2
0

sun4u.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. /*
  2. * QEMU Sun4u/Sun4v System Emulator
  3. *
  4. * Copyright (c) 2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw.h"
  25. #include "pci/pci.h"
  26. #include "apb_pci.h"
  27. #include "pc.h"
  28. #include "serial.h"
  29. #include "nvram.h"
  30. #include "fdc.h"
  31. #include "net.h"
  32. #include "qemu-timer.h"
  33. #include "sysemu.h"
  34. #include "boards.h"
  35. #include "firmware_abi.h"
  36. #include "fw_cfg.h"
  37. #include "sysbus.h"
  38. #include "ide.h"
  39. #include "loader.h"
  40. #include "elf.h"
  41. #include "blockdev.h"
  42. #include "exec-memory.h"
  43. //#define DEBUG_IRQ
  44. //#define DEBUG_EBUS
  45. //#define DEBUG_TIMER
  46. #ifdef DEBUG_IRQ
  47. #define CPUIRQ_DPRINTF(fmt, ...) \
  48. do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
  49. #else
  50. #define CPUIRQ_DPRINTF(fmt, ...)
  51. #endif
  52. #ifdef DEBUG_EBUS
  53. #define EBUS_DPRINTF(fmt, ...) \
  54. do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
  55. #else
  56. #define EBUS_DPRINTF(fmt, ...)
  57. #endif
  58. #ifdef DEBUG_TIMER
  59. #define TIMER_DPRINTF(fmt, ...) \
  60. do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
  61. #else
  62. #define TIMER_DPRINTF(fmt, ...)
  63. #endif
  64. #define KERNEL_LOAD_ADDR 0x00404000
  65. #define CMDLINE_ADDR 0x003ff000
  66. #define PROM_SIZE_MAX (4 * 1024 * 1024)
  67. #define PROM_VADDR 0x000ffd00000ULL
  68. #define APB_SPECIAL_BASE 0x1fe00000000ULL
  69. #define APB_MEM_BASE 0x1ff00000000ULL
  70. #define APB_PCI_IO_BASE (APB_SPECIAL_BASE + 0x02000000ULL)
  71. #define PROM_FILENAME "openbios-sparc64"
  72. #define NVRAM_SIZE 0x2000
  73. #define MAX_IDE_BUS 2
  74. #define BIOS_CFG_IOPORT 0x510
  75. #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
  76. #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
  77. #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
  78. #define IVEC_MAX 0x30
  79. #define TICK_MAX 0x7fffffffffffffffULL
  80. struct hwdef {
  81. const char * const default_cpu_model;
  82. uint16_t machine_id;
  83. uint64_t prom_addr;
  84. uint64_t console_serial_base;
  85. };
  86. typedef struct EbusState {
  87. PCIDevice pci_dev;
  88. MemoryRegion bar0;
  89. MemoryRegion bar1;
  90. } EbusState;
  91. int DMA_get_channel_mode (int nchan)
  92. {
  93. return 0;
  94. }
  95. int DMA_read_memory (int nchan, void *buf, int pos, int size)
  96. {
  97. return 0;
  98. }
  99. int DMA_write_memory (int nchan, void *buf, int pos, int size)
  100. {
  101. return 0;
  102. }
  103. void DMA_hold_DREQ (int nchan) {}
  104. void DMA_release_DREQ (int nchan) {}
  105. void DMA_schedule(int nchan) {}
  106. void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
  107. {
  108. }
  109. void DMA_register_channel (int nchan,
  110. DMA_transfer_handler transfer_handler,
  111. void *opaque)
  112. {
  113. }
  114. static int fw_cfg_boot_set(void *opaque, const char *boot_device)
  115. {
  116. fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  117. return 0;
  118. }
  119. static int sun4u_NVRAM_set_params(M48t59State *nvram, uint16_t NVRAM_size,
  120. const char *arch, ram_addr_t RAM_size,
  121. const char *boot_devices,
  122. uint32_t kernel_image, uint32_t kernel_size,
  123. const char *cmdline,
  124. uint32_t initrd_image, uint32_t initrd_size,
  125. uint32_t NVRAM_image,
  126. int width, int height, int depth,
  127. const uint8_t *macaddr)
  128. {
  129. unsigned int i;
  130. uint32_t start, end;
  131. uint8_t image[0x1ff0];
  132. struct OpenBIOS_nvpart_v1 *part_header;
  133. memset(image, '\0', sizeof(image));
  134. start = 0;
