e1000.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334
  1. /*
  2. * QEMU e1000 emulation
  3. *
  4. * Software developer's manual:
  5. * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
  6. *
  7. * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
  8. * Copyright (c) 2008 Qumranet
  9. * Based on work done by:
  10. * Copyright (c) 2007 Dan Aloni
  11. * Copyright (c) 2004 Antony T Curtis
  12. *
  13. * This library is free software; you can redistribute it and/or
  14. * modify it under the terms of the GNU Lesser General Public
  15. * License as published by the Free Software Foundation; either
  16. * version 2 of the License, or (at your option) any later version.
  17. *
  18. * This library is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * Lesser General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU Lesser General Public
  24. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  25. */
  26. #include "hw.h"
  27. #include "pci/pci.h"
  28. #include "net.h"
  29. #include "net/checksum.h"
  30. #include "loader.h"
  31. #include "sysemu.h"
  32. #include "dma.h"
  33. #include "e1000_hw.h"
  34. #define E1000_DEBUG
  35. #ifdef E1000_DEBUG
  36. enum {
  37. DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
  38. DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
  39. DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
  40. DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET,
  41. };
  42. #define DBGBIT(x) (1<<DEBUG_##x)
  43. static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
  44. #define DBGOUT(what, fmt, ...) do { \
  45. if (debugflags & DBGBIT(what)) \
  46. fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
  47. } while (0)
  48. #else
  49. #define DBGOUT(what, fmt, ...) do {} while (0)
  50. #endif
  51. #define IOPORT_SIZE 0x40
  52. #define PNPMMIO_SIZE 0x20000
  53. #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
  54. /* this is the size past which hardware will drop packets when setting LPE=0 */
  55. #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
  56. /*
  57. * HW models:
  58. * E1000_DEV_ID_82540EM works with Windows and Linux
  59. * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
  60. * appears to perform better than 82540EM, but breaks with Linux 2.6.18
  61. * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
  62. * Others never tested
  63. */
  64. enum { E1000_DEVID = E1000_DEV_ID_82540EM };
  65. /*
  66. * May need to specify additional MAC-to-PHY entries --
  67. * Intel's Windows driver refuses to initialize unless they match
  68. */
  69. enum {
  70. PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
  71. E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
  72. /* default to E1000_DEV_ID_82540EM */ 0xc20
  73. };
  74. typedef struct E1000State_st {
  75. PCIDevice dev;
  76. NICState *nic;
  77. NICConf conf;
  78. MemoryRegion mmio;
  79. MemoryRegion io;
  80. uint32_t mac_reg[0x8000];
  81. uint16_t phy_reg[0x20];
  82. uint16_t eeprom_data[64];
  83. uint32_t rxbuf_size;
  84. uint32_t rxbuf_min_shift;
  85. struct e1000_tx {
  86. unsigned char header[256];
  87. unsigned char vlan_header[4];
  88. /* Fields vlan and data must not be reordered or separated. */
  89. unsigned char vlan[4];
  90. unsigned char data[0x10000];
  91. uint16_t size;
  92. unsigned char sum_needed;
  93. unsigned char vlan_needed;
  94. uint8_t ipcss;
  95. uint8_t ipcso;
  96. uint16_t ipcse;
  97. uint8_t tucss;
  98. uint8_t tucso;
  99. uint16_t tucse;
  100. uint8_t hdr_len;
  101. uint16_t mss;
  102. uint32_t paylen;
  103. uint16_t tso_frames;
  104. char tse;
  105. int8_t ip;
  106. int8_t tcp;
  107. char cptse; // current packet tse bit
  108. } tx;
  109. struct {
  110. uint32_t val_in; // shifted in from guest driver
  111. uint16_t bitnum_in;
  112. uint16_t bitnum_out;
  113. uint16_t reading;
  114. uint32_t old_eecd;
  115. } eecd_state;
  116. QEMUTimer *autoneg_timer;
  117. } E1000State;
  118. #define defreg(x) x = (E1000_##x>>2)
  119. enum {
  120. defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
  121. defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
  122. defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
  123. defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
  124. defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
  125. defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
  126. defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
  127. defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
  128. defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
  129. defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA),
  130. defreg(VET),
  131. };
  132. static void
  133. e1000_link_down(E1000State *s)
  134. {
  135. s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
  136. s->phy_reg[PHY_STATUS] &= ~MII_SR_LINK_STATUS;
  137. }
  138. static void
  139. e1000_link_up(E1000State *s)
  140. {
  141. s->mac_reg[STATUS] |= E1000_STATUS_LU;
  142. s->phy_reg[PHY_STATUS] |= MII_SR_LINK_STATUS;
  143. }
  144. static void
  145. set_phy_ctrl(E1000State *s, int index, uint16_t val)
  146. {
  147. if ((val & MII_CR_AUTO_NEG_EN) && (val & MII_CR_RESTART_AUTO_NEG)) {
  148. s->nic->nc.link_down = true;
  149. e1000_link_down(s);
  150. s->phy_reg[PHY_STATUS] &= ~MII_SR_AUTONEG_COMPLETE;
  151. DBGOUT(PHY, "Start link auto negotiation\n");
  152. qemu_mod_timer(s->autoneg_timer, qemu_get_clock_ms(vm_clock) + 500);
  153. }
  154. }
  155. static void
  156. e1000_autoneg_timer(void *opaque)
  157. {
  158. E1000State *s = opaque;
  159. s->nic->nc.link_down = false;
