2
0

sun4m.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491
  1. /*
  2. * QEMU Sun4m & Sun4d & Sun4c System Emulator
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "qapi/error.h"
  27. #include "qemu/datadir.h"
  28. #include "cpu.h"
  29. #include "hw/sysbus.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/sparc/sun4m_iommu.h"
  33. #include "hw/rtc/m48t59.h"
  34. #include "migration/vmstate.h"
  35. #include "hw/sparc/sparc32_dma.h"
  36. #include "hw/block/fdc.h"
  37. #include "system/reset.h"
  38. #include "system/runstate.h"
  39. #include "system/system.h"
  40. #include "net/net.h"
  41. #include "hw/boards.h"
  42. #include "hw/scsi/esp.h"
  43. #include "hw/nvram/sun_nvram.h"
  44. #include "hw/qdev-properties.h"
  45. #include "hw/nvram/chrp_nvram.h"
  46. #include "hw/nvram/fw_cfg.h"
  47. #include "hw/char/escc.h"
  48. #include "hw/misc/empty_slot.h"
  49. #include "hw/misc/unimp.h"
  50. #include "hw/irq.h"
  51. #include "hw/or-irq.h"
  52. #include "hw/loader.h"
  53. #include "elf.h"
  54. #include "trace.h"
  55. #include "qom/object.h"
  56. /*
  57. * Sun4m architecture was used in the following machines:
  58. *
  59. * SPARCserver 6xxMP/xx
  60. * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
  61. * SPARCclassic X (4/10)
  62. * SPARCstation LX/ZX (4/30)
  63. * SPARCstation Voyager
  64. * SPARCstation 10/xx, SPARCserver 10/xx
  65. * SPARCstation 5, SPARCserver 5
  66. * SPARCstation 20/xx, SPARCserver 20
  67. * SPARCstation 4
  68. *
  69. * See for example: http://www.sunhelp.org/faq/sunref1.html
  70. */
  71. #define KERNEL_LOAD_ADDR 0x00004000
  72. #define CMDLINE_ADDR 0x007ff000
  73. #define INITRD_LOAD_ADDR 0x00800000
  74. #define PROM_SIZE_MAX (1 * MiB)
  75. #define PROM_VADDR 0xffd00000
  76. #define PROM_FILENAME "openbios-sparc32"
  77. #define CFG_ADDR 0xd00000510ULL
  78. #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
  79. #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
  80. #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
  81. #define MAX_CPUS 16
  82. #define MAX_PILS 16
  83. #define MAX_VSIMMS 4
  84. #define ESCC_CLOCK 4915200
  85. struct sun4m_hwdef {
  86. hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
  87. hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
  88. hwaddr serial_base, fd_base;
  89. hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
  90. hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
  91. hwaddr bpp_base, dbri_base, sx_base;
  92. struct {
  93. hwaddr reg_base, vram_base;
  94. } vsimm[MAX_VSIMMS];
  95. hwaddr ecc_base;
  96. uint64_t max_mem;
  97. uint32_t ecc_version;
  98. uint32_t iommu_version;
  99. uint16_t machine_id;
  100. uint8_t nvram_machine_id;
  101. };
  102. struct Sun4mMachineClass {
  103. /*< private >*/
  104. MachineClass parent_obj;
  105. /*< public >*/
  106. const struct sun4m_hwdef *hwdef;
  107. };
  108. typedef struct Sun4mMachineClass Sun4mMachineClass;
  109. #define TYPE_SUN4M_MACHINE MACHINE_TYPE_NAME("sun4m-common")
  110. DECLARE_CLASS_CHECKERS(Sun4mMachineClass, SUN4M_MACHINE, TYPE_SUN4M_MACHINE)
  111. const char *fw_cfg_arch_key_name(uint16_t key)
  112. {
  113. static const struct {
  114. uint16_t key;
  115. const char *name;
  116. } fw_cfg_arch_wellknown_keys[] = {
  117. {FW_CFG_SUN4M_DEPTH, "depth"},
  118. {FW_CFG_SUN4M_WIDTH, "width"},
  119. {FW_CFG_SUN4M_HEIGHT, "height"},
  120. };
  121. for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
  122. if (fw_cfg_arch_wellknown_keys[i].key == key) {
  123. return fw_cfg_arch_wellknown_keys[i].name;
  124. }
  125. }
  126. return NULL;
  127. }
  128. static void fw_cfg_boot_set(void *opaque, const char *boot_device,
  129. Error **errp)
  130. {
  131. fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  132. }
  133. static void nvram_init(Nvram *nvram, uint8_t *macaddr,
  134. const char *cmdline, const char *boot_devices,
  135. ram_addr_t RAM_size, uint32_t kernel_size,
  136. int width, int height, int depth,
  137. int nvram_machine_id, const char *arch)
  138. {
  139. unsigned int i;
  140. int sysp_end;
  141. uint8_t image[0x1ff0];
  142. NvramClass *k = NVRAM_GET_CLASS(nvram);
  143. memset(image, '\0', sizeof(image));
  144. /* OpenBIOS nvram variables partition */
  145. sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
  146. /* Free space partition */
  147. chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
  148. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
  149. nvram_machine_id);
  150. for (i = 0; i < sizeof(image); i++) {
  151. (k->write)(nvram, i, image[i]);
  152. }
  153. }
  154. static void cpu_kick_irq(SPARCCPU *cpu)
  155. {
  156. CPUSPARCState *env = &cpu->env;
  157. CPUState *cs = CPU(cpu);
  158. cs->halted = 0;
  159. cpu_check_irqs(env);
  160. qemu_cpu_kick(cs);
  161. }
  162. static void cpu_set_irq(void *opaque, int irq, int level)
  163. {
  164. SPARCCPU *cpu = opaque;
  165. CPUSPARCState *env = &cpu->env;
  166. if (level) {
  167. trace_sun4m_cpu_set_irq_raise(irq);
  168. env->pil_in |= 1 << irq;
  169. cpu_kick_irq(cpu);
  170. } else {
  171. trace_sun4m_cpu_set_irq_lower(irq);
