1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060 |
- #!/usr/bin/env python
- # Copyright (c) 2018 Linaro Limited
- #
- # This library is free software; you can redistribute it and/or
- # modify it under the terms of the GNU Lesser General Public
- # License as published by the Free Software Foundation; either
- # version 2 of the License, or (at your option) any later version.
- #
- # This library is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- # Lesser General Public License for more details.
- #
- # You should have received a copy of the GNU Lesser General Public
- # License along with this library; if not, see <http://www.gnu.org/licenses/>.
- #
- #
- # Generate a decoding tree from a specification file.
- #
- # The tree is built from instruction "patterns". A pattern may represent
- # a single architectural instruction or a group of same, depending on what
- # is convenient for further processing.
- #
- # Each pattern has "fixedbits" & "fixedmask", the combination of which
- # describes the condition under which the pattern is matched:
- #
- # (insn & fixedmask) == fixedbits
- #
- # Each pattern may have "fields", which are extracted from the insn and
- # passed along to the translator. Examples of such are registers,
- # immediates, and sub-opcodes.
- #
- # In support of patterns, one may declare fields, argument sets, and
- # formats, each of which may be re-used to simplify further definitions.
- #
- # *** Field syntax:
- #
- # field_def := '%' identifier ( unnamed_field )+ ( !function=identifier )?
- # unnamed_field := number ':' ( 's' ) number
- #
- # For unnamed_field, the first number is the least-significant bit position of
- # the field and the second number is the length of the field. If the 's' is
- # present, the field is considered signed. If multiple unnamed_fields are
- # present, they are concatenated. In this way one can define disjoint fields.
- #
- # If !function is specified, the concatenated result is passed through the
- # named function, taking and returning an integral value.
- #
- # FIXME: the fields of the structure into which this result will be stored
- # is restricted to "int". Which means that we cannot expand 64-bit items.
- #
- # Field examples:
- #
- # %disp 0:s16 -- sextract(i, 0, 16)
- # %imm9 16:6 10:3 -- extract(i, 16, 6) << 3 | extract(i, 10, 3)
- # %disp12 0:s1 1:1 2:10 -- sextract(i, 0, 1) << 11
- # | extract(i, 1, 1) << 10
- # | extract(i, 2, 10)
- # %shimm8 5:s8 13:1 !function=expand_shimm8
- # -- expand_shimm8(sextract(i, 5, 8) << 1
- # | extract(i, 13, 1))
- #
- # *** Argument set syntax:
- #
- # args_def := '&' identifier ( args_elt )+
- # args_elt := identifier
- #
- # Each args_elt defines an argument within the argument set.
- # Each argument set will be rendered as a C structure "arg_$name"
- # with each of the fields being one of the member arguments.
- #
- # Argument set examples:
- #
- # ®3 ra rb rc
- # &loadstore reg base offset
- #
- # *** Format syntax:
- #
- # fmt_def := '@' identifier ( fmt_elt )+
- # fmt_elt := fixedbit_elt | field_elt | field_ref | args_ref
- # fixedbit_elt := [01.-]+
- # field_elt := identifier ':' 's'? number
- # field_ref := '%' identifier | identifier '=' '%' identifier
- # args_ref := '&' identifier
- #
- # Defining a format is a handy way to avoid replicating groups of fields
- # across many instruction patterns.
- #
- # A fixedbit_elt describes a contiguous sequence of bits that must
- # be 1, 0, [.-] for don't care. The difference between '.' and '-'
- # is that '.' means that the bit will be covered with a field or a
- # final [01] from the pattern, and '-' means that the bit is really
- # ignored by the cpu and will not be specified.
- #
- # A field_elt describes a simple field only given a width; the position of
- # the field is implied by its position with respect to other fixedbit_elt
- # and field_elt.
- #
- # If any fixedbit_elt or field_elt appear then all bits must be defined.
- # Padding with a fixedbit_elt of all '.' is an easy way to accomplish that.
- #
- # A field_ref incorporates a field by reference. This is the only way to
- # add a complex field to a format. A field may be renamed in the process
- # via assignment to another identifier. This is intended to allow the
- # same argument set be used with disjoint named fields.
- #
- # A single args_ref may specify an argument set to use for the format.
- # The set of fields in the format must be a subset of the arguments in
- # the argument set. If an argument set is not specified, one will be
- # inferred from the set of fields.
