2
0

intel-hda.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. *
  4. * written by Gerd Hoffmann <kraxel@redhat.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "hw.h"
  20. #include "pci/pci.h"
  21. #include "pci/msi.h"
  22. #include "qemu-timer.h"
  23. #include "audiodev.h"
  24. #include "intel-hda.h"
  25. #include "intel-hda-defs.h"
  26. #include "dma.h"
  27. /* --------------------------------------------------------------------- */
  28. /* hda bus */
  29. static Property hda_props[] = {
  30. DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
  31. DEFINE_PROP_END_OF_LIST()
  32. };
  33. static const TypeInfo hda_codec_bus_info = {
  34. .name = TYPE_HDA_BUS,
  35. .parent = TYPE_BUS,
  36. .instance_size = sizeof(HDACodecBus),
  37. };
  38. void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
  39. hda_codec_response_func response,
  40. hda_codec_xfer_func xfer)
  41. {
  42. qbus_create_inplace(&bus->qbus, TYPE_HDA_BUS, dev, NULL);
  43. bus->response = response;
  44. bus->xfer = xfer;
  45. }
  46. static int hda_codec_dev_init(DeviceState *qdev)
  47. {
  48. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
  49. HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  50. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  51. if (dev->cad == -1) {
  52. dev->cad = bus->next_cad;
  53. }
  54. if (dev->cad >= 15) {
  55. return -1;
  56. }
  57. bus->next_cad = dev->cad + 1;
  58. return cdc->init(dev);
  59. }
  60. static int hda_codec_dev_exit(DeviceState *qdev)
  61. {
  62. HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  63. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  64. if (cdc->exit) {
  65. cdc->exit(dev);
  66. }
  67. return 0;
  68. }
  69. HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
  70. {
  71. BusChild *kid;
  72. HDACodecDevice *cdev;
  73. QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) {
  74. DeviceState *qdev = kid->child;
  75. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  76. if (cdev->cad == cad) {
  77. return cdev;
  78. }
  79. }
  80. return NULL;
  81. }
  82. void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  83. {
  84. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  85. bus->response(dev, solicited, response);
  86. }
  87. bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  88. uint8_t *buf, uint32_t len)
  89. {
  90. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  91. return bus->xfer(dev, stnr, output, buf, len);
  92. }
  93. /* --------------------------------------------------------------------- */
  94. /* intel hda emulation */
  95. typedef struct IntelHDAStream IntelHDAStream;
  96. typedef struct IntelHDAState IntelHDAState;
  97. typedef struct IntelHDAReg IntelHDAReg;
  98. typedef struct bpl {
  99. uint64_t addr;
  100. uint32_t len;
  101. uint32_t flags;
  102. } bpl;
  103. struct IntelHDAStream {
  104. /* registers */
  105. uint32_t ctl;
  106. uint32_t lpib;
  107. uint32_t cbl;
  108. uint32_t lvi;
  109. uint32_t fmt;
  110. uint32_t bdlp_lbase;
  111. uint32_t bdlp_ubase;
  112. /* state */
  113. bpl *bpl;
  114. uint32_t bentries;
  115. uint32_t bsize, be, bp;
  116. };
  117. struct IntelHDAState {
  118. PCIDevice pci;
  119. const char *name;
  120. HDACodecBus codecs;
  121. /* registers */
  122. uint32_t g_ctl;
  123. uint32_t wake_en;
  124. uint32_t state_sts;
  125. uint32_t int_ctl;
  126. uint32_t int_sts;
  127. uint32_t wall_clk;
  128. uint32_t corb_lbase;
  129. uint32_t corb_ubase;
  130. uint32_t corb_rp;
  131. uint32_t corb_wp;
  132. uint32_t corb_ctl;
  133. uint32_t corb_sts;
  134. uint32_t corb_size;
  135. uint32_t rirb_lbase;
  136. uint32_t rirb_ubase;
  137. uint32_t rirb_wp;
  138. uint32_t rirb_cnt;
  139. uint32_t rirb_ctl;
  140. uint32_t rirb_sts;
  141. uint32_t rirb_size;
  142. uint32_t dp_lbase;
  143. uint32_t dp_ubase;
  144. uint32_t icw;
  145. uint32_t irr;
  146. uint32_t ics;
  147. /* streams */
  148. IntelHDAStream st[8];
  149. /* state */
  150. MemoryRegion mmio;
  151. uint32_t rirb_count;
  152. int64_t wall_base_ns;
  153. /* debug logging */
  154. const IntelHDAReg *last_reg;
  155. uint32_t last_val;
  156. uint32_t last_write;
  157. uint32_t last_sec;
  158. uint32_t repeat_count;
  159. /* properties */
  160. uint32_t debug;
  161. uint32_t msi;
  162. };
  163. struct IntelHDAReg {
  164. const char *name; /* register name */
  165. uint32_t size; /* size in bytes */
  166. uint32_t reset; /* reset value */