  135. // OpenBIOS nvram variables
  136. // Variable partition
  137. part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
  138. part_header->signature = OPENBIOS_PART_SYSTEM;
  139. pstrcpy(part_header->name, sizeof(part_header->name), "system");
  140. end = start + sizeof(struct OpenBIOS_nvpart_v1);
  141. for (i = 0; i < nb_prom_envs; i++)
  142. end = OpenBIOS_set_var(image, end, prom_envs[i]);
  143. // End marker
  144. image[end++] = '\0';
  145. end = start + ((end - start + 15) & ~15);
  146. OpenBIOS_finish_partition(part_header, end - start);
  147. // free partition
  148. start = end;
  149. part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
  150. part_header->signature = OPENBIOS_PART_FREE;
  151. pstrcpy(part_header->name, sizeof(part_header->name), "free");
  152. end = 0x1fd0;
  153. OpenBIOS_finish_partition(part_header, end - start);
  154. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
  155. for (i = 0; i < sizeof(image); i++)
  156. m48t59_write(nvram, i, image[i]);
  157. return 0;
  158. }
  159. static uint64_t sun4u_load_kernel(const char *kernel_filename,
  160. const char *initrd_filename,
  161. ram_addr_t RAM_size, uint64_t *initrd_size,
  162. uint64_t *initrd_addr, uint64_t *kernel_addr,
  163. uint64_t *kernel_entry)
  164. {
  165. int linux_boot;
  166. unsigned int i;
  167. long kernel_size;
  168. uint8_t *ptr;
  169. uint64_t kernel_top;
  170. linux_boot = (kernel_filename != NULL);
  171. kernel_size = 0;
  172. if (linux_boot) {
  173. int bswap_needed;
  174. #ifdef BSWAP_NEEDED
  175. bswap_needed = 1;
  176. #else
  177. bswap_needed = 0;
  178. #endif
  179. kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
  180. kernel_addr, &kernel_top, 1, ELF_MACHINE, 0);
  181. if (kernel_size < 0) {
  182. *kernel_addr = KERNEL_LOAD_ADDR;
  183. *kernel_entry = KERNEL_LOAD_ADDR;
  184. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  185. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  186. TARGET_PAGE_SIZE);
  187. }
  188. if (kernel_size < 0) {
  189. kernel_size = load_image_targphys(kernel_filename,
  190. KERNEL_LOAD_ADDR,
  191. RAM_size - KERNEL_LOAD_ADDR);
  192. }
  193. if (kernel_size < 0) {
  194. fprintf(stderr, "qemu: could not load kernel '%s'\n",
  195. kernel_filename);
  196. exit(1);
  197. }
  198. /* load initrd above kernel */
  199. *initrd_size = 0;
  200. if (initrd_filename) {
  201. *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
  202. *initrd_size = load_image_targphys(initrd_filename,
  203. *initrd_addr,
  204. RAM_size - *initrd_addr);
  205. if ((int)*initrd_size < 0) {
  206. fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
  207. initrd_filename);
  208. exit(1);
  209. }
  210. }
  211. if (*initrd_size > 0) {
  212. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  213. ptr = rom_ptr(*kernel_addr + i);
  214. if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
  215. stl_p(ptr + 24, *initrd_addr + *kernel_addr);
  216. stl_p(ptr + 28, *initrd_size);
  217. break;
  218. }
  219. }
  220. }
  221. }
  222. return kernel_size;
  223. }
  224. void cpu_check_irqs(CPUSPARCState *env)
  225. {
  226. uint32_t pil = env->pil_in |
  227. (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
  228. /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
  229. if (env->ivec_status & 0x20) {
  230. return;
  231. }
  232. /* check if TM or SM in SOFTINT are set
  233. setting these also causes interrupt 14 */
  234. if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
  235. pil |= 1 << 14;
  236. }
  237. /* The bit corresponding to psrpil is (1<< psrpil), the next bit
  238. is (2 << psrpil). */