- #
- # It is recommended, but not required, that all field_ref and args_ref
- # appear at the end of the line, not interleaving with fixedbit_elf or
- # field_elt.
- #
- # Format examples:
- #
- # @opr ...... ra:5 rb:5 ... 0 ....... rc:5
- # @opi ...... ra:5 lit:8 1 ....... rc:5
- #
- # *** Pattern syntax:
- #
- # pat_def := identifier ( pat_elt )+
- # pat_elt := fixedbit_elt | field_elt | field_ref
- # | args_ref | fmt_ref | const_elt
- # fmt_ref := '@' identifier
- # const_elt := identifier '=' number
- #
- # The fixedbit_elt and field_elt specifiers are unchanged from formats.
- # A pattern that does not specify a named format will have one inferred
- # from a referenced argument set (if present) and the set of fields.
- #
- # A const_elt allows a argument to be set to a constant value. This may
- # come in handy when fields overlap between patterns and one has to
- # include the values in the fixedbit_elt instead.
- #
- # The decoder will call a translator function for each pattern matched.
- #
- # Pattern examples:
- #
- # addl_r 010000 ..... ..... .... 0000000 ..... @opr
- # addl_i 010000 ..... ..... .... 0000000 ..... @opi
- #
- # which will, in part, invoke
- #
- # trans_addl_r(ctx, &arg_opr, insn)
- # and
- # trans_addl_i(ctx, &arg_opi, insn)
- #
- import os
- import re
- import sys
- import getopt
- insnwidth = 32
- insnmask = 0xffffffff
- fields = {}
- arguments = {}
- formats = {}
- patterns = []
- translate_prefix = 'trans'
- translate_scope = 'static '
- input_file = ''
- output_file = None
- output_fd = None
- insntype = 'uint32_t'
- re_ident = '[a-zA-Z][a-zA-Z0-9_]*'
- def error(lineno, *args):
- """Print an error message from file:line and args and exit."""
- global output_file
- global output_fd
- if lineno:
- r = '{0}:{1}: error:'.format(input_file, lineno)
- elif input_file:
- r = '{0}: error:'.format(input_file)
- else:
- r = 'error:'
- for a in args:
- r += ' ' + str(a)
- r += '\n'
- sys.stderr.write(r)
- if output_file and output_fd:
- output_fd.close()
- os.remove(output_file)
- exit(1)
- def output(*args):
- global output_fd
- for a in args:
- output_fd.write(a)
- if sys.version_info >= (3, 0):
- re_fullmatch = re.fullmatch
- else:
- def re_fullmatch(pat, str):
- return re.match('^' + pat + '$', str)
- def output_autogen():
- output('/* This file is autogenerated by scripts/decodetree.py. */\n\n')
- def str_indent(c):
- """Return a string with C spaces"""
- return ' ' * c
- def str_fields(fields):
- """Return a string uniquely identifing FIELDS"""
- r = ''
- for n in sorted(fields.keys()):
- r += '_' + n
- return r[1:]
- def str_match_bits(bits, mask):
- """Return a string pretty-printing BITS/MASK"""
- global insnwidth
- i = 1 << (insnwidth - 1)
- space = 0x01010100
- r = ''
- while i != 0:
- if i & mask:
- if i & bits:
- r += '1'
- else:
- r += '0'
- else:
- r += '.'
- if i & space:
- r += ' '
- i >>= 1
- return r
- def is_pow2(x):
- """Return true iff X is equal to a power of 2."""
- return (x & (x - 1)) == 0
- def ctz(x):
- """Return the number of times 2 factors into X."""