  160. e1000_link_up(s);
  161. s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
  162. DBGOUT(PHY, "Auto negotiation is completed\n");
  163. }
  164. static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
  165. [PHY_CTRL] = set_phy_ctrl,
  166. };
  167. enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
  168. enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
  169. static const char phy_regcap[0x20] = {
  170. [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
  171. [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
  172. [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
  173. [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
  174. [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
  175. [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
  176. };
  177. static const uint16_t phy_reg_init[] = {
  178. [PHY_CTRL] = 0x1140,
  179. [PHY_STATUS] = 0x794d, /* link initially up with not completed autoneg */
  180. [PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
  181. [PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
  182. [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
  183. [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
  184. [M88E1000_PHY_SPEC_STATUS] = 0xac00,
  185. };
  186. static const uint32_t mac_reg_init[] = {
  187. [PBA] = 0x00100030,
  188. [LEDCTL] = 0x602,
  189. [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
  190. E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
  191. [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
  192. E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
  193. E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
  194. E1000_STATUS_LU,
  195. [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
  196. E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
  197. E1000_MANC_RMCP_EN,
  198. };
  199. static void
  200. set_interrupt_cause(E1000State *s, int index, uint32_t val)
  201. {
  202. if (val && (E1000_DEVID >= E1000_DEV_ID_82547EI_MOBILE)) {
  203. /* Only for 8257x */
  204. val |= E1000_ICR_INT_ASSERTED;
  205. }
  206. s->mac_reg[ICR] = val;
  207. s->mac_reg[ICS] = val;
  208. qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
  209. }
  210. static void
  211. set_ics(E1000State *s, int index, uint32_t val)
  212. {
  213. DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
  214. s->mac_reg[IMS]);
  215. set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
  216. }
  217. static int
  218. rxbufsize(uint32_t v)
  219. {
  220. v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
  221. E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
  222. E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
  223. switch (v) {
  224. case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
  225. return 16384;
  226. case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
  227. return 8192;
  228. case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
  229. return 4096;
  230. case E1000_RCTL_SZ_1024:
  231. return 1024;
  232. case E1000_RCTL_SZ_512:
  233. return 512;
  234. case E1000_RCTL_SZ_256:
  235. return 256;
  236. }
  237. return 2048;
  238. }
  239. static void e1000_reset(void *opaque)
  240. {
  241. E1000State *d = opaque;
  242. uint8_t *macaddr = d->conf.macaddr.a;
  243. int i;
  244. qemu_del_timer(d->autoneg_timer);
  245. memset(d->phy_reg, 0, sizeof d->phy_reg);
  246. memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
  247. memset(d->mac_reg, 0, sizeof d->mac_reg);
  248. memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
  249. d->rxbuf_min_shift = 1;
  250. memset(&d->tx, 0, sizeof d->tx);
  251. if (d->nic->nc.link_down) {
  252. e1000_link_down(d);
  253. }
  254. /* Some guests expect pre-initialized RAH/RAL (AddrValid flag + MACaddr) */
  255. d->mac_reg[RA] = 0;
  256. d->mac_reg[RA + 1] = E1000_RAH_AV;
  257. for (i = 0; i < 4; i++) {
  258. d->mac_reg[RA] |= macaddr[i] << (8 * i);
  259. d->mac_reg[RA + 1] |= (i < 2) ? macaddr[i + 4] << (8 * i) : 0;
  260. }
  261. }
  262. static void
  263. set_ctrl(E1000State *s, int index, uint32_t val)
  264. {
  265. /* RST is self clearing */
  266. s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
  267. }
  268. static void
  269. set_rx_control(E1000State *s, int index, uint32_t val)
  270. {
  271. s->mac_reg[RCTL] = val;
  272. s->rxbuf_size = rxbufsize(val);
  273. s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
  274. DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
  275. s->mac_reg[RCTL]);
  276. qemu_flush_queued_packets(&s->nic->nc);
  277. }
  278. static void
  279. set_mdic(E1000State *s, int index, uint32_t val)
  280. {
  281. uint32_t data = val & E1000_MDIC_DATA_MASK;
  282. uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
  283. if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
  284. val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
  285. else if (val & E1000_MDIC_OP_READ) {
  286. DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
  287. if (!(phy_regcap[addr] & PHY_R)) {
  288. DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
  289. val |= E1000_MDIC_ERROR;
  290. } else
  291. val = (val ^ data) | s->phy_reg[addr];
  292. } else if (val & E1000_MDIC_OP_WRITE) {
  293. DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
  294. if (!(phy_regcap[addr] & PHY_W)) {
  295. DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
  296. val |= E1000_MDIC_ERROR;
  297. } else {
  298. if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
  299. phyreg_writeops[addr](s, index, data);
  300. }
  301. s->phy_reg[addr] = data;
  302. }
  303. }