  167. uint32_t wmask; /* write mask */
  168. uint32_t wclear; /* write 1 to clear bits */
  169. uint32_t offset; /* location in IntelHDAState */
  170. uint32_t shift; /* byte access entries for dwords */
  171. uint32_t stream;
  172. void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
  173. void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
  174. };
  175. static void intel_hda_reset(DeviceState *dev);
  176. /* --------------------------------------------------------------------- */
  177. static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase)
  178. {
  179. hwaddr addr;
  180. addr = ((uint64_t)ubase << 32) | lbase;
  181. return addr;
  182. }
  183. static void intel_hda_update_int_sts(IntelHDAState *d)
  184. {
  185. uint32_t sts = 0;
  186. uint32_t i;
  187. /* update controller status */
  188. if (d->rirb_sts & ICH6_RBSTS_IRQ) {
  189. sts |= (1 << 30);
  190. }
  191. if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
  192. sts |= (1 << 30);
  193. }
  194. if (d->state_sts & d->wake_en) {
  195. sts |= (1 << 30);
  196. }
  197. /* update stream status */
  198. for (i = 0; i < 8; i++) {
  199. /* buffer completion interrupt */
  200. if (d->st[i].ctl & (1 << 26)) {
  201. sts |= (1 << i);
  202. }
  203. }
  204. /* update global status */
  205. if (sts & d->int_ctl) {
  206. sts |= (1 << 31);
  207. }
  208. d->int_sts = sts;
  209. }
  210. static void intel_hda_update_irq(IntelHDAState *d)
  211. {
  212. int msi = d->msi && msi_enabled(&d->pci);
  213. int level;
  214. intel_hda_update_int_sts(d);
  215. if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
  216. level = 1;
  217. } else {
  218. level = 0;
  219. }
  220. dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__,
  221. level, msi ? "msi" : "intx");
  222. if (msi) {
  223. if (level) {
  224. msi_notify(&d->pci, 0);
  225. }
  226. } else {
  227. qemu_set_irq(d->pci.irq[0], level);
  228. }
  229. }
  230. static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
  231. {
  232. uint32_t cad, nid, data;
  233. HDACodecDevice *codec;
  234. HDACodecDeviceClass *cdc;
  235. cad = (verb >> 28) & 0x0f;
  236. if (verb & (1 << 27)) {
  237. /* indirect node addressing, not specified in HDA 1.0 */
  238. dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
  239. return -1;
  240. }
  241. nid = (verb >> 20) & 0x7f;
  242. data = verb & 0xfffff;
  243. codec = hda_codec_find(&d->codecs, cad);
  244. if (codec == NULL) {
  245. dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
  246. return -1;
  247. }
  248. cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
  249. cdc->command(codec, nid, data);
  250. return 0;
  251. }
  252. static void intel_hda_corb_run(IntelHDAState *d)
  253. {
  254. hwaddr addr;
  255. uint32_t rp, verb;
  256. if (d->ics & ICH6_IRS_BUSY) {
  257. dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
  258. intel_hda_send_command(d, d->icw);
  259. return;
  260. }
  261. for (;;) {
  262. if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
  263. dprint(d, 2, "%s: !run\n", __FUNCTION__);
  264. return;
  265. }
  266. if ((d->corb_rp & 0xff) == d->corb_wp) {
  267. dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
  268. return;
  269. }
  270. if (d->rirb_count == d->rirb_cnt) {
  271. dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
  272. return;
  273. }
  274. rp = (d->corb_rp + 1) & 0xff;
  275. addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
  276. verb = ldl_le_pci_dma(&d->pci, addr + 4*rp);
  277. d->corb_rp = rp;
  278. dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
  279. intel_hda_send_command(d, verb);
  280. }
  281. }
  282. static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  283. {
  284. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  285. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  286. hwaddr addr;
  287. uint32_t wp, ex;
  288. if (d->ics & ICH6_IRS_BUSY) {
  289. dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
  290. __FUNCTION__, response, dev->cad);
  291. d->irr = response;
  292. d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
  293. d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
  294. return;
  295. }
  296. if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
  297. dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
  298. return;
  299. }
  300. ex = (solicited ? 0 : (1 << 4)) | dev->cad;
  301. wp = (d->rirb_wp + 1) & 0xff;
  302. addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