- r = 0
- while ((x >> r) & 1) == 0:
- r += 1
- return r
- def is_contiguous(bits):
- shift = ctz(bits)
- if is_pow2((bits >> shift) + 1):
- return shift
- else:
- return -1
- def eq_fields_for_args(flds_a, flds_b):
- if len(flds_a) != len(flds_b):
- return False
- for k, a in flds_a.items():
- if k not in flds_b:
- return False
- return True
- def eq_fields_for_fmts(flds_a, flds_b):
- if len(flds_a) != len(flds_b):
- return False
- for k, a in flds_a.items():
- if k not in flds_b:
- return False
- b = flds_b[k]
- if a.__class__ != b.__class__ or a != b:
- return False
- return True
- class Field:
- """Class representing a simple instruction field"""
- def __init__(self, sign, pos, len):
- self.sign = sign
- self.pos = pos
- self.len = len
- self.mask = ((1 << len) - 1) << pos
- def __str__(self):
- if self.sign:
- s = 's'
- else:
- s = ''
- return str(pos) + ':' + s + str(len)
- def str_extract(self):
- if self.sign:
- extr = 'sextract32'
- else:
- extr = 'extract32'
- return '{0}(insn, {1}, {2})'.format(extr, self.pos, self.len)
- def __eq__(self, other):
- return self.sign == other.sign and self.sign == other.sign
- def __ne__(self, other):
- return not self.__eq__(other)
- # end Field
- class MultiField:
- """Class representing a compound instruction field"""
- def __init__(self, subs, mask):
- self.subs = subs
- self.sign = subs[0].sign
- self.mask = mask
- def __str__(self):
- return str(self.subs)
- def str_extract(self):
- ret = '0'
- pos = 0
- for f in reversed(self.subs):
- if pos == 0:
- ret = f.str_extract()
- else:
- ret = 'deposit32({0}, {1}, {2}, {3})' \
- .format(ret, pos, 32 - pos, f.str_extract())
- pos += f.len
- return ret
- def __ne__(self, other):
- if len(self.subs) != len(other.subs):
- return True
- for a, b in zip(self.subs, other.subs):
- if a.__class__ != b.__class__ or a != b:
- return True
- return False
- def __eq__(self, other):
- return not self.__ne__(other)
- # end MultiField
- class ConstField:
- """Class representing an argument field with constant value"""
- def __init__(self, value):
- self.value = value
- self.mask = 0
- self.sign = value < 0
- def __str__(self):
- return str(self.value)
- def str_extract(self):
- return str(self.value)
- def __cmp__(self, other):
- return self.value - other.value
- # end ConstField
- class FunctionField:
- """Class representing a field passed through an expander"""
- def __init__(self, func, base):
- self.mask = base.mask
- self.sign = base.sign
- self.base = base
- self.func = func
- def __str__(self):
- return self.func + '(' + str(self.base) + ')'
- def str_extract(self):
- return self.func + '(' + self.base.str_extract() + ')'
- def __eq__(self, other):
- return self.func == other.func and self.base == other.base
- def __ne__(self, other):
- return not self.__eq__(other)
- # end FunctionField
- class Arguments:
- """Class representing the extracted fields of a format"""
- def __init__(self, nm, flds):
- self.name = nm
- self.fields = sorted(flds)
- def __str__(self):
- return self.name + ' ' + str(self.fields)
- def struct_name(self):
- return 'arg_' + self.name
- def output_def(self):
- output('typedef struct {\n')
- for n in self.fields:
- output(' int ', n, ';\n')
- output('} ', self.struct_name(), ';\n\n')
- # end Arguments
- class General:
- """Common code between instruction formats and instruction patterns"""
- def __init__(self, name, lineno, base, fixb, fixm, udfm, fldm, flds):
- self.name = name
- self.lineno = lineno
- self.base = base
- self.fixedbits = fixb
- self.fixedmask = fixm
- self.undefmask = udfm
- self.fieldmask = fldm
- self.fields = flds
- def __str__(self):
- r = self.name
- if self.base:
- r = r + ' ' + self.base.name
- else:
- r = r + ' ' + str(self.fields)
- r = r + ' ' + str_match_bits(self.fixedbits, self.fixedmask)
- return r
- def str1(self, i):
- return str_indent(i) + self.__str__()
- # end General
- class Format(General):
- """Class representing an instruction format"""
- def extract_name(self):
- return 'extract_' + self.name
- def output_extract(self):
- output('static void ', self.extract_name(), '(',
- self.base.struct_name(), ' *a, ', insntype, ' insn)\n{\n')
- for n, f in self.fields.items():
- output(' a->', n, ' = ', f.str_extract(), ';\n')
- output('}\n\n')
- # end Format
- class Pattern(General):
- """Class representing an instruction pattern"""
- def output_decl(self):
- global translate_scope
- global translate_prefix
- output('typedef ', self.base.base.struct_name(),
- ' arg_', self.name, ';\n')
- output(translate_scope, 'bool ', translate_prefix, '_', self.name,
- '(DisasContext *ctx, arg_', self.name,
- ' *a, ', insntype, ' insn);\n')
- def output_code(self, i, extracted, outerbits, outermask):
- global translate_prefix
- ind = str_indent(i)
- arg = self.base.base.name
- output(ind, '/* line ', str(self.lineno), ' */\n')
- if not extracted:
- output(ind, self.base.extract_name(), '(&u.f_', arg, ', insn);\n')
- for n, f in self.fields.items():
- output(ind, 'u.f_', arg, '.', n, ' = ', f.str_extract(), ';\n')
- output(ind, 'return ', translate_prefix, '_', self.name,
- '(ctx, &u.f_', arg, ', insn);\n')
- # end Pattern
- def parse_field(lineno, name, toks):
- """Parse one instruction field from TOKS at LINENO"""
- global fields
- global re_ident
- global insnwidth
- # A "simple" field will have only one entry;
- # a "multifield" will have several.