  304. s->mac_reg[MDIC] = val | E1000_MDIC_READY;
  305. if (val & E1000_MDIC_INT_EN) {
  306. set_ics(s, 0, E1000_ICR_MDAC);
  307. }
  308. }
  309. static uint32_t
  310. get_eecd(E1000State *s, int index)
  311. {
  312. uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
  313. DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
  314. s->eecd_state.bitnum_out, s->eecd_state.reading);
  315. if (!s->eecd_state.reading ||
  316. ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
  317. ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
  318. ret |= E1000_EECD_DO;
  319. return ret;
  320. }
  321. static void
  322. set_eecd(E1000State *s, int index, uint32_t val)
  323. {
  324. uint32_t oldval = s->eecd_state.old_eecd;
  325. s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
  326. E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
  327. if (!(E1000_EECD_CS & val)) // CS inactive; nothing to do
  328. return;
  329. if (E1000_EECD_CS & (val ^ oldval)) { // CS rise edge; reset state
  330. s->eecd_state.val_in = 0;
  331. s->eecd_state.bitnum_in = 0;
  332. s->eecd_state.bitnum_out = 0;
  333. s->eecd_state.reading = 0;
  334. }
  335. if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
  336. return;
  337. if (!(E1000_EECD_SK & val)) { // falling edge
  338. s->eecd_state.bitnum_out++;
  339. return;
  340. }
  341. s->eecd_state.val_in <<= 1;
  342. if (val & E1000_EECD_DI)
  343. s->eecd_state.val_in |= 1;
  344. if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
  345. s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
  346. s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
  347. EEPROM_READ_OPCODE_MICROWIRE);
  348. }
  349. DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
  350. s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
  351. s->eecd_state.reading);
  352. }
  353. static uint32_t
  354. flash_eerd_read(E1000State *s, int x)
  355. {
  356. unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
  357. if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
  358. return (s->mac_reg[EERD]);
  359. if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
  360. return (E1000_EEPROM_RW_REG_DONE | r);
  361. return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
  362. E1000_EEPROM_RW_REG_DONE | r);
  363. }
  364. static void
  365. putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
  366. {
  367. uint32_t sum;
  368. if (cse && cse < n)
  369. n = cse + 1;
  370. if (sloc < n-1) {
  371. sum = net_checksum_add(n-css, data+css);
  372. cpu_to_be16wu((uint16_t *)(data + sloc),
  373. net_checksum_finish(sum));
  374. }
  375. }
  376. static inline int
  377. vlan_enabled(E1000State *s)
  378. {
  379. return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
  380. }
  381. static inline int
  382. vlan_rx_filter_enabled(E1000State *s)
  383. {
  384. return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
  385. }
  386. static inline int
  387. is_vlan_packet(E1000State *s, const uint8_t *buf)
  388. {
  389. return (be16_to_cpup((uint16_t *)(buf + 12)) ==
  390. le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
  391. }
  392. static inline int
  393. is_vlan_txd(uint32_t txd_lower)
  394. {
  395. return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
  396. }
  397. /* FCS aka Ethernet CRC-32. We don't get it from backends and can't
  398. * fill it in, just pad descriptor length by 4 bytes unless guest
  399. * told us to strip it off the packet. */
  400. static inline int
  401. fcs_len(E1000State *s)
  402. {
  403. return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
  404. }
  405. static void
  406. e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
  407. {
  408. if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
  409. s->nic->nc.info->receive(&s->nic->nc, buf, size);
  410. } else {
  411. qemu_send_packet(&s->nic->nc, buf, size);
  412. }
  413. }
  414. static void
  415. xmit_seg(E1000State *s)
  416. {
  417. uint16_t len, *sp;
  418. unsigned int frames = s->tx.tso_frames, css, sofar, n;
  419. struct e1000_tx *tp = &s->tx;
  420. if (tp->tse && tp->cptse) {
  421. css = tp->ipcss;
  422. DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
  423. frames, tp->size, css);
  424. if (tp->ip) { // IPv4
  425. cpu_to_be16wu((uint16_t *)(tp->data+css+2),
  426. tp->size - css);
  427. cpu_to_be16wu((uint16_t *)(tp->data+css+4),
  428. be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
  429. } else // IPv6
  430. cpu_to_be16wu((uint16_t *)(tp->data+css+4),
  431. tp->size - css);
  432. css = tp->tucss;
  433. len = tp->size - css;
  434. DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
  435. if (tp->tcp) {
  436. sofar = frames * tp->mss;
  437. cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
  438. be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
  439. if (tp->paylen - sofar > tp->mss)
  440. tp->data[css + 13] &= ~9; // PSH, FIN
  441. } else // UDP
  442. cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
  443. if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
  444. unsigned int phsum;
  445. // add pseudo-header length before checksum calculation
  446. sp = (uint16_t *)(tp->data + tp->tucso);
  447. phsum = be16_to_cpup(sp) + len;
  448. phsum = (phsum >> 16) + (phsum & 0xffff);
  449. cpu_to_be16wu(sp, phsum);
  450. }
  451. tp->tso_frames++;
  452. }
  453. if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
  454. putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
  455. if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
  456. putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