  172. env->pil_in &= ~(1 << irq);
  173. cpu_check_irqs(env);
  174. }
  175. }
  176. static void dummy_cpu_set_irq(void *opaque, int irq, int level)
  177. {
  178. }
  179. static void sun4m_cpu_reset(void *opaque)
  180. {
  181. SPARCCPU *cpu = opaque;
  182. CPUState *cs = CPU(cpu);
  183. cpu_reset(cs);
  184. }
  185. static void cpu_halt_signal(void *opaque, int irq, int level)
  186. {
  187. if (level && current_cpu) {
  188. cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
  189. }
  190. }
  191. static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
  192. {
  193. return addr - 0xf0000000ULL;
  194. }
  195. static unsigned long sun4m_load_kernel(const char *kernel_filename,
  196. const char *initrd_filename,
  197. ram_addr_t RAM_size,
  198. uint32_t *initrd_size)
  199. {
  200. int linux_boot;
  201. unsigned int i;
  202. long kernel_size;
  203. uint8_t *ptr;
  204. linux_boot = (kernel_filename != NULL);
  205. kernel_size = 0;
  206. if (linux_boot) {
  207. int bswap_needed;
  208. #ifdef BSWAP_NEEDED
  209. bswap_needed = 1;
  210. #else
  211. bswap_needed = 0;
  212. #endif
  213. kernel_size = load_elf(kernel_filename, NULL,
  214. translate_kernel_address, NULL,
  215. NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  216. if (kernel_size < 0)
  217. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  218. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  219. TARGET_PAGE_SIZE);
  220. if (kernel_size < 0)
  221. kernel_size = load_image_targphys(kernel_filename,
  222. KERNEL_LOAD_ADDR,
  223. RAM_size - KERNEL_LOAD_ADDR);
  224. if (kernel_size < 0) {
  225. error_report("could not load kernel '%s'", kernel_filename);
  226. exit(1);
  227. }
  228. /* load initrd */
  229. *initrd_size = 0;
  230. if (initrd_filename) {
  231. *initrd_size = load_image_targphys(initrd_filename,
  232. INITRD_LOAD_ADDR,
  233. RAM_size - INITRD_LOAD_ADDR);
  234. if ((int)*initrd_size < 0) {
  235. error_report("could not load initial ram disk '%s'",
  236. initrd_filename);
  237. exit(1);
  238. }
  239. }
  240. if (*initrd_size > 0) {
  241. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  242. ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
  243. if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
  244. stl_p(ptr + 16, INITRD_LOAD_ADDR);
  245. stl_p(ptr + 20, *initrd_size);
  246. break;
  247. }
  248. }
  249. }
  250. }
  251. return kernel_size;
  252. }
  253. static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
  254. {
  255. DeviceState *dev;
  256. SysBusDevice *s;
  257. dev = qdev_new(TYPE_SUN4M_IOMMU);
  258. qdev_prop_set_uint32(dev, "version", version);
  259. s = SYS_BUS_DEVICE(dev);
  260. sysbus_realize_and_unref(s, &error_fatal);
  261. sysbus_connect_irq(s, 0, irq);
  262. sysbus_mmio_map(s, 0, addr);
  263. return s;
  264. }
  265. static void *sparc32_dma_init(hwaddr dma_base,
  266. hwaddr esp_base, qemu_irq espdma_irq,
  267. hwaddr le_base, qemu_irq ledma_irq,
  268. MACAddr *mac)
  269. {
  270. DeviceState *dma;
  271. ESPDMADeviceState *espdma;
  272. LEDMADeviceState *ledma;
  273. SysBusESPState *esp;
  274. SysBusPCNetState *lance;
  275. NICInfo *nd = qemu_find_nic_info("lance", true, NULL);
  276. dma = qdev_new(TYPE_SPARC32_DMA);
  277. espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
  278. OBJECT(dma), "espdma"));
  279. esp = SYSBUS_ESP(object_resolve_path_component(OBJECT(espdma), "esp"));
  280. ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
  281. OBJECT(dma), "ledma"));
  282. lance = SYSBUS_PCNET(object_resolve_path_component(
  283. OBJECT(ledma), "lance"));
  284. if (nd) {
  285. qdev_set_nic_properties(DEVICE(lance), nd);
  286. memcpy(mac->a, nd->macaddr.a, sizeof(mac->a));
  287. } else {
  288. qemu_macaddr_default_if_unset(mac);
  289. qdev_prop_set_macaddr(DEVICE(lance), "mac", mac->a);
  290. }
  291. sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
  292. sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
  293. sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
  294. sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
  295. sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
  296. scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
  297. sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
  298. return dma;
  299. }
  300. static DeviceState *slavio_intctl_init(hwaddr addr,
  301. hwaddr addrg,
  302. qemu_irq **parent_irq)
  303. {
  304. DeviceState *dev;
  305. SysBusDevice *s;
  306. unsigned int i, j;
  307. dev = qdev_new("slavio_intctl");
  308. s = SYS_BUS_DEVICE(dev);
  309. sysbus_realize_and_unref(s, &error_fatal);
  310. for (i = 0; i < MAX_CPUS; i++) {
  311. for (j = 0; j < MAX_PILS; j++) {
  312. sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
  313. }
  314. }
  315. sysbus_mmio_map(s, 0, addrg);
  316. for (i = 0; i < MAX_CPUS; i++) {
  317. sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
  318. }
  319. return dev;
  320. }
  321. #define SYS_TIMER_OFFSET 0x10000ULL
  322. #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
  323. static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