- subs = []
- width = 0
- func = None
- for t in toks:
- if re_fullmatch('!function=' + re_ident, t):
- if func:
- error(lineno, 'duplicate function')
- func = t.split('=')
- func = func[1]
- continue
- if re_fullmatch('[0-9]+:s[0-9]+', t):
- # Signed field extract
- subtoks = t.split(':s')
- sign = True
- elif re_fullmatch('[0-9]+:[0-9]+', t):
- # Unsigned field extract
- subtoks = t.split(':')
- sign = False
- else:
- error(lineno, 'invalid field token "{0}"'.format(t))
- po = int(subtoks[0])
- le = int(subtoks[1])
- if po + le > insnwidth:
- error(lineno, 'field {0} too large'.format(t))
- f = Field(sign, po, le)
- subs.append(f)
- width += le
- if width > insnwidth:
- error(lineno, 'field too large')
- if len(subs) == 1:
- f = subs[0]
- else:
- mask = 0
- for s in subs:
- if mask & s.mask:
- error(lineno, 'field components overlap')
- mask |= s.mask
- f = MultiField(subs, mask)
- if func:
- f = FunctionField(func, f)
- if name in fields:
- error(lineno, 'duplicate field', name)
- fields[name] = f
- # end parse_field
- def parse_arguments(lineno, name, toks):
- """Parse one argument set from TOKS at LINENO"""
- global arguments
- global re_ident
- flds = []
- for t in toks:
- if not re_fullmatch(re_ident, t):
- error(lineno, 'invalid argument set token "{0}"'.format(t))
- if t in flds:
- error(lineno, 'duplicate argument "{0}"'.format(t))
- flds.append(t)
- if name in arguments:
- error(lineno, 'duplicate argument set', name)
- arguments[name] = Arguments(name, flds)
- # end parse_arguments
- def lookup_field(lineno, name):
- global fields
- if name in fields:
- return fields[name]
- error(lineno, 'undefined field', name)
- def add_field(lineno, flds, new_name, f):
- if new_name in flds:
- error(lineno, 'duplicate field', new_name)
- flds[new_name] = f
- return flds
- def add_field_byname(lineno, flds, new_name, old_name):
- return add_field(lineno, flds, new_name, lookup_field(lineno, old_name))
- def infer_argument_set(flds):
- global arguments
- for arg in arguments.values():
- if eq_fields_for_args(flds, arg.fields):
- return arg
- name = str(len(arguments))
- arg = Arguments(name, flds.keys())
- arguments[name] = arg
- return arg
- def infer_format(arg, fieldmask, flds):
- global arguments
- global formats
- const_flds = {}
- var_flds = {}
- for n, c in flds.items():
- if c is ConstField:
- const_flds[n] = c
- else:
- var_flds[n] = c
- # Look for an existing format with the same argument set and fields
- for fmt in formats.values():
- if arg and fmt.base != arg:
- continue
- if fieldmask != fmt.fieldmask:
- continue
- if not eq_fields_for_fmts(flds, fmt.fields):
- continue
- return (fmt, const_flds)
- name = 'Fmt_' + str(len(formats))
- if not arg:
- arg = infer_argument_set(flds)
- fmt = Format(name, 0, arg, 0, 0, 0, fieldmask, var_flds)
- formats[name] = fmt
- return (fmt, const_flds)
- # end infer_format
- def parse_generic(lineno, is_format, name, toks):
- """Parse one instruction format from TOKS at LINENO"""
- global fields
- global arguments
- global formats
- global patterns
- global re_ident
- global insnwidth
- global insnmask
- fixedmask = 0
- fixedbits = 0
- undefmask = 0
- width = 0
- flds = {}
- arg = None
- fmt = None
- for t in toks:
- # '&Foo' gives a format an explcit argument set.