  457. if (tp->vlan_needed) {
  458. memmove(tp->vlan, tp->data, 4);
  459. memmove(tp->data, tp->data + 4, 8);
  460. memcpy(tp->data + 8, tp->vlan_header, 4);
  461. e1000_send_packet(s, tp->vlan, tp->size + 4);
  462. } else
  463. e1000_send_packet(s, tp->data, tp->size);
  464. s->mac_reg[TPT]++;
  465. s->mac_reg[GPTC]++;
  466. n = s->mac_reg[TOTL];
  467. if ((s->mac_reg[TOTL] += s->tx.size) < n)
  468. s->mac_reg[TOTH]++;
  469. }
  470. static void
  471. process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
  472. {
  473. uint32_t txd_lower = le32_to_cpu(dp->lower.data);
  474. uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
  475. unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
  476. unsigned int msh = 0xfffff, hdr = 0;
  477. uint64_t addr;
  478. struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
  479. struct e1000_tx *tp = &s->tx;
  480. if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
  481. op = le32_to_cpu(xp->cmd_and_length);
  482. tp->ipcss = xp->lower_setup.ip_fields.ipcss;
  483. tp->ipcso = xp->lower_setup.ip_fields.ipcso;
  484. tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
  485. tp->tucss = xp->upper_setup.tcp_fields.tucss;
  486. tp->tucso = xp->upper_setup.tcp_fields.tucso;
  487. tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
  488. tp->paylen = op & 0xfffff;
  489. tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
  490. tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
  491. tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
  492. tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
  493. tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
  494. tp->tso_frames = 0;
  495. if (tp->tucso == 0) { // this is probably wrong
  496. DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
  497. tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
  498. }
  499. return;
  500. } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
  501. // data descriptor
  502. if (tp->size == 0) {
  503. tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
  504. }
  505. tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
  506. } else {
  507. // legacy descriptor
  508. tp->cptse = 0;
  509. }
  510. if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
  511. (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
  512. tp->vlan_needed = 1;
  513. cpu_to_be16wu((uint16_t *)(tp->vlan_header),
  514. le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
  515. cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2),
  516. le16_to_cpu(dp->upper.fields.special));
  517. }
  518. addr = le64_to_cpu(dp->buffer_addr);
  519. if (tp->tse && tp->cptse) {
  520. hdr = tp->hdr_len;
  521. msh = hdr + tp->mss;
  522. do {
  523. bytes = split_size;
  524. if (tp->size + bytes > msh)
  525. bytes = msh - tp->size;
  526. bytes = MIN(sizeof(tp->data) - tp->size, bytes);
  527. pci_dma_read(&s->dev, addr, tp->data + tp->size, bytes);
  528. if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
  529. memmove(tp->header, tp->data, hdr);
  530. tp->size = sz;
  531. addr += bytes;
  532. if (sz == msh) {
  533. xmit_seg(s);
  534. memmove(tp->data, tp->header, hdr);
  535. tp->size = hdr;
  536. }
  537. } while (split_size -= bytes);
  538. } else if (!tp->tse && tp->cptse) {
  539. // context descriptor TSE is not set, while data descriptor TSE is set
  540. DBGOUT(TXERR, "TCP segmentation error\n");
  541. } else {
  542. split_size = MIN(sizeof(tp->data) - tp->size, split_size);
  543. pci_dma_read(&s->dev, addr, tp->data + tp->size, split_size);
  544. tp->size += split_size;
  545. }
  546. if (!(txd_lower & E1000_TXD_CMD_EOP))
  547. return;
  548. if (!(tp->tse && tp->cptse && tp->size < hdr))
  549. xmit_seg(s);
  550. tp->tso_frames = 0;
  551. tp->sum_needed = 0;
  552. tp->vlan_needed = 0;
  553. tp->size = 0;
  554. tp->cptse = 0;
  555. }
  556. static uint32_t
  557. txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
  558. {
  559. uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
  560. if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
  561. return 0;
  562. txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
  563. ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
  564. dp->upper.data = cpu_to_le32(txd_upper);
  565. pci_dma_write(&s->dev, base + ((char *)&dp->upper - (char *)dp),
  566. &dp->upper, sizeof(dp->upper));
  567. return E1000_ICR_TXDW;
  568. }
  569. static uint64_t tx_desc_base(E1000State *s)
  570. {
  571. uint64_t bah = s->mac_reg[TDBAH];
  572. uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
  573. return (bah << 32) + bal;
  574. }
  575. static void
  576. start_xmit(E1000State *s)
  577. {
  578. dma_addr_t base;
  579. struct e1000_tx_desc desc;
  580. uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
  581. if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
  582. DBGOUT(TX, "tx disabled\n");
  583. return;
  584. }
  585. while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
  586. base = tx_desc_base(s) +
  587. sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
  588. pci_dma_read(&s->dev, base, &desc, sizeof(desc));
  589. DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
  590. (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
  591. desc.upper.data);
  592. process_tx_desc(s, &desc);
  593. cause |= txdesc_writeback(s, base, &desc);
  594. if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
  595. s->mac_reg[TDH] = 0;
  596. /*
  597. * the following could happen only if guest sw assigns
  598. * bogus values to TDT/TDLEN.
  599. * there's nothing too intelligent we could do about this.