  324. qemu_irq *cpu_irqs, unsigned int num_cpus)
  325. {
  326. DeviceState *dev;
  327. SysBusDevice *s;
  328. unsigned int i;
  329. dev = qdev_new("slavio_timer");
  330. qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
  331. s = SYS_BUS_DEVICE(dev);
  332. sysbus_realize_and_unref(s, &error_fatal);
  333. sysbus_connect_irq(s, 0, master_irq);
  334. sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
  335. for (i = 0; i < MAX_CPUS; i++) {
  336. sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
  337. sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
  338. }
  339. }
  340. static qemu_irq slavio_system_powerdown;
  341. static void slavio_powerdown_req(Notifier *n, void *opaque)
  342. {
  343. qemu_irq_raise(slavio_system_powerdown);
  344. }
  345. static Notifier slavio_system_powerdown_notifier = {
  346. .notify = slavio_powerdown_req
  347. };
  348. #define MISC_LEDS 0x01600000
  349. #define MISC_CFG 0x01800000
  350. #define MISC_DIAG 0x01a00000
  351. #define MISC_MDM 0x01b00000
  352. #define MISC_SYS 0x01f00000
  353. static void slavio_misc_init(hwaddr base,
  354. hwaddr aux1_base,
  355. hwaddr aux2_base, qemu_irq irq,
  356. qemu_irq fdc_tc)
  357. {
  358. DeviceState *dev;
  359. SysBusDevice *s;
  360. dev = qdev_new("slavio_misc");
  361. s = SYS_BUS_DEVICE(dev);
  362. sysbus_realize_and_unref(s, &error_fatal);
  363. if (base) {
  364. /* 8 bit registers */
  365. /* Slavio control */
  366. sysbus_mmio_map(s, 0, base + MISC_CFG);
  367. /* Diagnostics */
  368. sysbus_mmio_map(s, 1, base + MISC_DIAG);
  369. /* Modem control */
  370. sysbus_mmio_map(s, 2, base + MISC_MDM);
  371. /* 16 bit registers */
  372. /* ss600mp diag LEDs */
  373. sysbus_mmio_map(s, 3, base + MISC_LEDS);
  374. /* 32 bit registers */
  375. /* System control */
  376. sysbus_mmio_map(s, 4, base + MISC_SYS);
  377. }
  378. if (aux1_base) {
  379. /* AUX 1 (Misc System Functions) */
  380. sysbus_mmio_map(s, 5, aux1_base);
  381. }
  382. if (aux2_base) {
  383. /* AUX 2 (Software Powerdown Control) */
  384. sysbus_mmio_map(s, 6, aux2_base);
  385. }
  386. sysbus_connect_irq(s, 0, irq);
  387. sysbus_connect_irq(s, 1, fdc_tc);
  388. slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
  389. qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
  390. }
  391. static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
  392. {
  393. DeviceState *dev;
  394. SysBusDevice *s;
  395. dev = qdev_new("eccmemctl");
  396. qdev_prop_set_uint32(dev, "version", version);
  397. s = SYS_BUS_DEVICE(dev);
  398. sysbus_realize_and_unref(s, &error_fatal);
  399. sysbus_connect_irq(s, 0, irq);
  400. sysbus_mmio_map(s, 0, base);
  401. if (version == 0) { // SS-600MP only
  402. sysbus_mmio_map(s, 1, base + 0x1000);
  403. }
  404. }
  405. static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
  406. {
  407. DeviceState *dev;
  408. SysBusDevice *s;
  409. dev = qdev_new("apc");
  410. s = SYS_BUS_DEVICE(dev);
  411. sysbus_realize_and_unref(s, &error_fatal);
  412. /* Power management (APC) XXX: not a Slavio device */
  413. sysbus_mmio_map(s, 0, power_base);
  414. sysbus_connect_irq(s, 0, cpu_halt);
  415. }
  416. static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  417. int height, int depth)
  418. {
  419. DeviceState *dev;
  420. SysBusDevice *s;
  421. dev = qdev_new("sun-tcx");
  422. qdev_prop_set_uint32(dev, "vram_size", vram_size);
  423. qdev_prop_set_uint16(dev, "width", width);
  424. qdev_prop_set_uint16(dev, "height", height);
  425. qdev_prop_set_uint16(dev, "depth", depth);
  426. s = SYS_BUS_DEVICE(dev);
  427. sysbus_realize_and_unref(s, &error_fatal);
  428. /* 10/ROM : FCode ROM */
  429. sysbus_mmio_map(s, 0, addr);
  430. /* 2/STIP : Stipple */
  431. sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
  432. /* 3/BLIT : Blitter */
  433. sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
  434. /* 5/RSTIP : Raw Stipple */
  435. sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
  436. /* 6/RBLIT : Raw Blitter */
  437. sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
  438. /* 7/TEC : Transform Engine */
  439. sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
  440. /* 8/CMAP : DAC */
  441. sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
  442. /* 9/THC : */
  443. if (depth == 8) {
  444. sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
  445. } else {
  446. sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
  447. }
  448. /* 11/DHC : */
  449. sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
  450. /* 12/ALT : */
  451. sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
  452. /* 0/DFB8 : 8-bit plane */
  453. sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
  454. /* 1/DFB24 : 24bit plane */
  455. sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
  456. /* 4/RDFB32: Raw framebuffer. Control plane */
  457. sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
  458. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  459. if (depth == 8) {
  460. sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
  461. }
  462. sysbus_connect_irq(s, 0, irq);