- if t[0] == '&':
- tt = t[1:]
- if arg:
- error(lineno, 'multiple argument sets')
- if tt in arguments:
- arg = arguments[tt]
- else:
- error(lineno, 'undefined argument set', t)
- continue
- # '@Foo' gives a pattern an explicit format.
- if t[0] == '@':
- tt = t[1:]
- if fmt:
- error(lineno, 'multiple formats')
- if tt in formats:
- fmt = formats[tt]
- else:
- error(lineno, 'undefined format', t)
- continue
- # '%Foo' imports a field.
- if t[0] == '%':
- tt = t[1:]
- flds = add_field_byname(lineno, flds, tt, tt)
- continue
- # 'Foo=%Bar' imports a field with a different name.
- if re_fullmatch(re_ident + '=%' + re_ident, t):
- (fname, iname) = t.split('=%')
- flds = add_field_byname(lineno, flds, fname, iname)
- continue
- # 'Foo=number' sets an argument field to a constant value
- if re_fullmatch(re_ident + '=[0-9]+', t):
- (fname, value) = t.split('=')
- value = int(value)
- flds = add_field(lineno, flds, fname, ConstField(value))
- continue
- # Pattern of 0s, 1s, dots and dashes indicate required zeros,
- # required ones, or dont-cares.
- if re_fullmatch('[01.-]+', t):
- shift = len(t)
- fms = t.replace('0', '1')
- fms = fms.replace('.', '0')
- fms = fms.replace('-', '0')
- fbs = t.replace('.', '0')
- fbs = fbs.replace('-', '0')
- ubm = t.replace('1', '0')
- ubm = ubm.replace('.', '0')
- ubm = ubm.replace('-', '1')
- fms = int(fms, 2)
- fbs = int(fbs, 2)
- ubm = int(ubm, 2)
- fixedbits = (fixedbits << shift) | fbs
- fixedmask = (fixedmask << shift) | fms
- undefmask = (undefmask << shift) | ubm
- # Otherwise, fieldname:fieldwidth
- elif re_fullmatch(re_ident + ':s?[0-9]+', t):
- (fname, flen) = t.split(':')
- sign = False
- if flen[0] == 's':
- sign = True
- flen = flen[1:]
- shift = int(flen, 10)
- f = Field(sign, insnwidth - width - shift, shift)
- flds = add_field(lineno, flds, fname, f)
- fixedbits <<= shift
- fixedmask <<= shift
- undefmask <<= shift
- else:
- error(lineno, 'invalid token "{0}"'.format(t))
- width += shift
- # We should have filled in all of the bits of the instruction.
- if not (is_format and width == 0) and width != insnwidth:
- error(lineno, 'definition has {0} bits'.format(width))
- # Do not check for fields overlaping fields; one valid usage
- # is to be able to duplicate fields via import.
- fieldmask = 0
- for f in flds.values():
- fieldmask |= f.mask
- # Fix up what we've parsed to match either a format or a pattern.
- if is_format:
- # Formats cannot reference formats.
- if fmt:
- error(lineno, 'format referencing format')
- # If an argument set is given, then there should be no fields
- # without a place to store it.
- if arg:
- for f in flds.keys():
- if f not in arg.fields:
- error(lineno, 'field {0} not in argument set {1}'
- .format(f, arg.name))
- else:
- arg = infer_argument_set(flds)
- if name in formats:
- error(lineno, 'duplicate format name', name)
- fmt = Format(name, lineno, arg, fixedbits, fixedmask,
- undefmask, fieldmask, flds)
- formats[name] = fmt
- else:
- # Patterns can reference a format ...