  600. */
  601. if (s->mac_reg[TDH] == tdh_start) {
  602. DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
  603. tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
  604. break;
  605. }
  606. }
  607. set_ics(s, 0, cause);
  608. }
  609. static int
  610. receive_filter(E1000State *s, const uint8_t *buf, int size)
  611. {
  612. static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
  613. static const int mta_shift[] = {4, 3, 2, 0};
  614. uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
  615. if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
  616. uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
  617. uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
  618. ((vid >> 5) & 0x7f));
  619. if ((vfta & (1 << (vid & 0x1f))) == 0)
  620. return 0;
  621. }
  622. if (rctl & E1000_RCTL_UPE) // promiscuous
  623. return 1;
  624. if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
  625. return 1;
  626. if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
  627. return 1;
  628. for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
  629. if (!(rp[1] & E1000_RAH_AV))
  630. continue;
  631. ra[0] = cpu_to_le32(rp[0]);
  632. ra[1] = cpu_to_le32(rp[1]);
  633. if (!memcmp(buf, (uint8_t *)ra, 6)) {
  634. DBGOUT(RXFILTER,
  635. "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
  636. (int)(rp - s->mac_reg - RA)/2,
  637. buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
  638. return 1;
  639. }
  640. }
  641. DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
  642. buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
  643. f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
  644. f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
  645. if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
  646. return 1;
  647. DBGOUT(RXFILTER,
  648. "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
  649. buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
  650. (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
  651. s->mac_reg[MTA + (f >> 5)]);
  652. return 0;
  653. }
  654. static void
  655. e1000_set_link_status(NetClientState *nc)
  656. {
  657. E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  658. uint32_t old_status = s->mac_reg[STATUS];
  659. if (nc->link_down) {
  660. e1000_link_down(s);
  661. } else {
  662. e1000_link_up(s);
  663. }
  664. if (s->mac_reg[STATUS] != old_status)
  665. set_ics(s, 0, E1000_ICR_LSC);
  666. }
  667. static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
  668. {
  669. int bufs;
  670. /* Fast-path short packets */
  671. if (total_size <= s->rxbuf_size) {
  672. return s->mac_reg[RDH] != s->mac_reg[RDT];
  673. }
  674. if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
  675. bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
  676. } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
  677. bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
  678. s->mac_reg[RDT] - s->mac_reg[RDH];
  679. } else {
  680. return false;
  681. }
  682. return total_size <= bufs * s->rxbuf_size;
  683. }
  684. static int
  685. e1000_can_receive(NetClientState *nc)
  686. {
  687. E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  688. return (s->mac_reg[RCTL] & E1000_RCTL_EN) && e1000_has_rxbufs(s, 1);
  689. }
  690. static uint64_t rx_desc_base(E1000State *s)
  691. {
  692. uint64_t bah = s->mac_reg[RDBAH];
  693. uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
  694. return (bah << 32) + bal;
  695. }
  696. static ssize_t
  697. e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
  698. {
  699. E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  700. struct e1000_rx_desc desc;
  701. dma_addr_t base;
  702. unsigned int n, rdt;
  703. uint32_t rdh_start;
  704. uint16_t vlan_special = 0;
  705. uint8_t vlan_status = 0, vlan_offset = 0;
  706. uint8_t min_buf[MIN_BUF_SIZE];
  707. size_t desc_offset;
  708. size_t desc_size;
  709. size_t total_size;
  710. if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
  711. return -1;
  712. /* Pad to minimum Ethernet frame length */
  713. if (size < sizeof(min_buf)) {
  714. memcpy(min_buf, buf, size);
  715. memset(&min_buf[size], 0, sizeof(min_buf) - size);
  716. buf = min_buf;
  717. size = sizeof(min_buf);
  718. }
  719. /* Discard oversized packets if !LPE and !SBP. */
  720. if (size > MAXIMUM_ETHERNET_VLAN_SIZE
  721. && !(s->mac_reg[RCTL] & E1000_RCTL_LPE)
  722. && !(s->mac_reg[RCTL] & E1000_RCTL_SBP)) {
  723. return size;
  724. }
  725. if (!receive_filter(s, buf, size))
  726. return size;
  727. if (vlan_enabled(s) && is_vlan_packet(s, buf)) {
  728. vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14)));
  729. memmove((uint8_t *)buf + 4, buf, 12);
  730. vlan_status = E1000_RXD_STAT_VP;
  731. vlan_offset = 4;
  732. size -= 4;
  733. }
  734. rdh_start = s->mac_reg[RDH];
  735. desc_offset = 0;
  736. total_size = size + fcs_len(s);
  737. if (!e1000_has_rxbufs(s, total_size)) {
  738. set_ics(s, 0, E1000_ICS_RXO);
  739. return -1;
  740. }
  741. do {
  742. desc_size = total_size - desc_offset;
  743. if (desc_size > s->rxbuf_size) {
  744. desc_size = s->rxbuf_size;
  745. }
  746. base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
  747. pci_dma_read(&s->dev, base, &desc, sizeof(desc));
  748. desc.special = vlan_special;
  749. desc.status |= (vlan_status | E1000_RXD_STAT_DD);
  750. if (desc.buffer_addr) {
  751. if (desc_offset < size) {
  752. size_t copy_size = size - desc_offset;
  753. if (copy_size > s->rxbuf_size) {
  754. copy_size = s->rxbuf_size;
  755. }
  756. pci_dma_write(&s->dev, le64_to_cpu(desc.buffer_addr),
  757. buf + desc_offset + vlan_offset, copy_size);
  758. }
  759. desc_offset += desc_size;
  760. desc.length = cpu_to_le16(desc_size);
  761. if (desc_offset >= total_size) {
  762. desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
  763. } else {
  764. /* Guest zeroing out status is not a hardware requirement.
  765. Clear EOP in case guest didn't do it. */
  766. desc.status &= ~E1000_RXD_STAT_EOP;
  767. }
  768. } else { // as per intel docs; skip descriptors with null buf addr
  769. DBGOUT(RX, "Null RX descriptor!!\n");
  770. }
  771. pci_dma_write(&s->dev, base, &desc, sizeof(desc));
  772. if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
  773. s->mac_reg[RDH] = 0;
  774. /* see comment in start_xmit; same here */
  775. if (s->mac_reg[RDH] == rdh_start) {
  776. DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
  777. rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
  778. set_ics(s, 0, E1000_ICS_RXO);
  779. return -1;
  780. }
  781. } while (desc_offset < total_size);
  782. s->mac_reg[GPRC]++;
  783. s->mac_reg[TPR]++;
  784. /* TOR - Total Octets Received:
  785. * This register includes bytes received in a packet from the <Destination
  786. * Address> field through the <CRC> field, inclusively.