  239. if (pil < (2 << env->psrpil)){
  240. if (env->interrupt_request & CPU_INTERRUPT_HARD) {
  241. CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
  242. env->interrupt_index);
  243. env->interrupt_index = 0;
  244. cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
  245. }
  246. return;
  247. }
  248. if (cpu_interrupts_enabled(env)) {
  249. unsigned int i;
  250. for (i = 15; i > env->psrpil; i--) {
  251. if (pil & (1 << i)) {
  252. int old_interrupt = env->interrupt_index;
  253. int new_interrupt = TT_EXTINT | i;
  254. if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
  255. && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
  256. CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
  257. "current %x >= pending %x\n",
  258. env->tl, cpu_tsptr(env)->tt, new_interrupt);
  259. } else if (old_interrupt != new_interrupt) {
  260. env->interrupt_index = new_interrupt;
  261. CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
  262. old_interrupt, new_interrupt);
  263. cpu_interrupt(env, CPU_INTERRUPT_HARD);
  264. }
  265. break;
  266. }
  267. }
  268. } else if (env->interrupt_request & CPU_INTERRUPT_HARD) {
  269. CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
  270. "current interrupt %x\n",
  271. pil, env->pil_in, env->softint, env->interrupt_index);
  272. env->interrupt_index = 0;
  273. cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
  274. }
  275. }
  276. static void cpu_kick_irq(SPARCCPU *cpu)
  277. {
  278. CPUSPARCState *env = &cpu->env;
  279. env->halted = 0;
  280. cpu_check_irqs(env);
  281. qemu_cpu_kick(CPU(cpu));
  282. }
  283. static void cpu_set_ivec_irq(void *opaque, int irq, int level)
  284. {
  285. SPARCCPU *cpu = opaque;
  286. CPUSPARCState *env = &cpu->env;
  287. if (level) {
  288. if (!(env->ivec_status & 0x20)) {
  289. CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
  290. env->halted = 0;
  291. env->interrupt_index = TT_IVEC;
  292. env->ivec_status |= 0x20;
  293. env->ivec_data[0] = (0x1f << 6) | irq;
  294. env->ivec_data[1] = 0;
  295. env->ivec_data[2] = 0;
  296. cpu_interrupt(env, CPU_INTERRUPT_HARD);
  297. }
  298. } else {
  299. if (env->ivec_status & 0x20) {
  300. CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
  301. env->ivec_status &= ~0x20;
  302. cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
  303. }
  304. }
  305. }
  306. typedef struct ResetData {
  307. SPARCCPU *cpu;
  308. uint64_t prom_addr;
  309. } ResetData;
  310. void cpu_put_timer(QEMUFile *f, CPUTimer *s)
  311. {
  312. qemu_put_be32s(f, &s->frequency);
  313. qemu_put_be32s(f, &s->disabled);
  314. qemu_put_be64s(f, &s->disabled_mask);
  315. qemu_put_sbe64s(f, &s->clock_offset);
  316. qemu_put_timer(f, s->qtimer);
  317. }
  318. void cpu_get_timer(QEMUFile *f, CPUTimer *s)
  319. {
  320. qemu_get_be32s(f, &s->frequency);
  321. qemu_get_be32s(f, &s->disabled);
  322. qemu_get_be64s(f, &s->disabled_mask);
  323. qemu_get_sbe64s(f, &s->clock_offset);
  324. qemu_get_timer(f, s->qtimer);
  325. }
  326. static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
  327. QEMUBHFunc *cb, uint32_t frequency,
  328. uint64_t disabled_mask)
  329. {
  330. CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
  331. timer->name = name;
  332. timer->frequency = frequency;
  333. timer->disabled_mask = disabled_mask;
  334. timer->disabled = 1;
  335. timer->clock_offset = qemu_get_clock_ns(vm_clock);
  336. timer->qtimer = qemu_new_timer_ns(vm_clock, cb, cpu);
  337. return timer;
  338. }
  339. static void cpu_timer_reset(CPUTimer *timer)
  340. {
  341. timer->disabled = 1;
  342. timer->clock_offset = qemu_get_clock_ns(vm_clock);