  303. stl_le_pci_dma(&d->pci, addr + 8*wp, response);
  304. stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex);
  305. d->rirb_wp = wp;
  306. dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
  307. __FUNCTION__, wp, response, ex);
  308. d->rirb_count++;
  309. if (d->rirb_count == d->rirb_cnt) {
  310. dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
  311. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  312. d->rirb_sts |= ICH6_RBSTS_IRQ;
  313. intel_hda_update_irq(d);
  314. }
  315. } else if ((d->corb_rp & 0xff) == d->corb_wp) {
  316. dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
  317. d->rirb_count, d->rirb_cnt);
  318. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  319. d->rirb_sts |= ICH6_RBSTS_IRQ;
  320. intel_hda_update_irq(d);
  321. }
  322. }
  323. }
  324. static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  325. uint8_t *buf, uint32_t len)
  326. {
  327. HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
  328. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  329. hwaddr addr;
  330. uint32_t s, copy, left;
  331. IntelHDAStream *st;
  332. bool irq = false;
  333. st = output ? d->st + 4 : d->st;
  334. for (s = 0; s < 4; s++) {
  335. if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
  336. st = st + s;
  337. break;
  338. }
  339. }
  340. if (s == 4) {
  341. return false;
  342. }
  343. if (st->bpl == NULL) {
  344. return false;
  345. }
  346. if (st->ctl & (1 << 26)) {
  347. /*
  348. * Wait with the next DMA xfer until the guest
  349. * has acked the buffer completion interrupt
  350. */
  351. return false;
  352. }
  353. left = len;
  354. while (left > 0) {
  355. copy = left;
  356. if (copy > st->bsize - st->lpib)
  357. copy = st->bsize - st->lpib;
  358. if (copy > st->bpl[st->be].len - st->bp)
  359. copy = st->bpl[st->be].len - st->bp;
  360. dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
  361. st->be, st->bp, st->bpl[st->be].len, copy);
  362. pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output);
  363. st->lpib += copy;
  364. st->bp += copy;
  365. buf += copy;
  366. left -= copy;
  367. if (st->bpl[st->be].len == st->bp) {
  368. /* bpl entry filled */
  369. if (st->bpl[st->be].flags & 0x01) {
  370. irq = true;
  371. }
  372. st->bp = 0;
  373. st->be++;
  374. if (st->be == st->bentries) {
  375. /* bpl wrap around */
  376. st->be = 0;
  377. st->lpib = 0;
  378. }
  379. }
  380. }
  381. if (d->dp_lbase & 0x01) {
  382. addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
  383. stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib);
  384. }
  385. dprint(d, 3, "dma: --\n");
  386. if (irq) {
  387. st->ctl |= (1 << 26); /* buffer completion interrupt */
  388. intel_hda_update_irq(d);
  389. }
  390. return true;
  391. }
  392. static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
  393. {
  394. hwaddr addr;
  395. uint8_t buf[16];
  396. uint32_t i;
  397. addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
  398. st->bentries = st->lvi +1;
  399. g_free(st->bpl);
  400. st->bpl = g_malloc(sizeof(bpl) * st->bentries);
  401. for (i = 0; i < st->bentries; i++, addr += 16) {
  402. pci_dma_read(&d->pci, addr, buf, 16);
  403. st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
  404. st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
  405. st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
  406. dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
  407. i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
  408. }
  409. st->bsize = st->cbl;
  410. st->lpib = 0;
  411. st->be = 0;
  412. st->bp = 0;
  413. }
  414. static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
  415. {
  416. BusChild *kid;
  417. HDACodecDevice *cdev;
  418. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  419. DeviceState *qdev = kid->child;
  420. HDACodecDeviceClass *cdc;
  421. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  422. cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
  423. if (cdc->stream) {
  424. cdc->stream(cdev, stream, running, output);
  425. }
  426. }
  427. }
  428. /* --------------------------------------------------------------------- */
  429. static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  430. {
  431. if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
  432. intel_hda_reset(&d->pci.qdev);
  433. }
  434. }
  435. static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  436. {
  437. intel_hda_update_irq(d);
  438. }