  787. */
  788. n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4;
  789. if (n < s->mac_reg[TORL])
  790. s->mac_reg[TORH]++;
  791. s->mac_reg[TORL] = n;
  792. n = E1000_ICS_RXT0;
  793. if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
  794. rdt += s->mac_reg[RDLEN] / sizeof(desc);
  795. if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
  796. s->rxbuf_min_shift)
  797. n |= E1000_ICS_RXDMT0;
  798. set_ics(s, 0, n);
  799. return size;
  800. }
  801. static uint32_t
  802. mac_readreg(E1000State *s, int index)
  803. {
  804. return s->mac_reg[index];
  805. }
  806. static uint32_t
  807. mac_icr_read(E1000State *s, int index)
  808. {
  809. uint32_t ret = s->mac_reg[ICR];
  810. DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
  811. set_interrupt_cause(s, 0, 0);
  812. return ret;
  813. }
  814. static uint32_t
  815. mac_read_clr4(E1000State *s, int index)
  816. {
  817. uint32_t ret = s->mac_reg[index];
  818. s->mac_reg[index] = 0;
  819. return ret;
  820. }
  821. static uint32_t
  822. mac_read_clr8(E1000State *s, int index)
  823. {
  824. uint32_t ret = s->mac_reg[index];
  825. s->mac_reg[index] = 0;
  826. s->mac_reg[index-1] = 0;
  827. return ret;
  828. }
  829. static void
  830. mac_writereg(E1000State *s, int index, uint32_t val)
  831. {
  832. s->mac_reg[index] = val;
  833. }
  834. static void
  835. set_rdt(E1000State *s, int index, uint32_t val)
  836. {
  837. s->mac_reg[index] = val & 0xffff;
  838. if (e1000_has_rxbufs(s, 1)) {
  839. qemu_flush_queued_packets(&s->nic->nc);
  840. }
  841. }
  842. static void
  843. set_16bit(E1000State *s, int index, uint32_t val)
  844. {
  845. s->mac_reg[index] = val & 0xffff;
  846. }
  847. static void
  848. set_dlen(E1000State *s, int index, uint32_t val)
  849. {
  850. s->mac_reg[index] = val & 0xfff80;
  851. }
  852. static void
  853. set_tctl(E1000State *s, int index, uint32_t val)
  854. {
  855. s->mac_reg[index] = val;
  856. s->mac_reg[TDT] &= 0xffff;
  857. start_xmit(s);
  858. }
  859. static void
  860. set_icr(E1000State *s, int index, uint32_t val)
  861. {
  862. DBGOUT(INTERRUPT, "set_icr %x\n", val);
  863. set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
  864. }
  865. static void
  866. set_imc(E1000State *s, int index, uint32_t val)
  867. {
  868. s->mac_reg[IMS] &= ~val;
  869. set_ics(s, 0, 0);
  870. }
  871. static void
  872. set_ims(E1000State *s, int index, uint32_t val)
  873. {
  874. s->mac_reg[IMS] |= val;
  875. set_ics(s, 0, 0);
  876. }
  877. #define getreg(x) [x] = mac_readreg
  878. static uint32_t (*macreg_readops[])(E1000State *, int) = {
  879. getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
  880. getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
  881. getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
  882. getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
  883. getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
  884. getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
  885. getreg(TDLEN), getreg(RDLEN),
  886. [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
  887. [GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
  888. [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
  889. [CRCERRS ... MPC] = &mac_readreg,
  890. [RA ... RA+31] = &mac_readreg,
  891. [MTA ... MTA+127] = &mac_readreg,
  892. [VFTA ... VFTA+127] = &mac_readreg,
  893. };
  894. enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
  895. #define putreg(x) [x] = mac_writereg
  896. static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
  897. putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
  898. putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
  899. putreg(RDBAL), putreg(LEDCTL), putreg(VET),
  900. [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
  901. [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
  902. [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
  903. [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
  904. [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
  905. [RA ... RA+31] = &mac_writereg,
  906. [MTA ... MTA+127] = &mac_writereg,
  907. [VFTA ... VFTA+127] = &mac_writereg,
  908. };
  909. enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
  910. static void
  911. e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
  912. unsigned size)
  913. {
  914. E1000State *s = opaque;
  915. unsigned int index = (addr & 0x1ffff) >> 2;
  916. if (index < NWRITEOPS && macreg_writeops[index]) {
  917. macreg_writeops[index](s, index, val);
  918. } else if (index < NREADOPS && macreg_readops[index]) {
  919. DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", index<<2, val);
  920. } else {
  921. DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
  922. index<<2, val);
  923. }
  924. }
  925. static uint64_t
  926. e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
  927. {
  928. E1000State *s = opaque;
  929. unsigned int index = (addr & 0x1ffff) >> 2;
  930. if (index < NREADOPS && macreg_readops[index])