  343. qemu_del_timer(timer->qtimer);
  344. }
  345. static void main_cpu_reset(void *opaque)
  346. {
  347. ResetData *s = (ResetData *)opaque;
  348. CPUSPARCState *env = &s->cpu->env;
  349. static unsigned int nr_resets;
  350. cpu_reset(CPU(s->cpu));
  351. cpu_timer_reset(env->tick);
  352. cpu_timer_reset(env->stick);
  353. cpu_timer_reset(env->hstick);
  354. env->gregs[1] = 0; // Memory start
  355. env->gregs[2] = ram_size; // Memory size
  356. env->gregs[3] = 0; // Machine description XXX
  357. if (nr_resets++ == 0) {
  358. /* Power on reset */
  359. env->pc = s->prom_addr + 0x20ULL;
  360. } else {
  361. env->pc = s->prom_addr + 0x40ULL;
  362. }
  363. env->npc = env->pc + 4;
  364. }
  365. static void tick_irq(void *opaque)
  366. {
  367. SPARCCPU *cpu = opaque;
  368. CPUSPARCState *env = &cpu->env;
  369. CPUTimer* timer = env->tick;
  370. if (timer->disabled) {
  371. CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
  372. return;
  373. } else {
  374. CPUIRQ_DPRINTF("tick: fire\n");
  375. }
  376. env->softint |= SOFTINT_TIMER;
  377. cpu_kick_irq(cpu);
  378. }
  379. static void stick_irq(void *opaque)
  380. {
  381. SPARCCPU *cpu = opaque;
  382. CPUSPARCState *env = &cpu->env;
  383. CPUTimer* timer = env->stick;
  384. if (timer->disabled) {
  385. CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
  386. return;
  387. } else {
  388. CPUIRQ_DPRINTF("stick: fire\n");
  389. }
  390. env->softint |= SOFTINT_STIMER;
  391. cpu_kick_irq(cpu);
  392. }
  393. static void hstick_irq(void *opaque)
  394. {
  395. SPARCCPU *cpu = opaque;
  396. CPUSPARCState *env = &cpu->env;
  397. CPUTimer* timer = env->hstick;
  398. if (timer->disabled) {
  399. CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
  400. return;
  401. } else {
  402. CPUIRQ_DPRINTF("hstick: fire\n");
  403. }
  404. env->softint |= SOFTINT_STIMER;
  405. cpu_kick_irq(cpu);
  406. }
  407. static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
  408. {
  409. return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
  410. }
  411. static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
  412. {
  413. return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
  414. }
  415. void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
  416. {
  417. uint64_t real_count = count & ~timer->disabled_mask;
  418. uint64_t disabled_bit = count & timer->disabled_mask;
  419. int64_t vm_clock_offset = qemu_get_clock_ns(vm_clock) -
  420. cpu_to_timer_ticks(real_count, timer->frequency);
  421. TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n",
  422. timer->name, real_count,
  423. timer->disabled?"disabled":"enabled", timer);
  424. timer->disabled = disabled_bit ? 1 : 0;
  425. timer->clock_offset = vm_clock_offset;
  426. }
  427. uint64_t cpu_tick_get_count(CPUTimer *timer)
  428. {
  429. uint64_t real_count = timer_to_cpu_ticks(
  430. qemu_get_clock_ns(vm_clock) - timer->clock_offset,
  431. timer->frequency);
  432. TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n",
  433. timer->name, real_count,
  434. timer->disabled?"disabled":"enabled", timer);
  435. if (timer->disabled)
  436. real_count |= timer->disabled_mask;
  437. return real_count;
  438. }
  439. void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
  440. {
  441. int64_t now = qemu_get_clock_ns(vm_clock);
  442. uint64_t real_limit = limit & ~timer->disabled_mask;
  443. timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
  444. int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
  445. timer->clock_offset;
  446. if (expires < now) {
  447. expires = now + 1;
  448. }
  449. TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