  463. }
  464. static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  465. int height, int depth)
  466. {
  467. DeviceState *dev;
  468. SysBusDevice *s;
  469. dev = qdev_new("cgthree");
  470. qdev_prop_set_uint32(dev, "vram-size", vram_size);
  471. qdev_prop_set_uint16(dev, "width", width);
  472. qdev_prop_set_uint16(dev, "height", height);
  473. qdev_prop_set_uint16(dev, "depth", depth);
  474. s = SYS_BUS_DEVICE(dev);
  475. sysbus_realize_and_unref(s, &error_fatal);
  476. /* FCode ROM */
  477. sysbus_mmio_map(s, 0, addr);
  478. /* DAC */
  479. sysbus_mmio_map(s, 1, addr + 0x400000ULL);
  480. /* 8-bit plane */
  481. sysbus_mmio_map(s, 2, addr + 0x800000ULL);
  482. sysbus_connect_irq(s, 0, irq);
  483. }
  484. /* NCR89C100/MACIO Internal ID register */
  485. #define TYPE_MACIO_ID_REGISTER "macio_idreg"
  486. static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
  487. static void idreg_init(hwaddr addr)
  488. {
  489. DeviceState *dev;
  490. SysBusDevice *s;
  491. dev = qdev_new(TYPE_MACIO_ID_REGISTER);
  492. s = SYS_BUS_DEVICE(dev);
  493. sysbus_realize_and_unref(s, &error_fatal);
  494. sysbus_mmio_map(s, 0, addr);
  495. address_space_write_rom(&address_space_memory, addr,
  496. MEMTXATTRS_UNSPECIFIED,
  497. idreg_data, sizeof(idreg_data));
  498. }
  499. OBJECT_DECLARE_SIMPLE_TYPE(IDRegState, MACIO_ID_REGISTER)
  500. struct IDRegState {
  501. SysBusDevice parent_obj;
  502. MemoryRegion mem;
  503. };
  504. static void idreg_realize(DeviceState *ds, Error **errp)
  505. {
  506. IDRegState *s = MACIO_ID_REGISTER(ds);
  507. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  508. if (!memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
  509. sizeof(idreg_data), errp)) {
  510. return;
  511. }
  512. vmstate_register_ram_global(&s->mem);
  513. memory_region_set_readonly(&s->mem, true);
  514. sysbus_init_mmio(dev, &s->mem);
  515. }
  516. static void idreg_class_init(ObjectClass *oc, void *data)
  517. {
  518. DeviceClass *dc = DEVICE_CLASS(oc);
  519. dc->realize = idreg_realize;
  520. }
  521. static const TypeInfo idreg_info = {
  522. .name = TYPE_MACIO_ID_REGISTER,
  523. .parent = TYPE_SYS_BUS_DEVICE,
  524. .instance_size = sizeof(IDRegState),
  525. .class_init = idreg_class_init,
  526. };
  527. #define TYPE_TCX_AFX "tcx_afx"
  528. OBJECT_DECLARE_SIMPLE_TYPE(AFXState, TCX_AFX)
  529. struct AFXState {
  530. SysBusDevice parent_obj;
  531. MemoryRegion mem;
  532. };
  533. /* SS-5 TCX AFX register */
  534. static void afx_init(hwaddr addr)
  535. {
  536. DeviceState *dev;
  537. SysBusDevice *s;
  538. dev = qdev_new(TYPE_TCX_AFX);
  539. s = SYS_BUS_DEVICE(dev);
  540. sysbus_realize_and_unref(s, &error_fatal);
  541. sysbus_mmio_map(s, 0, addr);
  542. }
  543. static void afx_realize(DeviceState *ds, Error **errp)
  544. {
  545. AFXState *s = TCX_AFX(ds);
  546. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  547. if (!memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx",
  548. 4, errp)) {
  549. return;
  550. }
  551. vmstate_register_ram_global(&s->mem);
  552. sysbus_init_mmio(dev, &s->mem);
  553. }
  554. static void afx_class_init(ObjectClass *oc, void *data)
  555. {
  556. DeviceClass *dc = DEVICE_CLASS(oc);
  557. dc->realize = afx_realize;
  558. }
  559. static const TypeInfo afx_info = {
  560. .name = TYPE_TCX_AFX,
  561. .parent = TYPE_SYS_BUS_DEVICE,
  562. .instance_size = sizeof(AFXState),
  563. .class_init = afx_class_init,
  564. };
  565. #define TYPE_OPENPROM "openprom"
  566. typedef struct PROMState PROMState;
  567. DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM,
  568. TYPE_OPENPROM)
  569. struct PROMState {
  570. SysBusDevice parent_obj;
  571. MemoryRegion prom;
  572. };
  573. /* Boot PROM (OpenBIOS) */
  574. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  575. {
  576. hwaddr *base_addr = (hwaddr *)opaque;
  577. return addr + *base_addr - PROM_VADDR;
  578. }
  579. static void prom_init(hwaddr addr, const char *bios_name)
  580. {
  581. DeviceState *dev;
  582. SysBusDevice *s;
  583. char *filename;
  584. int ret;
  585. dev = qdev_new(TYPE_OPENPROM);
  586. s = SYS_BUS_DEVICE(dev);
  587. sysbus_realize_and_unref(s, &error_fatal);
  588. sysbus_mmio_map(s, 0, addr);
  589. /* load boot prom */
  590. if (bios_name == NULL) {
  591. bios_name = PROM_FILENAME;
  592. }
  593. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  594. if (filename) {
  595. ret = load_elf(filename, NULL,
  596. translate_prom_address, &addr, NULL,
  597. NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  598. if (ret < 0 || ret > PROM_SIZE_MAX) {
  599. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  600. }
  601. g_free(filename);
  602. } else {
  603. ret = -1;
  604. }
  605. if (ret < 0 || ret > PROM_SIZE_MAX) {
  606. error_report("could not load prom '%s'", bios_name);
  607. exit(1);
  608. }
  609. }
  610. static void prom_realize(DeviceState *ds, Error **errp)
  611. {
  612. PROMState *s = OPENPROM(ds);
  613. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  614. if (!memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