  931. {
  932. return macreg_readops[index](s, index);
  933. }
  934. DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
  935. return 0;
  936. }
  937. static const MemoryRegionOps e1000_mmio_ops = {
  938. .read = e1000_mmio_read,
  939. .write = e1000_mmio_write,
  940. .endianness = DEVICE_LITTLE_ENDIAN,
  941. .impl = {
  942. .min_access_size = 4,
  943. .max_access_size = 4,
  944. },
  945. };
  946. static uint64_t e1000_io_read(void *opaque, hwaddr addr,
  947. unsigned size)
  948. {
  949. E1000State *s = opaque;
  950. (void)s;
  951. return 0;
  952. }
  953. static void e1000_io_write(void *opaque, hwaddr addr,
  954. uint64_t val, unsigned size)
  955. {
  956. E1000State *s = opaque;
  957. (void)s;
  958. }
  959. static const MemoryRegionOps e1000_io_ops = {
  960. .read = e1000_io_read,
  961. .write = e1000_io_write,
  962. .endianness = DEVICE_LITTLE_ENDIAN,
  963. };
  964. static bool is_version_1(void *opaque, int version_id)
  965. {
  966. return version_id == 1;
  967. }
  968. static int e1000_post_load(void *opaque, int version_id)
  969. {
  970. E1000State *s = opaque;
  971. /* nc.link_down can't be migrated, so infer link_down according
  972. * to link status bit in mac_reg[STATUS] */
  973. s->nic->nc.link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
  974. return 0;
  975. }
  976. static const VMStateDescription vmstate_e1000 = {
  977. .name = "e1000",
  978. .version_id = 2,
  979. .minimum_version_id = 1,
  980. .minimum_version_id_old = 1,
  981. .post_load = e1000_post_load,
  982. .fields = (VMStateField []) {
  983. VMSTATE_PCI_DEVICE(dev, E1000State),
  984. VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
  985. VMSTATE_UNUSED(4), /* Was mmio_base. */
  986. VMSTATE_UINT32(rxbuf_size, E1000State),
  987. VMSTATE_UINT32(rxbuf_min_shift, E1000State),
  988. VMSTATE_UINT32(eecd_state.val_in, E1000State),
  989. VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
  990. VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
  991. VMSTATE_UINT16(eecd_state.reading, E1000State),
  992. VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
  993. VMSTATE_UINT8(tx.ipcss, E1000State),
  994. VMSTATE_UINT8(tx.ipcso, E1000State),
  995. VMSTATE_UINT16(tx.ipcse, E1000State),
  996. VMSTATE_UINT8(tx.tucss, E1000State),
  997. VMSTATE_UINT8(tx.tucso, E1000State),
  998. VMSTATE_UINT16(tx.tucse, E1000State),
  999. VMSTATE_UINT32(tx.paylen, E1000State),
  1000. VMSTATE_UINT8(tx.hdr_len, E1000State),
  1001. VMSTATE_UINT16(tx.mss, E1000State),
  1002. VMSTATE_UINT16(tx.size, E1000State),
  1003. VMSTATE_UINT16(tx.tso_frames, E1000State),
  1004. VMSTATE_UINT8(tx.sum_needed, E1000State),
  1005. VMSTATE_INT8(tx.ip, E1000State),
  1006. VMSTATE_INT8(tx.tcp, E1000State),
  1007. VMSTATE_BUFFER(tx.header, E1000State),
  1008. VMSTATE_BUFFER(tx.data, E1000State),
  1009. VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
  1010. VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
  1011. VMSTATE_UINT32(mac_reg[CTRL], E1000State),
  1012. VMSTATE_UINT32(mac_reg[EECD], E1000State),
  1013. VMSTATE_UINT32(mac_reg[EERD], E1000State),
  1014. VMSTATE_UINT32(mac_reg[GPRC], E1000State),
  1015. VMSTATE_UINT32(mac_reg[GPTC], E1000State),
  1016. VMSTATE_UINT32(mac_reg[ICR], E1000State),
  1017. VMSTATE_UINT32(mac_reg[ICS], E1000State),
  1018. VMSTATE_UINT32(mac_reg[IMC], E1000State),
  1019. VMSTATE_UINT32(mac_reg[IMS], E1000State),
  1020. VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
  1021. VMSTATE_UINT32(mac_reg[MANC], E1000State),
  1022. VMSTATE_UINT32(mac_reg[MDIC], E1000State),
  1023. VMSTATE_UINT32(mac_reg[MPC], E1000State),
  1024. VMSTATE_UINT32(mac_reg[PBA], E1000State),
  1025. VMSTATE_UINT32(mac_reg[RCTL], E1000State),
  1026. VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
  1027. VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
  1028. VMSTATE_UINT32(mac_reg[RDH], E1000State),
  1029. VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
  1030. VMSTATE_UINT32(mac_reg[RDT], E1000State),
  1031. VMSTATE_UINT32(mac_reg[STATUS], E1000State),
  1032. VMSTATE_UINT32(mac_reg[SWSM], E1000State),
  1033. VMSTATE_UINT32(mac_reg[TCTL], E1000State),
  1034. VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
  1035. VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
  1036. VMSTATE_UINT32(mac_reg[TDH], E1000State),
  1037. VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
  1038. VMSTATE_UINT32(mac_reg[TDT], E1000State),
  1039. VMSTATE_UINT32(mac_reg[TORH], E1000State),
  1040. VMSTATE_UINT32(mac_reg[TORL], E1000State),
  1041. VMSTATE_UINT32(mac_reg[TOTH], E1000State),
  1042. VMSTATE_UINT32(mac_reg[TOTL], E1000State),
  1043. VMSTATE_UINT32(mac_reg[TPR], E1000State),
  1044. VMSTATE_UINT32(mac_reg[TPT], E1000State),
  1045. VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
  1046. VMSTATE_UINT32(mac_reg[WUFC], E1000State),
  1047. VMSTATE_UINT32(mac_reg[VET], E1000State),
  1048. VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
