu) ?
  3264. ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
  3265. }
  3266. if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
  3267. if (!kvm_irqchip_in_kernel()) {
  3268. error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
  3269. return false;
  3270. }
  3271. if (!kvm_enable_x2apic()) {
  3272. error_setg(errp, "eim=on requires support on the KVM side"
  3273. "(X2APIC_API, first shipped in v4.7)");
  3274. return false;
  3275. }
  3276. }
  3277. /* Currently only address widths supported are 39 and 48 bits */
  3278. if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
  3279. (s->aw_bits != VTD_HOST_AW_48BIT)) {
  3280. error_setg(errp, "Supported values for aw-bits are: %d, %d",
  3281. VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
  3282. return false;
  3283. }
  3284. if (s->scalable_mode && !s->dma_drain) {
  3285. error_setg(errp, "Need to set dma_drain for scalable mode");
  3286. return false;
  3287. }
  3288. return true;
  3289. }
  3290. static int vtd_machine_done_notify_one(Object *child, void *unused)
  3291. {
  3292. IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
  3293. /*
  3294. * We hard-coded here because vfio-pci is the only special case
  3295. * here. Let's be more elegant in the future when we can, but so
  3296. * far there seems to be no better way.
  3297. */
  3298. if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
  3299. vtd_panic_require_caching_mode();
  3300. }
  3301. return 0;
  3302. }
  3303. static void vtd_machine_done_hook(Notifier *notifier, void *unused)
  3304. {
  3305. object_child_foreach_recursive(object_get_root(),
  3306. vtd_machine_done_notify_one, NULL);
  3307. }
  3308. static Notifier vtd_machine_done_notify = {
  3309. .notify = vtd_machine_done_hook,
  3310. };
  3311. static void vtd_realize(DeviceState *dev, Error **errp)
  3312. {
  3313. MachineState *ms = MACHINE(qdev_get_machine());
  3314. PCMachineState *pcms = PC_MACHINE(ms);
  3315. X86MachineState *x86ms = X86_MACHINE(ms);
  3316. PCIBus *bus = pcms->bus;
  3317. IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
  3318. if (!vtd_decide_config(s, errp)) {
  3319. return;
  3320. }
  3321. QLIST_INIT(&s->vtd_as_with_notifiers);
  3322. qemu_mutex_init(&s->iommu_lock);
  3323. memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
  3324. memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
  3325. "intel_iommu", DMAR_REG_SIZE);
  3326. /* Create the shared memory regions by all devices */
  3327. memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
  3328. UINT64_MAX);
  3329. memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
  3330. s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
  3331. memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
  3332. "vtd-sys-alias", get_system_memory(), 0,
  3333. memory_region_size(get_system_memory()));
  3334. memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
  3335. &s->mr_sys_alias, 0);
  3336. memory_region_add_subregion_overlap(&s->mr_nodmar,
  3337. VTD_INTERRUPT_ADDR_FIRST,
  3338. &s->mr_ir, 1);
  3339. sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
  3340. /* No corresponding destroy */
  3341. s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
  3342. g_free, g_free);
  3343. s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
  3344. g_free, g_free);
  3345. vtd_init(s);
  3346. sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
  3347. pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
  3348. /* Pseudo address space under root PCI bus. */
  3349. x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
  3350. qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
  3351. }
  3352. static void vtd_class_init(ObjectClass *klass, void *data)
  3353. {
  3354. DeviceClass *dc = DEVICE_CLASS(klass);
  3355. X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
  3356. dc->reset = vtd_reset;
  3357. dc->vmsd = &vtd_vmstate;
  3358. device_class_set_props(dc, vtd_properties);
  3359. dc->hotpluggable = false;
  3360. x86_class->realize = vtd_realize;
  3361. x86_class->int_remap = vtd_int_remap;
  3362. /* Supported by the pc-q35-* machine types */
  3363. dc->user_creatable = true;
  3364. set_bit(DEVICE_CATEGORY_MISC, dc->categories);
  3365. dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
  3366. }
  3367. static const TypeInfo vtd_info = {
  3368. .name = TYPE_INTEL_IOMMU_DEVICE,
  3369. .parent = TYPE_X86_IOMMU_DEVICE,
  3370. .instance_size = sizeof(IntelIOMMUState),
  3371. .class_init = vtd_class_init,
  3372. };
  3373. static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
  3374. void *data)
  3375. {
  3376. IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
  3377. imrc->translate = vtd_iommu_translate;
  3378. imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
  3379. imrc->replay = vtd_iommu_replay;
  3380. }
  3381. static const TypeInfo vtd_iommu_memory_region_info = {
  3382. .parent = TYPE_IOMMU_MEMORY_REGION,
  3383. .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
  3384. .class_init = vtd_iommu_memory_region_class_init,
  3385. };
  3386. static void vtd_register_types(void)
  3387. {
  3388. type_register_static(&vtd_info);
  3389. type_register_static(&vtd_iommu_memory_region_info);
  3390. }
  3391. type_init(vtd_register_types)