  450. "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
  451. timer->name, real_limit,
  452. timer->disabled?"disabled":"enabled",
  453. timer, limit,
  454. timer_to_cpu_ticks(now - timer->clock_offset,
  455. timer->frequency),
  456. timer_to_cpu_ticks(expires - now, timer->frequency));
  457. if (!real_limit) {
  458. TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
  459. timer->name);
  460. qemu_del_timer(timer->qtimer);
  461. } else if (timer->disabled) {
  462. qemu_del_timer(timer->qtimer);
  463. } else {
  464. qemu_mod_timer(timer->qtimer, expires);
  465. }
  466. }
  467. static void isa_irq_handler(void *opaque, int n, int level)
  468. {
  469. static const int isa_irq_to_ivec[16] = {
  470. [1] = 0x29, /* keyboard */
  471. [4] = 0x2b, /* serial */
  472. [6] = 0x27, /* floppy */
  473. [7] = 0x22, /* parallel */
  474. [12] = 0x2a, /* mouse */
  475. };
  476. qemu_irq *irqs = opaque;
  477. int ivec;
  478. assert(n < 16);
  479. ivec = isa_irq_to_ivec[n];
  480. EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
  481. if (ivec) {
  482. qemu_set_irq(irqs[ivec], level);
  483. }
  484. }
  485. /* EBUS (Eight bit bus) bridge */
  486. static ISABus *
  487. pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
  488. {
  489. qemu_irq *isa_irq;
  490. PCIDevice *pci_dev;
  491. ISABus *isa_bus;
  492. pci_dev = pci_create_simple(bus, devfn, "ebus");
  493. isa_bus = DO_UPCAST(ISABus, qbus,
  494. qdev_get_child_bus(&pci_dev->qdev, "isa.0"));
  495. isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
  496. isa_bus_irqs(isa_bus, isa_irq);
  497. return isa_bus;
  498. }
  499. static int
  500. pci_ebus_init1(PCIDevice *pci_dev)
  501. {
  502. EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
  503. isa_bus_new(&pci_dev->qdev, pci_address_space_io(pci_dev));
  504. pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
  505. pci_dev->config[0x05] = 0x00;
  506. pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
  507. pci_dev->config[0x07] = 0x03; // status = medium devsel
  508. pci_dev->config[0x09] = 0x00; // programming i/f
  509. pci_dev->config[0x0D] = 0x0a; // latency_timer
  510. isa_mmio_setup(&s->bar0, 0x1000000);
  511. pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
  512. isa_mmio_setup(&s->bar1, 0x800000);
  513. pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar1);
  514. return 0;
  515. }
  516. static void ebus_class_init(ObjectClass *klass, void *data)
  517. {
  518. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  519. k->init = pci_ebus_init1;
  520. k->vendor_id = PCI_VENDOR_ID_SUN;
  521. k->device_id = PCI_DEVICE_ID_SUN_EBUS;
  522. k->revision = 0x01;
  523. k->class_id = PCI_CLASS_BRIDGE_OTHER;
  524. }
  525. static TypeInfo ebus_info = {
  526. .name = "ebus",
  527. .parent = TYPE_PCI_DEVICE,
  528. .instance_size = sizeof(EbusState),
  529. .class_init = ebus_class_init,
  530. };
  531. typedef struct PROMState {
  532. SysBusDevice busdev;
  533. MemoryRegion prom;
  534. } PROMState;
  535. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  536. {
  537. hwaddr *base_addr = (hwaddr *)opaque;
  538. return addr + *base_addr - PROM_VADDR;
  539. }
  540. /* Boot PROM (OpenBIOS) */
  541. static void prom_init(hwaddr addr, const char *bios_name)
  542. {
  543. DeviceState *dev;
  544. SysBusDevice *s;
  545. char *filename;
  546. int ret;
  547. dev = qdev_create(NULL, "openprom");
  548. qdev_init_nofail(dev);
  549. s = sysbus_from_qdev(dev);
  550. sysbus_mmio_map(s, 0, addr);
  551. /* load boot prom */
  552. if (bios_name == NULL) {
  553. bios_name = PROM_FILENAME;
  554. }