  1049. VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
  1050. VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
  1051. VMSTATE_END_OF_LIST()
  1052. }
  1053. };
  1054. static const uint16_t e1000_eeprom_template[64] = {
  1055. 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
  1056. 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
  1057. 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
  1058. 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
  1059. 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
  1060. 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
  1061. 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
  1062. 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
  1063. };
  1064. /* PCI interface */
  1065. static void
  1066. e1000_mmio_setup(E1000State *d)
  1067. {
  1068. int i;
  1069. const uint32_t excluded_regs[] = {
  1070. E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
  1071. E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
  1072. };
  1073. memory_region_init_io(&d->mmio, &e1000_mmio_ops, d, "e1000-mmio",
  1074. PNPMMIO_SIZE);
  1075. memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
  1076. for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
  1077. memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
  1078. excluded_regs[i+1] - excluded_regs[i] - 4);
  1079. memory_region_init_io(&d->io, &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
  1080. }
  1081. static void
  1082. e1000_cleanup(NetClientState *nc)
  1083. {
  1084. E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  1085. s->nic = NULL;
  1086. }
  1087. static void
  1088. pci_e1000_uninit(PCIDevice *dev)
  1089. {
  1090. E1000State *d = DO_UPCAST(E1000State, dev, dev);
  1091. qemu_del_timer(d->autoneg_timer);
  1092. qemu_free_timer(d->autoneg_timer);
  1093. memory_region_destroy(&d->mmio);
  1094. memory_region_destroy(&d->io);
  1095. qemu_del_net_client(&d->nic->nc);
  1096. }
  1097. static NetClientInfo net_e1000_info = {
  1098. .type = NET_CLIENT_OPTIONS_KIND_NIC,
  1099. .size = sizeof(NICState),
  1100. .can_receive = e1000_can_receive,
  1101. .receive = e1000_receive,
  1102. .cleanup = e1000_cleanup,
  1103. .link_status_changed = e1000_set_link_status,
  1104. };
  1105. static int pci_e1000_init(PCIDevice *pci_dev)
  1106. {
  1107. E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
  1108. uint8_t *pci_conf;
  1109. uint16_t checksum = 0;
  1110. int i;
  1111. uint8_t *macaddr;
  1112. pci_conf = d->dev.config;
  1113. /* TODO: RST# value should be 0, PCI spec 6.2.4 */
  1114. pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
  1115. pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
  1116. e1000_mmio_setup(d);
  1117. pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
  1118. pci_register_bar(&d->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
  1119. memmove(d->eeprom_data, e1000_eeprom_template,
  1120. sizeof e1000_eeprom_template);
  1121. qemu_macaddr_default_if_unset(&d->conf.macaddr);
  1122. macaddr = d->conf.macaddr.a;
  1123. for (i = 0; i < 3; i++)
  1124. d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
  1125. for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
  1126. checksum += d->eeprom_data[i];
  1127. checksum = (uint16_t) EEPROM_SUM - checksum;
  1128. d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
  1129. d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
  1130. object_get_typename(OBJECT(d)), d->dev.qdev.id, d);
  1131. qemu_format_nic_info_str(&d->nic->nc, macaddr);
  1132. add_boot_device_path(d->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
  1133. d->autoneg_timer = qemu_new_timer_ms(vm_clock, e1000_autoneg_timer, d);
  1134. return 0;
  1135. }
  1136. static void qdev_e1000_reset(DeviceState *dev)
  1137. {
  1138. E1000State *d = DO_UPCAST(E1000State, dev.qdev, dev);
  1139. e1000_reset(d);
  1140. }
  1141. static Property e1000_properties[] = {
  1142. DEFINE_NIC_PROPERTIES(E1000State, conf),
  1143. DEFINE_PROP_END_OF_LIST(),
  1144. };
  1145. static void e1000_class_init(ObjectClass *klass, void *data)
  1146. {
  1147. DeviceClass *dc = DEVICE_CLASS(klass);
  1148. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1149. k->init = pci_e1000_init;
  1150. k->exit = pci_e1000_uninit;
  1151. k->romfile = "pxe-e1000.rom";
  1152. k->vendor_id = PCI_VENDOR_ID_INTEL;
  1153. k->device_id = E1000_DEVID;
  1154. k->revision = 0x03;
  1155. k->class_id = PCI_CLASS_NETWORK_ETHERNET;
  1156. dc->desc = "Intel Gigabit Ethernet";
  1157. dc->reset = qdev_e1000_reset;
  1158. dc->vmsd = &vmstate_e1000;
  1159. dc->props = e1000_properties;
  1160. }
  1161. static TypeInfo e1000_info = {
  1162. .name = "e1000",
  1163. .parent = TYPE_PCI_DEVICE,
  1164. .instance_size = sizeof(E1000State),
  1165. .class_init = e1000_class_init,
  1166. };
  1167. static void e1000_register_types(void)
  1168. {
  1169. type_register_static(&e1000_info);
  1170. }
  1171. type_init(e1000_register_types)