- if fmt:
- # ... but not an argument simultaneously
- if arg:
- error(lineno, 'pattern specifies both format and argument set')
- if fixedmask & fmt.fixedmask:
- error(lineno, 'pattern fixed bits overlap format fixed bits')
- fieldmask |= fmt.fieldmask
- fixedbits |= fmt.fixedbits
- fixedmask |= fmt.fixedmask
- undefmask |= fmt.undefmask
- else:
- (fmt, flds) = infer_format(arg, fieldmask, flds)
- arg = fmt.base
- for f in flds.keys():
- if f not in arg.fields:
- error(lineno, 'field {0} not in argument set {1}'
- .format(f, arg.name))
- if f in fmt.fields.keys():
- error(lineno, 'field {0} set by format and pattern'.format(f))
- for f in arg.fields:
- if f not in flds.keys() and f not in fmt.fields.keys():
- error(lineno, 'field {0} not initialized'.format(f))
- pat = Pattern(name, lineno, fmt, fixedbits, fixedmask,
- undefmask, fieldmask, flds)
- patterns.append(pat)
- # Validate the masks that we have assembled.
- if fieldmask & fixedmask:
- error(lineno, 'fieldmask overlaps fixedmask (0x{0:08x} & 0x{1:08x})'
- .format(fieldmask, fixedmask))
- if fieldmask & undefmask:
- error(lineno, 'fieldmask overlaps undefmask (0x{0:08x} & 0x{1:08x})'
- .format(fieldmask, undefmask))
- if fixedmask & undefmask:
- error(lineno, 'fixedmask overlaps undefmask (0x{0:08x} & 0x{1:08x})'
- .format(fixedmask, undefmask))
- if not is_format:
- allbits = fieldmask | fixedmask | undefmask
- if allbits != insnmask:
- error(lineno, 'bits left unspecified (0x{0:08x})'
- .format(allbits ^ insnmask))
- # end parse_general
- def parse_file(f):
- """Parse all of the patterns within a file"""
- # Read all of the lines of the file. Concatenate lines
- # ending in backslash; discard empty lines and comments.
- toks = []
- lineno = 0
- for line in f:
- lineno += 1
- # Discard comments
- end = line.find('#')
- if end >= 0:
- line = line[:end]
- t = line.split()
- if len(toks) != 0:
- # Next line after continuation
- toks.extend(t)
- elif len(t) == 0:
- # Empty line
- continue
- else:
- toks = t
- # Continuation?
- if toks[-1] == '\\':
- toks.pop()
- continue
- if len(toks) < 2:
- error(lineno, 'short line')
- name = toks[0]
- del toks[0]
- # Determine the type of object needing to be parsed.
- if name[0] == '%':
- parse_field(lineno, name[1:], toks)
- elif name[0] == '&':
- parse_arguments(lineno, name[1:], toks)
- elif name[0] == '@':
- parse_generic(lineno, True, name[1:], toks)
- else:
- parse_generic(lineno, False, name, toks)
- toks = []
- # end parse_file
- class Tree:
- """Class representing a node in a decode tree"""
- def __init__(self, fm, tm):
- self.fixedmask = fm
- self.thismask = tm
- self.subs = []
- self.base = None
- def str1(self, i):
- ind = str_indent(i)
- r = '{0}{1:08x}'.format(ind, self.fixedmask)
- if self.format:
- r += ' ' + self.format.name
- r += ' [\n'
- for (b, s) in self.subs:
- r += '{0} {1:08x}:\n'.format(ind, b)
- r += s.str1(i + 4) + '\n'
- r += ind + ']'
- return r
- def __str__(self):
- return self.str1(0)
- def output_code(self, i, extracted, outerbits, outermask):
- ind = str_indent(i)
- # If we identified all nodes below have the same format,
- # extract the fields now.
- if not extracted and self.base:
- output(ind, self.base.extract_name(),
- '(&u.f_', self.base.base.name, ', insn);\n')
- extracted = True
- # Attempt to aid the compiler in producing compact switch statements.
- # If the bits in the mask are contiguous, extract them.
- sh = is_contiguous(self.thismask)
- if sh > 0:
- # Propagate SH down into the local functions.
- def str_switch(b, sh=sh):
- return '(insn >> {0}) & 0x{1:x}'.format(sh, b >> sh)
- def str_case(b, sh=sh):
- return '0x{0:x}'.format(b >> sh)
- else:
- def str_switch(b):
- return 'insn & 0x{0:08x}'.format(b)
- def str_case(b):
- return '0x{0:08x}'.format(b)
- output(ind, 'switch (', str_switch(self.thismask), ') {\n')
- for b, s in sorted(self.subs):
- assert (self.thismask & ~s.fixedmask) == 0
- innermask = outermask | self.thismask
- innerbits = outerbits | b
- output(ind, 'case ', str_case(b), ':\n')
- output(ind, ' /* ',
- str_match_bits(innerbits, innermask), ' */\n')
- s.output_code(i + 4, extracted, innerbits, innermask)
- output(ind, '}\n')
- output(ind, 'return false;\n')
- # end Tree
- def build_tree(pats, outerbits, outermask):
- # Find the intersection of all remaining fixedmask.