  555. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  556. if (filename) {
  557. ret = load_elf(filename, translate_prom_address, &addr,
  558. NULL, NULL, NULL, 1, ELF_MACHINE, 0);
  559. if (ret < 0 || ret > PROM_SIZE_MAX) {
  560. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  561. }
  562. g_free(filename);
  563. } else {
  564. ret = -1;
  565. }
  566. if (ret < 0 || ret > PROM_SIZE_MAX) {
  567. fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
  568. exit(1);
  569. }
  570. }
  571. static int prom_init1(SysBusDevice *dev)
  572. {
  573. PROMState *s = FROM_SYSBUS(PROMState, dev);
  574. memory_region_init_ram(&s->prom, "sun4u.prom", PROM_SIZE_MAX);
  575. vmstate_register_ram_global(&s->prom);
  576. memory_region_set_readonly(&s->prom, true);
  577. sysbus_init_mmio(dev, &s->prom);
  578. return 0;
  579. }
  580. static Property prom_properties[] = {
  581. {/* end of property list */},
  582. };
  583. static void prom_class_init(ObjectClass *klass, void *data)
  584. {
  585. DeviceClass *dc = DEVICE_CLASS(klass);
  586. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  587. k->init = prom_init1;
  588. dc->props = prom_properties;
  589. }
  590. static TypeInfo prom_info = {
  591. .name = "openprom",
  592. .parent = TYPE_SYS_BUS_DEVICE,
  593. .instance_size = sizeof(PROMState),
  594. .class_init = prom_class_init,
  595. };
  596. typedef struct RamDevice
  597. {
  598. SysBusDevice busdev;
  599. MemoryRegion ram;
  600. uint64_t size;
  601. } RamDevice;
  602. /* System RAM */
  603. static int ram_init1(SysBusDevice *dev)
  604. {
  605. RamDevice *d = FROM_SYSBUS(RamDevice, dev);
  606. memory_region_init_ram(&d->ram, "sun4u.ram", d->size);
  607. vmstate_register_ram_global(&d->ram);
  608. sysbus_init_mmio(dev, &d->ram);
  609. return 0;
  610. }
  611. static void ram_init(hwaddr addr, ram_addr_t RAM_size)
  612. {
  613. DeviceState *dev;
  614. SysBusDevice *s;
  615. RamDevice *d;
  616. /* allocate RAM */
  617. dev = qdev_create(NULL, "memory");
  618. s = sysbus_from_qdev(dev);
  619. d = FROM_SYSBUS(RamDevice, s);
  620. d->size = RAM_size;
  621. qdev_init_nofail(dev);
  622. sysbus_mmio_map(s, 0, addr);
  623. }
  624. static Property ram_properties[] = {
  625. DEFINE_PROP_UINT64("size", RamDevice, size, 0),
  626. DEFINE_PROP_END_OF_LIST(),
  627. };
  628. static void ram_class_init(ObjectClass *klass, void *data)
  629. {
  630. DeviceClass *dc = DEVICE_CLASS(klass);
  631. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  632. k->init = ram_init1;
  633. dc->props = ram_properties;
  634. }
  635. static TypeInfo ram_info = {
  636. .name = "memory",
  637. .parent = TYPE_SYS_BUS_DEVICE,
  638. .instance_size = sizeof(RamDevice),
  639. .class_init = ram_class_init,
  640. };
  641. static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
  642. {
  643. SPARCCPU *cpu;
  644. CPUSPARCState *env;
  645. ResetData *reset_info;
  646. uint32_t tick_frequency = 100*1000000;
  647. uint32_t stick_frequency = 100*1000000;
  648. uint32_t hstick_frequency = 100*1000000;
  649. if (cpu_model == NULL) {
  650. cpu_model = hwdef->default_cpu_model;
  651. }
  652. cpu = cpu_sparc_init(cpu_model);
  653. if (cpu == NULL) {
  654. fprintf(stderr, "Unable to find Sparc CPU definition\n");
  655. exit(1);
  656. }
  657. env = &cpu->env;
  658. env->tick = cpu_timer_create("tick", cpu, tick_irq,
  659. tick_frequency, TICK_NPT_MASK);
  660. env->stick = cpu_timer_create("stick", cpu, stick_irq,
  661. stick_frequency, TICK_INT_DIS);
  662. env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
  663. hstick_frequency, TICK_INT_DIS);
  664. reset_info = g_malloc0(sizeof(ResetData));
  665. reset_info->cpu = cpu;