  439. static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  440. {
  441. intel_hda_update_irq(d);
  442. }
  443. static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  444. {
  445. intel_hda_update_irq(d);
  446. }
  447. static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
  448. {
  449. int64_t ns;
  450. ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
  451. d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
  452. }
  453. static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  454. {
  455. intel_hda_corb_run(d);
  456. }
  457. static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  458. {
  459. intel_hda_corb_run(d);
  460. }
  461. static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  462. {
  463. if (d->rirb_wp & ICH6_RIRBWP_RST) {
  464. d->rirb_wp = 0;
  465. }
  466. }
  467. static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  468. {
  469. intel_hda_update_irq(d);
  470. if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
  471. /* cleared ICH6_RBSTS_IRQ */
  472. d->rirb_count = 0;
  473. intel_hda_corb_run(d);
  474. }
  475. }
  476. static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  477. {
  478. if (d->ics & ICH6_IRS_BUSY) {
  479. intel_hda_corb_run(d);
  480. }
  481. }
  482. static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  483. {
  484. bool output = reg->stream >= 4;
  485. IntelHDAStream *st = d->st + reg->stream;
  486. if (st->ctl & 0x01) {
  487. /* reset */
  488. dprint(d, 1, "st #%d: reset\n", reg->stream);
  489. st->ctl = 0;
  490. }
  491. if ((st->ctl & 0x02) != (old & 0x02)) {
  492. uint32_t stnr = (st->ctl >> 20) & 0x0f;
  493. /* run bit flipped */
  494. if (st->ctl & 0x02) {
  495. /* start */
  496. dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
  497. reg->stream, stnr, st->cbl);
  498. intel_hda_parse_bdl(d, st);
  499. intel_hda_notify_codecs(d, stnr, true, output);
  500. } else {
  501. /* stop */
  502. dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
  503. intel_hda_notify_codecs(d, stnr, false, output);
  504. }
  505. }
  506. intel_hda_update_irq(d);
  507. }
  508. /* --------------------------------------------------------------------- */
  509. #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
  510. static const struct IntelHDAReg regtab[] = {
  511. /* global */
  512. [ ICH6_REG_GCAP ] = {
  513. .name = "GCAP",
  514. .size = 2,
  515. .reset = 0x4401,
  516. },
  517. [ ICH6_REG_VMIN ] = {
  518. .name = "VMIN",
  519. .size = 1,
  520. },
  521. [ ICH6_REG_VMAJ ] = {
  522. .name = "VMAJ",
  523. .size = 1,
  524. .reset = 1,
  525. },
  526. [ ICH6_REG_OUTPAY ] = {
  527. .name = "OUTPAY",
  528. .size = 2,
  529. .reset = 0x3c,
  530. },
  531. [ ICH6_REG_INPAY ] = {
  532. .name = "INPAY",
  533. .size = 2,
  534. .reset = 0x1d,
  535. },
  536. [ ICH6_REG_GCTL ] = {
  537. .name = "GCTL",
  538. .size = 4,
  539. .wmask = 0x0103,
  540. .offset = offsetof(IntelHDAState, g_ctl),
  541. .whandler = intel_hda_set_g_ctl,
  542. },
  543. [ ICH6_REG_WAKEEN ] = {
  544. .name = "WAKEEN",
  545. .size = 2,
  546. .wmask = 0x7fff,
  547. .offset = offsetof(IntelHDAState, wake_en),
  548. .whandler = intel_hda_set_wake_en,
  549. },
  550. [ ICH6_REG_STATESTS ] = {
  551. .name = "STATESTS",
  552. .size = 2,
  553. .wmask = 0x7fff,
  554. .wclear = 0x7fff,
  555. .offset = offsetof(IntelHDAState, state_sts),
  556. .whandler = intel_hda_set_state_sts,
  557. },
  558. /* interrupts */
  559. [ ICH6_REG_INTCTL ] = {
  560. .name = "INTCTL",
  561. .size = 4,
  562. .wmask = 0xc00000ff,
  563. .offset = offsetof(IntelHDAState, int_ctl),
  564. .whandler = intel_hda_set_int_ctl,
  565. },
  566. [ ICH6_REG_INTSTS ] = {
  567. .name = "INTSTS",
  568. .size = 4,
  569. .wmask = 0xc00000ff,
  570. .wclear = 0xc00000ff,
  571. .offset = offsetof(IntelHDAState, int_sts),
  572. },
  573. /* misc */
  574. [ ICH6_REG_WALLCLK ] = {
  575. .name = "WALLCLK",
  576. .size = 4,
  577. .offset = offsetof(IntelHDAState, wall_clk),
  578. .rhandler = intel_hda_get_wall_clk,
  579. },
  580. [ ICH6_REG_WALLCLK + 0x2000 ] = {
  581. .name = "WALLCLK(alias)",
  582. .size = 4,
  583. .offset = offsetof(IntelHDAState, wall_clk),
  584. .rhandler = intel_hda_get_wall_clk,
  585. },
  586. /* dma engine */
  587. [ ICH6_REG_CORBLBASE ] = {
  588. .name = "CORBLBASE",
  589. .size = 4,
  590. .wmask = 0xffffff80,
  591. .offset = offsetof(IntelHDAState, corb_lbase),
  592. },
  593. [ ICH6_REG_CORBUBASE ] = {