  615. PROM_SIZE_MAX, errp)) {
  616. return;
  617. }
  618. vmstate_register_ram_global(&s->prom);
  619. memory_region_set_readonly(&s->prom, true);
  620. sysbus_init_mmio(dev, &s->prom);
  621. }
  622. static void prom_class_init(ObjectClass *klass, void *data)
  623. {
  624. DeviceClass *dc = DEVICE_CLASS(klass);
  625. dc->realize = prom_realize;
  626. }
  627. static const TypeInfo prom_info = {
  628. .name = TYPE_OPENPROM,
  629. .parent = TYPE_SYS_BUS_DEVICE,
  630. .instance_size = sizeof(PROMState),
  631. .class_init = prom_class_init,
  632. };
  633. #define TYPE_SUN4M_MEMORY "memory"
  634. typedef struct RamDevice RamDevice;
  635. DECLARE_INSTANCE_CHECKER(RamDevice, SUN4M_RAM,
  636. TYPE_SUN4M_MEMORY)
  637. struct RamDevice {
  638. SysBusDevice parent_obj;
  639. HostMemoryBackend *memdev;
  640. };
  641. /* System RAM */
  642. static void ram_realize(DeviceState *dev, Error **errp)
  643. {
  644. RamDevice *d = SUN4M_RAM(dev);
  645. MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
  646. sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
  647. }
  648. static void ram_initfn(Object *obj)
  649. {
  650. RamDevice *d = SUN4M_RAM(obj);
  651. object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
  652. (Object **)&d->memdev,
  653. object_property_allow_set_link,
  654. OBJ_PROP_LINK_STRONG);
  655. object_property_set_description(obj, "memdev", "Set RAM backend"
  656. "Valid value is ID of a hostmem backend");
  657. }
  658. static void ram_class_init(ObjectClass *klass, void *data)
  659. {
  660. DeviceClass *dc = DEVICE_CLASS(klass);
  661. dc->realize = ram_realize;
  662. }
  663. static const TypeInfo ram_info = {
  664. .name = TYPE_SUN4M_MEMORY,
  665. .parent = TYPE_SYS_BUS_DEVICE,
  666. .instance_size = sizeof(RamDevice),
  667. .instance_init = ram_initfn,
  668. .class_init = ram_class_init,
  669. };
  670. static void cpu_devinit(const char *cpu_type, unsigned int id,
  671. uint64_t prom_addr, qemu_irq **cpu_irqs)
  672. {
  673. SPARCCPU *cpu;
  674. CPUSPARCState *env;
  675. cpu = SPARC_CPU(object_new(cpu_type));
  676. env = &cpu->env;
  677. qemu_register_reset(sun4m_cpu_reset, cpu);
  678. object_property_set_bool(OBJECT(cpu), "start-powered-off", id != 0,
  679. &error_abort);
  680. qdev_realize_and_unref(DEVICE(cpu), NULL, &error_fatal);
  681. cpu_sparc_set_id(env, id);
  682. *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
  683. env->prom_addr = prom_addr;
  684. }
  685. static void dummy_fdc_tc(void *opaque, int irq, int level)
  686. {
  687. }
  688. static void sun4m_hw_init(MachineState *machine)
  689. {
  690. const struct sun4m_hwdef *hwdef = SUN4M_MACHINE_GET_CLASS(machine)->hwdef;
  691. DeviceState *slavio_intctl;
  692. unsigned int i;
  693. Nvram *nvram;
  694. qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
  695. qemu_irq fdc_tc;
  696. unsigned long kernel_size;
  697. uint32_t initrd_size;
  698. DriveInfo *fd[MAX_FD];
  699. FWCfgState *fw_cfg;
  700. DeviceState *dev, *ms_kb_orgate, *serial_orgate;
  701. SysBusDevice *s;
  702. unsigned int smp_cpus = machine->smp.cpus;
  703. unsigned int max_cpus = machine->smp.max_cpus;
  704. HostMemoryBackend *ram_memdev = machine->memdev;
  705. MACAddr hostid;
  706. if (machine->ram_size > hwdef->max_mem) {
  707. error_report("Too much memory for this machine: %" PRId64 ","
  708. " maximum %" PRId64,
  709. machine->ram_size / MiB, hwdef->max_mem / MiB);
  710. exit(1);
  711. }
  712. /* init CPUs */
  713. for(i = 0; i < smp_cpus; i++) {
  714. cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
  715. }
  716. for (i = smp_cpus; i < MAX_CPUS; i++)
  717. cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
  718. /* Create and map RAM frontend */
  719. dev = qdev_new("memory");
  720. object_property_set_link(OBJECT(dev), "memdev", OBJECT(ram_memdev), &error_fatal);
  721. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  722. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
  723. /* models without ECC don't trap when missing ram is accessed */
  724. if (!hwdef->ecc_base) {
  725. empty_slot_init("ecc", machine->ram_size,
  726. hwdef->max_mem - machine->ram_size);
  727. }
  728. prom_init(hwdef->slavio_base, machine->firmware);
  729. slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
  730. hwdef->intctl_base + 0x10000ULL,
  731. cpu_irqs);
  732. for (i = 0; i < 32; i++) {
  733. slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
  734. }
  735. for (i = 0; i < MAX_CPUS; i++) {
  736. slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
  737. }
  738. if (hwdef->idreg_base) {
  739. idreg_init(hwdef->idreg_base);
  740. }
  741. if (hwdef->afx_base) {
  742. afx_init(hwdef->afx_base);
  743. }
  744. iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
  745. if (hwdef->iommu_pad_base) {
  746. /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
  747. Software shouldn't use aliased addresses, neither should it crash
  748. when does. Using empty_slot instead of aliasing can help with
  749. debugging such accesses */
  750. empty_slot_init("iommu.alias",
  751. hwdef->iommu_pad_base, hwdef->iommu_pad_len);