  666. reset_info->prom_addr = hwdef->prom_addr;
  667. qemu_register_reset(main_cpu_reset, reset_info);
  668. return cpu;
  669. }
  670. static void sun4uv_init(MemoryRegion *address_space_mem,
  671. ram_addr_t RAM_size,
  672. const char *boot_devices,
  673. const char *kernel_filename, const char *kernel_cmdline,
  674. const char *initrd_filename, const char *cpu_model,
  675. const struct hwdef *hwdef)
  676. {
  677. SPARCCPU *cpu;
  678. M48t59State *nvram;
  679. unsigned int i;
  680. uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
  681. PCIBus *pci_bus, *pci_bus2, *pci_bus3;
  682. ISABus *isa_bus;
  683. qemu_irq *ivec_irqs, *pbm_irqs;
  684. DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
  685. DriveInfo *fd[MAX_FD];
  686. void *fw_cfg;
  687. /* init CPUs */
  688. cpu = cpu_devinit(cpu_model, hwdef);
  689. /* set up devices */
  690. ram_init(0, RAM_size);
  691. prom_init(hwdef->prom_addr, bios_name);
  692. ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
  693. pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
  694. &pci_bus3, &pbm_irqs);
  695. pci_vga_init(pci_bus);
  696. // XXX Should be pci_bus3
  697. isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
  698. i = 0;
  699. if (hwdef->console_serial_base) {
  700. serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
  701. NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
  702. i++;
  703. }
  704. for(; i < MAX_SERIAL_PORTS; i++) {
  705. if (serial_hds[i]) {
  706. serial_isa_init(isa_bus, i, serial_hds[i]);
  707. }
  708. }
  709. for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
  710. if (parallel_hds[i]) {
  711. parallel_init(isa_bus, i, parallel_hds[i]);
  712. }
  713. }
  714. for(i = 0; i < nb_nics; i++)
  715. pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);
  716. ide_drive_get(hd, MAX_IDE_BUS);
  717. pci_cmd646_ide_init(pci_bus, hd, 1);
  718. isa_create_simple(isa_bus, "i8042");
  719. for(i = 0; i < MAX_FD; i++) {
  720. fd[i] = drive_get(IF_FLOPPY, 0, i);
  721. }
  722. fdctrl_init_isa(isa_bus, fd);
  723. nvram = m48t59_init_isa(isa_bus, 0x0074, NVRAM_SIZE, 59);
  724. initrd_size = 0;
  725. initrd_addr = 0;
  726. kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename,
  727. ram_size, &initrd_size, &initrd_addr,
  728. &kernel_addr, &kernel_entry);
  729. sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
  730. kernel_addr, kernel_size,
  731. kernel_cmdline,
  732. initrd_addr, initrd_size,
  733. /* XXX: need an option to load a NVRAM image */
  734. 0,
  735. graphic_width, graphic_height, graphic_depth,
  736. (uint8_t *)&nd_table[0].macaddr);
  737. fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
  738. fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
  739. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
  740. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  741. fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
  742. fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  743. if (kernel_cmdline) {
  744. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  745. strlen(kernel_cmdline) + 1);
  746. fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
  747. (uint8_t*)strdup(kernel_cmdline),
  748. strlen(kernel_cmdline) + 1);
  749. } else {
  750. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  751. }
  752. fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
  753. fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  754. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]);
  755. fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
  756. fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