  594. .name = "CORBUBASE",
  595. .size = 4,
  596. .wmask = 0xffffffff,
  597. .offset = offsetof(IntelHDAState, corb_ubase),
  598. },
  599. [ ICH6_REG_CORBWP ] = {
  600. .name = "CORBWP",
  601. .size = 2,
  602. .wmask = 0xff,
  603. .offset = offsetof(IntelHDAState, corb_wp),
  604. .whandler = intel_hda_set_corb_wp,
  605. },
  606. [ ICH6_REG_CORBRP ] = {
  607. .name = "CORBRP",
  608. .size = 2,
  609. .wmask = 0x80ff,
  610. .offset = offsetof(IntelHDAState, corb_rp),
  611. },
  612. [ ICH6_REG_CORBCTL ] = {
  613. .name = "CORBCTL",
  614. .size = 1,
  615. .wmask = 0x03,
  616. .offset = offsetof(IntelHDAState, corb_ctl),
  617. .whandler = intel_hda_set_corb_ctl,
  618. },
  619. [ ICH6_REG_CORBSTS ] = {
  620. .name = "CORBSTS",
  621. .size = 1,
  622. .wmask = 0x01,
  623. .wclear = 0x01,
  624. .offset = offsetof(IntelHDAState, corb_sts),
  625. },
  626. [ ICH6_REG_CORBSIZE ] = {
  627. .name = "CORBSIZE",
  628. .size = 1,
  629. .reset = 0x42,
  630. .offset = offsetof(IntelHDAState, corb_size),
  631. },
  632. [ ICH6_REG_RIRBLBASE ] = {
  633. .name = "RIRBLBASE",
  634. .size = 4,
  635. .wmask = 0xffffff80,
  636. .offset = offsetof(IntelHDAState, rirb_lbase),
  637. },
  638. [ ICH6_REG_RIRBUBASE ] = {
  639. .name = "RIRBUBASE",
  640. .size = 4,
  641. .wmask = 0xffffffff,
  642. .offset = offsetof(IntelHDAState, rirb_ubase),
  643. },
  644. [ ICH6_REG_RIRBWP ] = {
  645. .name = "RIRBWP",
  646. .size = 2,
  647. .wmask = 0x8000,
  648. .offset = offsetof(IntelHDAState, rirb_wp),
  649. .whandler = intel_hda_set_rirb_wp,
  650. },
  651. [ ICH6_REG_RINTCNT ] = {
  652. .name = "RINTCNT",
  653. .size = 2,
  654. .wmask = 0xff,
  655. .offset = offsetof(IntelHDAState, rirb_cnt),
  656. },
  657. [ ICH6_REG_RIRBCTL ] = {
  658. .name = "RIRBCTL",
  659. .size = 1,
  660. .wmask = 0x07,
  661. .offset = offsetof(IntelHDAState, rirb_ctl),
  662. },
  663. [ ICH6_REG_RIRBSTS ] = {
  664. .name = "RIRBSTS",
  665. .size = 1,
  666. .wmask = 0x05,
  667. .wclear = 0x05,
  668. .offset = offsetof(IntelHDAState, rirb_sts),
  669. .whandler = intel_hda_set_rirb_sts,
  670. },
  671. [ ICH6_REG_RIRBSIZE ] = {
  672. .name = "RIRBSIZE",
  673. .size = 1,
  674. .reset = 0x42,
  675. .offset = offsetof(IntelHDAState, rirb_size),
  676. },
  677. [ ICH6_REG_DPLBASE ] = {
  678. .name = "DPLBASE",
  679. .size = 4,
  680. .wmask = 0xffffff81,
  681. .offset = offsetof(IntelHDAState, dp_lbase),
  682. },
  683. [ ICH6_REG_DPUBASE ] = {
  684. .name = "DPUBASE",
  685. .size = 4,
  686. .wmask = 0xffffffff,
  687. .offset = offsetof(IntelHDAState, dp_ubase),
  688. },
  689. [ ICH6_REG_IC ] = {
  690. .name = "ICW",
  691. .size = 4,
  692. .wmask = 0xffffffff,
  693. .offset = offsetof(IntelHDAState, icw),
  694. },
  695. [ ICH6_REG_IR ] = {
  696. .name = "IRR",
  697. .size = 4,
  698. .offset = offsetof(IntelHDAState, irr),
  699. },
  700. [ ICH6_REG_IRS ] = {
  701. .name = "ICS",
  702. .size = 2,
  703. .wmask = 0x0003,
  704. .wclear = 0x0002,
  705. .offset = offsetof(IntelHDAState, ics),
  706. .whandler = intel_hda_set_ics,
  707. },
  708. #define HDA_STREAM(_t, _i) \
  709. [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
  710. .stream = _i, \
  711. .name = _t stringify(_i) " CTL", \
  712. .size = 4, \
  713. .wmask = 0x1cff001f, \
  714. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  715. .whandler = intel_hda_set_st_ctl, \
  716. }, \
  717. [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
  718. .stream = _i, \
  719. .name = _t stringify(_i) " CTL(stnr)", \
  720. .size = 1, \
  721. .shift = 16, \
  722. .wmask = 0x00ff0000, \
  723. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  724. .whandler = intel_hda_set_st_ctl, \
  725. }, \
  726. [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
  727. .stream = _i, \
  728. .name = _t stringify(_i) " CTL(sts)", \
  729. .size = 1, \
  730. .shift = 24, \
  731. .wmask = 0x1c000000, \
  732. .wclear = 0x1c000000, \
  733. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  734. .whandler = intel_hda_set_st_ctl, \
  735. }, \
  736. [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
  737. .stream = _i, \
  738. .name = _t stringify(_i) " LPIB", \
  739. .size = 4, \
  740. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  741. }, \
  742. [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
  743. .stream = _i, \
  744. .name = _t stringify(_i) " LPIB(alias)", \
  745. .size = 4, \
  746. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  747. }, \