  752. }
  753. sparc32_dma_init(hwdef->dma_base,
  754. hwdef->esp_base, slavio_irq[18],
  755. hwdef->le_base, slavio_irq[16], &hostid);
  756. if (graphic_depth != 8 && graphic_depth != 24) {
  757. error_report("Unsupported depth: %d", graphic_depth);
  758. exit (1);
  759. }
  760. if (vga_interface_type != VGA_NONE) {
  761. if (vga_interface_type == VGA_CG3) {
  762. if (graphic_depth != 8) {
  763. error_report("Unsupported depth: %d", graphic_depth);
  764. exit(1);
  765. }
  766. if (!(graphic_width == 1024 && graphic_height == 768) &&
  767. !(graphic_width == 1152 && graphic_height == 900)) {
  768. error_report("Unsupported resolution: %d x %d", graphic_width,
  769. graphic_height);
  770. exit(1);
  771. }
  772. /* sbus irq 5 */
  773. cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  774. graphic_width, graphic_height, graphic_depth);
  775. vga_interface_created = true;
  776. } else {
  777. /* If no display specified, default to TCX */
  778. if (graphic_depth != 8 && graphic_depth != 24) {
  779. error_report("Unsupported depth: %d", graphic_depth);
  780. exit(1);
  781. }
  782. if (!(graphic_width == 1024 && graphic_height == 768)) {
  783. error_report("Unsupported resolution: %d x %d",
  784. graphic_width, graphic_height);
  785. exit(1);
  786. }
  787. tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  788. graphic_width, graphic_height, graphic_depth);
  789. vga_interface_created = true;
  790. }
  791. }
  792. for (i = 0; i < MAX_VSIMMS; i++) {
  793. /* vsimm registers probed by OBP */
  794. if (hwdef->vsimm[i].reg_base) {
  795. char *name = g_strdup_printf("vsimm[%d]", i);
  796. empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
  797. g_free(name);
  798. }
  799. }
  800. if (hwdef->sx_base) {
  801. create_unimplemented_device("sun-sx", hwdef->sx_base, 0x2000);
  802. }
  803. dev = qdev_new("sysbus-m48t08");
  804. qdev_prop_set_int32(dev, "base-year", 1968);
  805. s = SYS_BUS_DEVICE(dev);
  806. sysbus_realize_and_unref(s, &error_fatal);
  807. sysbus_connect_irq(s, 0, slavio_irq[0]);
  808. sysbus_mmio_map(s, 0, hwdef->nvram_base);
  809. nvram = NVRAM(dev);
  810. slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
  811. /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
  812. Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
  813. dev = qdev_new(TYPE_ESCC);
  814. qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
  815. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  816. qdev_prop_set_uint32(dev, "it_shift", 1);
  817. qdev_prop_set_chr(dev, "chrB", NULL);
  818. qdev_prop_set_chr(dev, "chrA", NULL);
  819. qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
  820. qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
  821. s = SYS_BUS_DEVICE(dev);
  822. sysbus_realize_and_unref(s, &error_fatal);
  823. sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
  824. /* Logically OR both its IRQs together */
  825. ms_kb_orgate = qdev_new(TYPE_OR_IRQ);
  826. object_property_set_int(OBJECT(ms_kb_orgate), "num-lines", 2, &error_fatal);
  827. qdev_realize_and_unref(ms_kb_orgate, NULL, &error_fatal);
  828. sysbus_connect_irq(s, 0, qdev_get_gpio_in(ms_kb_orgate, 0));
  829. sysbus_connect_irq(s, 1, qdev_get_gpio_in(ms_kb_orgate, 1));
  830. qdev_connect_gpio_out(ms_kb_orgate, 0, slavio_irq[14]);
  831. dev = qdev_new(TYPE_ESCC);
  832. qdev_prop_set_uint32(dev, "disabled", 0);
  833. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  834. qdev_prop_set_uint32(dev, "it_shift", 1);
  835. qdev_prop_set_chr(dev, "chrB", serial_hd(1));
  836. qdev_prop_set_chr(dev, "chrA", serial_hd(0));
  837. qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
  838. qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
  839. s = SYS_BUS_DEVICE(dev);
  840. sysbus_realize_and_unref(s, &error_fatal);
  841. sysbus_mmio_map(s, 0, hwdef->serial_base);
  842. /* Logically OR both its IRQs together */
  843. serial_orgate = qdev_new(TYPE_OR_IRQ);
  844. object_property_set_int(OBJECT(serial_orgate), "num-lines", 2,
  845. &error_fatal);
  846. qdev_realize_and_unref(serial_orgate, NULL, &error_fatal);
  847. sysbus_connect_irq(s, 0, qdev_get_gpio_in(serial_orgate, 0));
  848. sysbus_connect_irq(s, 1, qdev_get_gpio_in(serial_orgate, 1));
  849. qdev_connect_gpio_out(serial_orgate, 0, slavio_irq[15]);
  850. if (hwdef->apc_base) {
  851. apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
  852. }
  853. if (hwdef->fd_base) {
  854. /* there is zero or one floppy drive */
  855. memset(fd, 0, sizeof(fd));
  856. fd[0] = drive_get(IF_FLOPPY, 0, 0);
  857. sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
  858. &fdc_tc);
  859. } else {
  860. fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
  861. }
  862. slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
  863. slavio_irq[30], fdc_tc);
  864. if (hwdef->cs_base) {
  865. sysbus_create_simple("sun-CS4231", hwdef->cs_base,
  866. slavio_irq[5]);
  867. }
  868. if (hwdef->dbri_base) {
  869. /* ISDN chip with attached CS4215 audio codec */
  870. /* prom space */
  871. create_unimplemented_device("sun-DBRI.prom",
  872. hwdef->dbri_base + 0x1000, 0x30);