  757. fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
  758. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  759. }
  760. enum {
  761. sun4u_id = 0,
  762. sun4v_id = 64,
  763. niagara_id,
  764. };
  765. static const struct hwdef hwdefs[] = {
  766. /* Sun4u generic PC-like machine */
  767. {
  768. .default_cpu_model = "TI UltraSparc IIi",
  769. .machine_id = sun4u_id,
  770. .prom_addr = 0x1fff0000000ULL,
  771. .console_serial_base = 0,
  772. },
  773. /* Sun4v generic PC-like machine */
  774. {
  775. .default_cpu_model = "Sun UltraSparc T1",
  776. .machine_id = sun4v_id,
  777. .prom_addr = 0x1fff0000000ULL,
  778. .console_serial_base = 0,
  779. },
  780. /* Sun4v generic Niagara machine */
  781. {
  782. .default_cpu_model = "Sun UltraSparc T1",
  783. .machine_id = niagara_id,
  784. .prom_addr = 0xfff0000000ULL,
  785. .console_serial_base = 0xfff0c2c000ULL,
  786. },
  787. };
  788. /* Sun4u hardware initialisation */
  789. static void sun4u_init(QEMUMachineInitArgs *args)
  790. {
  791. ram_addr_t RAM_size = args->ram_size;
  792. const char *cpu_model = args->cpu_model;
  793. const char *kernel_filename = args->kernel_filename;
  794. const char *kernel_cmdline = args->kernel_cmdline;
  795. const char *initrd_filename = args->initrd_filename;
  796. const char *boot_devices = args->boot_device;
  797. sun4uv_init(get_system_memory(), RAM_size, boot_devices, kernel_filename,
  798. kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
  799. }
  800. /* Sun4v hardware initialisation */
  801. static void sun4v_init(QEMUMachineInitArgs *args)
  802. {
  803. ram_addr_t RAM_size = args->ram_size;
  804. const char *cpu_model = args->cpu_model;
  805. const char *kernel_filename = args->kernel_filename;
  806. const char *kernel_cmdline = args->kernel_cmdline;
  807. const char *initrd_filename = args->initrd_filename;
  808. const char *boot_devices = args->boot_device;
  809. sun4uv_init(get_system_memory(), RAM_size, boot_devices, kernel_filename,
  810. kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
  811. }
  812. /* Niagara hardware initialisation */
  813. static void niagara_init(QEMUMachineInitArgs *args)
  814. {
  815. ram_addr_t RAM_size = args->ram_size;
  816. const char *cpu_model = args->cpu_model;
  817. const char *kernel_filename = args->kernel_filename;
  818. const char *kernel_cmdline = args->kernel_cmdline;
  819. const char *initrd_filename = args->initrd_filename;
  820. const char *boot_devices = args->boot_device;
  821. sun4uv_init(get_system_memory(), RAM_size, boot_devices, kernel_filename,
  822. kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
  823. }
  824. static QEMUMachine sun4u_machine = {
  825. .name = "sun4u",
  826. .desc = "Sun4u platform",
  827. .init = sun4u_init,
  828. .max_cpus = 1, // XXX for now
  829. .is_default = 1,
  830. };
  831. static QEMUMachine sun4v_machine = {
  832. .name = "sun4v",
  833. .desc = "Sun4v platform",
  834. .init = sun4v_init,
  835. .max_cpus = 1, // XXX for now
  836. };
  837. static QEMUMachine niagara_machine = {
  838. .name = "Niagara",
  839. .desc = "Sun4v platform, Niagara",
  840. .init = niagara_init,
  841. .max_cpus = 1, // XXX for now
  842. };
  843. static void sun4u_register_types(void)
  844. {
  845. type_register_static(&ebus_info);
  846. type_register_static(&prom_info);
  847. type_register_static(&ram_info);
  848. }
  849. static void sun4u_machine_init(void)
  850. {
  851. qemu_register_machine(&sun4u_machine);
  852. qemu_register_machine(&sun4v_machine);
  853. qemu_register_machine(&niagara_machine);
  854. }
  855. type_init(sun4u_register_types)
  856. machine_init(sun4u_machine_init);