  748. [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
  749. .stream = _i, \
  750. .name = _t stringify(_i) " CBL", \
  751. .size = 4, \
  752. .wmask = 0xffffffff, \
  753. .offset = offsetof(IntelHDAState, st[_i].cbl), \
  754. }, \
  755. [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
  756. .stream = _i, \
  757. .name = _t stringify(_i) " LVI", \
  758. .size = 2, \
  759. .wmask = 0x00ff, \
  760. .offset = offsetof(IntelHDAState, st[_i].lvi), \
  761. }, \
  762. [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
  763. .stream = _i, \
  764. .name = _t stringify(_i) " FIFOS", \
  765. .size = 2, \
  766. .reset = HDA_BUFFER_SIZE, \
  767. }, \
  768. [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
  769. .stream = _i, \
  770. .name = _t stringify(_i) " FMT", \
  771. .size = 2, \
  772. .wmask = 0x7f7f, \
  773. .offset = offsetof(IntelHDAState, st[_i].fmt), \
  774. }, \
  775. [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
  776. .stream = _i, \
  777. .name = _t stringify(_i) " BDLPL", \
  778. .size = 4, \
  779. .wmask = 0xffffff80, \
  780. .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
  781. }, \
  782. [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
  783. .stream = _i, \
  784. .name = _t stringify(_i) " BDLPU", \
  785. .size = 4, \
  786. .wmask = 0xffffffff, \
  787. .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
  788. }, \
  789. HDA_STREAM("IN", 0)
  790. HDA_STREAM("IN", 1)
  791. HDA_STREAM("IN", 2)
  792. HDA_STREAM("IN", 3)
  793. HDA_STREAM("OUT", 4)
  794. HDA_STREAM("OUT", 5)
  795. HDA_STREAM("OUT", 6)
  796. HDA_STREAM("OUT", 7)
  797. };
  798. static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr)
  799. {
  800. const IntelHDAReg *reg;
  801. if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
  802. goto noreg;
  803. }
  804. reg = regtab+addr;
  805. if (reg->name == NULL) {
  806. goto noreg;
  807. }
  808. return reg;
  809. noreg:
  810. dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
  811. return NULL;
  812. }
  813. static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
  814. {
  815. uint8_t *addr = (void*)d;
  816. addr += reg->offset;
  817. return (uint32_t*)addr;
  818. }
  819. static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
  820. uint32_t wmask)
  821. {
  822. uint32_t *addr;
  823. uint32_t old;
  824. if (!reg) {
  825. return;
  826. }
  827. if (d->debug) {
  828. time_t now = time(NULL);
  829. if (d->last_write && d->last_reg == reg && d->last_val == val) {
  830. d->repeat_count++;
  831. if (d->last_sec != now) {
  832. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  833. d->last_sec = now;
  834. d->repeat_count = 0;
  835. }
  836. } else {
  837. if (d->repeat_count) {
  838. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  839. }
  840. dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
  841. d->last_write = 1;
  842. d->last_reg = reg;
  843. d->last_val = val;
  844. d->last_sec = now;
  845. d->repeat_count = 0;
  846. }
  847. }
  848. assert(reg->offset != 0);
  849. addr = intel_hda_reg_addr(d, reg);
  850. old = *addr;
  851. if (reg->shift) {
  852. val <<= reg->shift;
  853. wmask <<= reg->shift;
  854. }
  855. wmask &= reg->wmask;
  856. *addr &= ~wmask;
  857. *addr |= wmask & val;
  858. *addr &= ~(val & reg->wclear);
  859. if (reg->whandler) {
  860. reg->whandler(d, reg, old);
  861. }
  862. }
  863. static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
  864. uint32_t rmask)
  865. {
  866. uint32_t *addr, ret;
  867. if (!reg) {
  868. return 0;
  869. }
  870. if (reg->rhandler) {
  871. reg->rhandler(d, reg);
  872. }
  873. if (reg->offset == 0) {
  874. /* constant read-only register */
  875. ret = reg->reset;
  876. } else {
  877. addr = intel_hda_reg_addr(d, reg);
  878. ret = *addr;
  879. if (reg->shift) {
  880. ret >>= reg->shift;
  881. }
  882. ret &= rmask;
  883. }
  884. if (d->debug) {
  885. time_t now = time(NULL);
  886. if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
  887. d->repeat_count++;
  888. if (d->last_sec != now) {
  889. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  890. d->last_sec = now;
  891. d->repeat_count = 0;
  892. }
  893. } else {
  894. if (d->repeat_count) {
  895. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  896. }
  897. dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
  898. d->last_write = 0;
  899. d->last_reg = reg;
  900. d->last_val = ret;