  873. /* reg space */
  874. create_unimplemented_device("sun-DBRI",
  875. hwdef->dbri_base + 0x10000, 0x100);
  876. }
  877. if (hwdef->bpp_base) {
  878. /* parallel port */
  879. create_unimplemented_device("sun-bpp", hwdef->bpp_base, 0x20);
  880. }
  881. initrd_size = 0;
  882. kernel_size = sun4m_load_kernel(machine->kernel_filename,
  883. machine->initrd_filename,
  884. machine->ram_size, &initrd_size);
  885. nvram_init(nvram, hostid.a, machine->kernel_cmdline,
  886. machine->boot_config.order, machine->ram_size, kernel_size,
  887. graphic_width, graphic_height, graphic_depth,
  888. hwdef->nvram_machine_id, "Sun4m");
  889. if (hwdef->ecc_base)
  890. ecc_init(hwdef->ecc_base, slavio_irq[28],
  891. hwdef->ecc_version);
  892. dev = qdev_new(TYPE_FW_CFG_MEM);
  893. fw_cfg = FW_CFG(dev);
  894. qdev_prop_set_uint32(dev, "data_width", 1);
  895. qdev_prop_set_bit(dev, "dma_enabled", false);
  896. object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
  897. OBJECT(fw_cfg));
  898. s = SYS_BUS_DEVICE(dev);
  899. sysbus_realize_and_unref(s, &error_fatal);
  900. sysbus_mmio_map(s, 0, CFG_ADDR);
  901. sysbus_mmio_map(s, 1, CFG_ADDR + 2);
  902. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
  903. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
  904. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
  905. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  906. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
  907. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
  908. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
  909. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
  910. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  911. if (machine->kernel_cmdline) {
  912. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
  913. pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
  914. machine->kernel_cmdline);
  915. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
  916. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  917. strlen(machine->kernel_cmdline) + 1);
  918. } else {
  919. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
  920. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  921. }
  922. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
  923. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  924. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_config.order[0]);
  925. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  926. }
  927. enum {
  928. ss5_id = 32,
  929. vger_id,
  930. lx_id,
  931. ss4_id,
  932. scls_id,
  933. sbook_id,
  934. ss10_id = 64,
  935. ss20_id,
  936. ss600mp_id,
  937. };
  938. static void sun4m_machine_class_init(ObjectClass *oc, void *data)
  939. {
  940. MachineClass *mc = MACHINE_CLASS(oc);
  941. mc->init = sun4m_hw_init;
  942. mc->block_default_type = IF_SCSI;
  943. mc->default_boot_order = "c";
  944. mc->default_display = "tcx";
  945. mc->default_ram_id = "sun4m.ram";
  946. }
  947. static void ss5_class_init(ObjectClass *oc, void *data)
  948. {
  949. MachineClass *mc = MACHINE_CLASS(oc);
  950. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  951. static const struct sun4m_hwdef ss5_hwdef = {
  952. .iommu_base = 0x10000000,
  953. .iommu_pad_base = 0x10004000,
  954. .iommu_pad_len = 0x0fffb000,
  955. .tcx_base = 0x50000000,
  956. .cs_base = 0x6c000000,
  957. .slavio_base = 0x70000000,
  958. .ms_kb_base = 0x71000000,
  959. .serial_base = 0x71100000,
  960. .nvram_base = 0x71200000,
  961. .fd_base = 0x71400000,
  962. .counter_base = 0x71d00000,
  963. .intctl_base = 0x71e00000,
  964. .idreg_base = 0x78000000,
  965. .dma_base = 0x78400000,
  966. .esp_base = 0x78800000,
  967. .le_base = 0x78c00000,
  968. .apc_base = 0x6a000000,
  969. .afx_base = 0x6e000000,
  970. .aux1_base = 0x71900000,
  971. .aux2_base = 0x71910000,
  972. .nvram_machine_id = 0x80,
  973. .machine_id = ss5_id,
  974. .iommu_version = 0x05000000,
  975. .max_mem = 0x10000000,
  976. };
  977. mc->desc = "Sun4m platform, SPARCstation 5";
  978. mc->is_default = true;
  979. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  980. smc->hwdef = &ss5_hwdef;
  981. }
  982. static void ss10_class_init(ObjectClass *oc, void *data)
  983. {
  984. MachineClass *mc = MACHINE_CLASS(oc);
  985. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  986. static const struct sun4m_hwdef ss10_hwdef = {
  987. .iommu_base = 0xfe0000000ULL,
  988. .tcx_base = 0xe20000000ULL,
  989. .slavio_base = 0xff0000000ULL,
  990. .ms_kb_base = 0xff1000000ULL,
  991. .serial_base = 0xff1100000ULL,
  992. .nvram_base = 0xff1200000ULL,
  993. .fd_base = 0xff1700000ULL,
  994. .counter_base = 0xff1300000ULL,
  995. .intctl_base = 0xff1400000ULL,
  996. .idreg_base = 0xef0000000ULL,
  997. .dma_base = 0xef0400000ULL,
  998. .esp_base = 0xef0800000ULL,
  999. .le_base = 0xef0c00000ULL,
  1000. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1001. .aux1_base = 0xff1800000ULL,
  1002. .aux2_base = 0xff1a01000ULL,
  1003. .ecc_base = 0xf00000000ULL,
  1004. .ecc_version = 0x10000000, /* version 0, implementation 1 */
  1005. .nvram_machine_id = 0x72,