- innermask = ~outermask
- for i in pats:
- innermask &= i.fixedmask
- if innermask == 0:
- pnames = []
- for p in pats:
- pnames.append(p.name + ':' + str(p.lineno))
- error(pats[0].lineno, 'overlapping patterns:', pnames)
- fullmask = outermask | innermask
- # Sort each element of pats into the bin selected by the mask.
- bins = {}
- for i in pats:
- fb = i.fixedbits & innermask
- if fb in bins:
- bins[fb].append(i)
- else:
- bins[fb] = [i]
- # We must recurse if any bin has more than one element or if
- # the single element in the bin has not been fully matched.
- t = Tree(fullmask, innermask)
- for b, l in bins.items():
- s = l[0]
- if len(l) > 1 or s.fixedmask & ~fullmask != 0:
- s = build_tree(l, b | outerbits, fullmask)
- t.subs.append((b, s))
- return t
- # end build_tree
- def prop_format(tree):
- """Propagate Format objects into the decode tree"""
- # Depth first search.
- for (b, s) in tree.subs:
- if isinstance(s, Tree):
- prop_format(s)
- # If all entries in SUBS have the same format, then
- # propagate that into the tree.
- f = None
- for (b, s) in tree.subs:
- if f is None:
- f = s.base
- if f is None:
- return
- if f is not s.base:
- return
- tree.base = f
- # end prop_format
- def main():
- global arguments
- global formats
- global patterns
- global translate_scope
- global translate_prefix
- global output_fd
- global output_file
- global input_file
- global insnwidth
- global insntype
- global insnmask
- decode_function = 'decode'
- decode_scope = 'static '
- long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=']
- try:
- (opts, args) = getopt.getopt(sys.argv[1:], 'o:w:', long_opts)
- except getopt.GetoptError as err:
- error(0, err)
- for o, a in opts:
- if o in ('-o', '--output'):
- output_file = a
- elif o == '--decode':
- decode_function = a
- decode_scope = ''
- elif o == '--translate':
- translate_prefix = a
- translate_scope = ''
- elif o in ('-w', '--insnwidth'):
- insnwidth = int(a)
- if insnwidth == 16:
- insntype = 'uint16_t'
- insnmask = 0xffff
- elif insnwidth != 32:
- error(0, 'cannot handle insns of width', insnwidth)
- else:
- assert False, 'unhandled option'
- if len(args) < 1:
- error(0, 'missing input file')
- input_file = args[0]
- f = open(input_file, 'r')
- parse_file(f)
- f.close()
- t = build_tree(patterns, 0, 0)
- prop_format(t)
- if output_file:
- output_fd = open(output_file, 'w')
- else:
- output_fd = sys.stdout
- output_autogen()
- for n in sorted(arguments.keys()):
- f = arguments[n]
- f.output_def()
- # A single translate function can be invoked for different patterns.
- # Make sure that the argument sets are the same, and declare the
- # function only once.
- out_pats = {}
- for i in patterns:
- if i.name in out_pats:
- p = out_pats[i.name]
- if i.base.base != p.base.base:
- error(0, i.name, ' has conflicting argument sets')
- else:
- i.output_decl()
- out_pats[i.name] = i
- output('\n')
- for n in sorted(formats.keys()):
- f = formats[n]
- f.output_extract()
- output(decode_scope, 'bool ', decode_function,
- '(DisasContext *ctx, ', insntype, ' insn)\n{\n')
- i4 = str_indent(4)
- output(i4, 'union {\n')
- for n in sorted(arguments.keys()):
- f = arguments[n]
- output(i4, i4, f.struct_name(), ' f_', f.name, ';\n')
- output(i4, '} u;\n\n')
- t.output_code(4, False, 0, 0)
- output('}\n')
- if output_file:
- output_fd.close()
- # end main
- if __name__ == '__main__':
- main()
|