  901. d->last_sec = now;
  902. d->repeat_count = 0;
  903. }
  904. }
  905. return ret;
  906. }
  907. static void intel_hda_regs_reset(IntelHDAState *d)
  908. {
  909. uint32_t *addr;
  910. int i;
  911. for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
  912. if (regtab[i].name == NULL) {
  913. continue;
  914. }
  915. if (regtab[i].offset == 0) {
  916. continue;
  917. }
  918. addr = intel_hda_reg_addr(d, regtab + i);
  919. *addr = regtab[i].reset;
  920. }
  921. }
  922. /* --------------------------------------------------------------------- */
  923. static void intel_hda_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
  924. {
  925. IntelHDAState *d = opaque;
  926. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  927. intel_hda_reg_write(d, reg, val, 0xff);
  928. }
  929. static void intel_hda_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
  930. {
  931. IntelHDAState *d = opaque;
  932. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  933. intel_hda_reg_write(d, reg, val, 0xffff);
  934. }
  935. static void intel_hda_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
  936. {
  937. IntelHDAState *d = opaque;
  938. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  939. intel_hda_reg_write(d, reg, val, 0xffffffff);
  940. }
  941. static uint32_t intel_hda_mmio_readb(void *opaque, hwaddr addr)
  942. {
  943. IntelHDAState *d = opaque;
  944. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  945. return intel_hda_reg_read(d, reg, 0xff);
  946. }
  947. static uint32_t intel_hda_mmio_readw(void *opaque, hwaddr addr)
  948. {
  949. IntelHDAState *d = opaque;
  950. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  951. return intel_hda_reg_read(d, reg, 0xffff);
  952. }
  953. static uint32_t intel_hda_mmio_readl(void *opaque, hwaddr addr)
  954. {
  955. IntelHDAState *d = opaque;
  956. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  957. return intel_hda_reg_read(d, reg, 0xffffffff);
  958. }
  959. static const MemoryRegionOps intel_hda_mmio_ops = {
  960. .old_mmio = {
  961. .read = {
  962. intel_hda_mmio_readb,
  963. intel_hda_mmio_readw,
  964. intel_hda_mmio_readl,
  965. },
  966. .write = {
  967. intel_hda_mmio_writeb,
  968. intel_hda_mmio_writew,
  969. intel_hda_mmio_writel,
  970. },
  971. },
  972. .endianness = DEVICE_NATIVE_ENDIAN,
  973. };
  974. /* --------------------------------------------------------------------- */
  975. static void intel_hda_reset(DeviceState *dev)
  976. {
  977. BusChild *kid;
  978. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
  979. HDACodecDevice *cdev;
  980. intel_hda_regs_reset(d);
  981. d->wall_base_ns = qemu_get_clock_ns(vm_clock);
  982. /* reset codecs */
  983. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  984. DeviceState *qdev = kid->child;
  985. cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
  986. device_reset(DEVICE(cdev));
  987. d->state_sts |= (1 << cdev->cad);
  988. }
  989. intel_hda_update_irq(d);
  990. }
  991. static int intel_hda_init(PCIDevice *pci)
  992. {
  993. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  994. uint8_t *conf = d->pci.config;
  995. d->name = object_get_typename(OBJECT(d));
  996. pci_config_set_interrupt_pin(conf, 1);
  997. /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
  998. conf[0x40] = 0x01;
  999. memory_region_init_io(&d->mmio, &intel_hda_mmio_ops, d,
  1000. "intel-hda", 0x4000);
  1001. pci_register_bar(&d->pci, 0, 0, &d->mmio);
  1002. if (d->msi) {
  1003. msi_init(&d->pci, 0x50, 1, true, false);
  1004. }
  1005. hda_codec_bus_init(&d->pci.qdev, &d->codecs,
  1006. intel_hda_response, intel_hda_xfer);
  1007. return 0;
  1008. }
  1009. static void intel_hda_exit(PCIDevice *pci)
  1010. {
  1011. IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
  1012. msi_uninit(&d->pci);
  1013. memory_region_destroy(&d->mmio);
  1014. }
  1015. static int intel_hda_post_load(void *opaque, int version)
  1016. {
  1017. IntelHDAState* d = opaque;
  1018. int i;
  1019. dprint(d, 1, "%s\n", __FUNCTION__);
  1020. for (i = 0; i < ARRAY_SIZE(d->st); i++) {
  1021. if (d->st[i].ctl & 0x02) {
  1022. intel_hda_parse_bdl(d, &d->st[i]);
  1023. }
  1024. }
  1025. intel_hda_update_irq(d);
  1026. return 0;
  1027. }
  1028. static const VMStateDescription vmstate_intel_hda_stream = {
  1029. .name = "intel-hda-stream",
  1030. .version_id = 1,
  1031. .fields = (VMStateField []) {
  1032. VMSTATE_UINT32(ctl, IntelHDAStream),
  1033. VMSTATE_UINT32(lpib, IntelHDAStream),
  1034. VMSTATE_UINT32(cbl, IntelHDAStream),
  1035. VMSTATE_UINT32(lvi, IntelHDAStream),
  1036. VMSTATE_UINT32(fmt, IntelHDAStream),
  1037. VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
  1038. VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
  1039. VMSTATE_END_OF_LIST()
  1040. }
  1041. };
  1042. static const VMStateDescription vmstate_intel_hda = {
  1043. .name = "intel-hda",
  1044. .version_id = 1,
  1045. .post_load = intel_hda_post_load,
  1046. .fields = (VMStateField []) {
  1047. VMSTATE_PCI_DEVICE(pci, IntelHDAState),
  1048. /* registers */
  1049. VMSTATE_UINT32(g_ctl, IntelHDAState),
  1050. VMSTATE_UINT32(wake_en, IntelHDAState),
  1051. VMSTATE_UINT32(state_sts, IntelHDAState),
  1052. VMSTATE_UINT32(int_ctl, IntelHDAState),
  1053. VMSTATE_UINT32(int_sts, IntelHDAState),
  1054. VMSTATE_UINT32(wall_clk, IntelHDAState),
  1055. VMSTATE_UINT32(corb_lbase, IntelHDAState),
  1056. VMSTATE_UINT32(corb_ubase, IntelHDAState),
  1057. VMSTATE_UINT32(corb_rp, IntelHDAState),
  1058. VMSTATE_UINT32(corb_wp, IntelHDAState),
  1059. VMSTATE_UINT32(corb_ctl, IntelHDAState),
  1060. VMSTATE_UINT32(corb_sts, IntelHDAState),
  1061. VMSTATE_UINT32(corb_size, IntelHDAState),
  1062. VMSTATE_UINT32(rirb_lbase, IntelHDAState),
  1063. VMSTATE_UINT32(rirb_ubase, IntelHDAState),
  1064. VMSTATE_UINT32(rirb_wp, IntelHDAState),
  1065. VMSTATE_UINT32(rirb_cnt, IntelHDAState),
  1066. VMSTATE_UINT32(rirb_ctl, IntelHDAState),
  1067. VMSTATE_UINT32(rirb_sts, IntelHDAState),
  1068. VMSTATE_UINT32(rirb_size, IntelHDAState),
  1069. VMSTATE_UINT32(dp_lbase, IntelHDAState),
  1070. VMSTATE_UINT32(dp_ubase, IntelHDAState),
  1071. VMSTATE_UINT32(icw, IntelHDAState),
  1072. VMSTATE_UINT32(irr, IntelHDAState),
  1073. VMSTATE_UINT32(ics, IntelHDAState),
  1074. VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
  1075. vmstate_intel_hda_stream,
  1076. IntelHDAStream),
  1077. /* additional state info */
  1078. VMSTATE_UINT32(rirb_count, IntelHDAState),
  1079. VMSTATE_INT64(wall_base_ns, IntelHDAState),
  1080. VMSTATE_END_OF_LIST()
  1081. }
  1082. };
  1083. static Property intel_hda_properties[] = {
  1084. DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
  1085. DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1),
  1086. DEFINE_PROP_END_OF_LIST(),
  1087. };
  1088. static void intel_hda_class_init(ObjectClass *klass, void *data)
  1089. {
  1090. DeviceClass *dc = DEVICE_CLASS(klass);
  1091. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1092. k->init = intel_hda_init;
  1093. k->exit = intel_hda_exit;
  1094. k->vendor_id = PCI_VENDOR_ID_INTEL;
  1095. k->device_id = 0x2668;
  1096. k->revision = 1;
  1097. k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO;
  1098. dc->desc = "Intel HD Audio Controller";
  1099. dc->reset = intel_hda_reset;
  1100. dc->vmsd = &vmstate_intel_hda;
  1101. dc->props = intel_hda_properties;
  1102. }
  1103. static TypeInfo intel_hda_info = {
  1104. .name = "intel-hda",
  1105. .parent = TYPE_PCI_DEVICE,
  1106. .instance_size = sizeof(IntelHDAState),
  1107. .class_init = intel_hda_class_init,
  1108. };
  1109. static void hda_codec_device_class_init(ObjectClass *klass, void *data)
  1110. {
  1111. DeviceClass *k = DEVICE_CLASS(klass);
  1112. k->init = hda_codec_dev_init;
  1113. k->exit = hda_codec_dev_exit;
  1114. k->bus_type = TYPE_HDA_BUS;
  1115. k->props = hda_props;
  1116. }
  1117. static TypeInfo hda_codec_device_type_info = {
  1118. .name = TYPE_HDA_CODEC_DEVICE,
  1119. .parent = TYPE_DEVICE,
  1120. .instance_size = sizeof(HDACodecDevice),
  1121. .abstract = true,
  1122. .class_size = sizeof(HDACodecDeviceClass),
  1123. .class_init = hda_codec_device_class_init,
  1124. };
  1125. static void intel_hda_register_types(void)
  1126. {
  1127. type_register_static(&hda_codec_bus_info);
  1128. type_register_static(&intel_hda_info);
  1129. type_register_static(&hda_codec_device_type_info);
  1130. }
  1131. type_init(intel_hda_register_types)
  1132. /*
  1133. * create intel hda controller with codec attached to it,
  1134. * so '-soundhw hda' works.
  1135. */
  1136. int intel_hda_and_codec_init(PCIBus *bus)
  1137. {
  1138. PCIDevice *controller;
  1139. BusState *hdabus;
  1140. DeviceState *codec;
  1141. controller = pci_create_simple(bus, -1, "intel-hda");
  1142. hdabus = QLIST_FIRST(&controller->qdev.child_bus);
  1143. codec = qdev_create(hdabus, "hda-duplex");
  1144. qdev_init_nofail(codec);
  1145. return 0;
  1146. }