  1006. .machine_id = ss10_id,
  1007. .iommu_version = 0x03000000,
  1008. .max_mem = 0xf00000000ULL,
  1009. };
  1010. mc->desc = "Sun4m platform, SPARCstation 10";
  1011. mc->max_cpus = 4;
  1012. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1013. smc->hwdef = &ss10_hwdef;
  1014. }
  1015. static void ss600mp_class_init(ObjectClass *oc, void *data)
  1016. {
  1017. MachineClass *mc = MACHINE_CLASS(oc);
  1018. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1019. static const struct sun4m_hwdef ss600mp_hwdef = {
  1020. .iommu_base = 0xfe0000000ULL,
  1021. .tcx_base = 0xe20000000ULL,
  1022. .slavio_base = 0xff0000000ULL,
  1023. .ms_kb_base = 0xff1000000ULL,
  1024. .serial_base = 0xff1100000ULL,
  1025. .nvram_base = 0xff1200000ULL,
  1026. .counter_base = 0xff1300000ULL,
  1027. .intctl_base = 0xff1400000ULL,
  1028. .dma_base = 0xef0081000ULL,
  1029. .esp_base = 0xef0080000ULL,
  1030. .le_base = 0xef0060000ULL,
  1031. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1032. .aux1_base = 0xff1800000ULL,
  1033. .aux2_base = 0xff1a01000ULL, /* XXX should not exist */
  1034. .ecc_base = 0xf00000000ULL,
  1035. .ecc_version = 0x00000000, /* version 0, implementation 0 */
  1036. .nvram_machine_id = 0x71,
  1037. .machine_id = ss600mp_id,
  1038. .iommu_version = 0x01000000,
  1039. .max_mem = 0xf00000000ULL,
  1040. };
  1041. mc->desc = "Sun4m platform, SPARCserver 600MP";
  1042. mc->max_cpus = 4;
  1043. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1044. smc->hwdef = &ss600mp_hwdef;
  1045. }
  1046. static void ss20_class_init(ObjectClass *oc, void *data)
  1047. {
  1048. MachineClass *mc = MACHINE_CLASS(oc);
  1049. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1050. static const struct sun4m_hwdef ss20_hwdef = {
  1051. .iommu_base = 0xfe0000000ULL,
  1052. .tcx_base = 0xe20000000ULL,
  1053. .slavio_base = 0xff0000000ULL,
  1054. .ms_kb_base = 0xff1000000ULL,
  1055. .serial_base = 0xff1100000ULL,
  1056. .nvram_base = 0xff1200000ULL,
  1057. .fd_base = 0xff1700000ULL,
  1058. .counter_base = 0xff1300000ULL,
  1059. .intctl_base = 0xff1400000ULL,
  1060. .idreg_base = 0xef0000000ULL,
  1061. .dma_base = 0xef0400000ULL,
  1062. .esp_base = 0xef0800000ULL,
  1063. .le_base = 0xef0c00000ULL,
  1064. .bpp_base = 0xef4800000ULL,
  1065. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1066. .aux1_base = 0xff1800000ULL,
  1067. .aux2_base = 0xff1a01000ULL,
  1068. .dbri_base = 0xee0000000ULL,
  1069. .sx_base = 0xf80000000ULL,
  1070. .vsimm = {
  1071. {
  1072. .reg_base = 0x9c000000ULL,
  1073. .vram_base = 0xfc000000ULL
  1074. }, {
  1075. .reg_base = 0x90000000ULL,
  1076. .vram_base = 0xf0000000ULL
  1077. }, {
  1078. .reg_base = 0x94000000ULL
  1079. }, {
  1080. .reg_base = 0x98000000ULL
  1081. }
  1082. },
  1083. .ecc_base = 0xf00000000ULL,
  1084. .ecc_version = 0x20000000, /* version 0, implementation 2 */
  1085. .nvram_machine_id = 0x72,
  1086. .machine_id = ss20_id,
  1087. .iommu_version = 0x13000000,
  1088. .max_mem = 0xf00000000ULL,
  1089. };
  1090. mc->desc = "Sun4m platform, SPARCstation 20";
  1091. mc->max_cpus = 4;
  1092. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1093. smc->hwdef = &ss20_hwdef;
  1094. }
  1095. static void voyager_class_init(ObjectClass *oc, void *data)
  1096. {
  1097. MachineClass *mc = MACHINE_CLASS(oc);
  1098. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1099. static const struct sun4m_hwdef voyager_hwdef = {
  1100. .iommu_base = 0x10000000,
  1101. .tcx_base = 0x50000000,
  1102. .slavio_base = 0x70000000,
  1103. .ms_kb_base = 0x71000000,
  1104. .serial_base = 0x71100000,
  1105. .nvram_base = 0x71200000,
  1106. .fd_base = 0x71400000,
  1107. .counter_base = 0x71d00000,
  1108. .intctl_base = 0x71e00000,
  1109. .idreg_base = 0x78000000,
  1110. .dma_base = 0x78400000,
  1111. .esp_base = 0x78800000,
  1112. .le_base = 0x78c00000,
  1113. .apc_base = 0x71300000, /* pmc */
  1114. .aux1_base = 0x71900000,
  1115. .aux2_base = 0x71910000,
  1116. .nvram_machine_id = 0x80,
  1117. .machine_id = vger_id,
  1118. .iommu_version = 0x05000000,
  1119. .max_mem = 0x10000000,
  1120. };
  1121. mc->desc = "Sun4m platform, SPARCstation Voyager";
  1122. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1123. smc->hwdef = &voyager_hwdef;
  1124. }
  1125. static void ss_lx_class_init(ObjectClass *oc, void *data)
  1126. {
  1127. MachineClass *mc = MACHINE_CLASS(oc);
  1128. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1129. static const struct sun4m_hwdef ss_lx_hwdef = {
  1130. .iommu_base = 0x10000000,
  1131. .iommu_pad_base = 0x10004000,
  1132. .iommu_pad_len = 0x0fffb000,
  1133. .tcx_base = 0x50000000,
  1134. .slavio_base = 0x70000000,
  1135. .ms_kb_base = 0x71000000,
  1136. .serial_base = 0x71100000,
  1137. .nvram_base = 0x71200000,
  1138. .fd_base = 0x71400000,
  1139. .counter_base = 0x71d00000,
  1140. .intctl_base = 0x71e00000,
  1141. .idreg_base = 0x78000000,
  1142. .dma_base = 0x78400000,
  1143. .esp_base = 0x78800000,
  1144. .le_base = 0x78c00000,
  1145. .aux1_base = 0x71900000,
  1146. .aux2_base = 0x71910000,
  1147. .nvram_machine_id = 0x80,
  1148. .machine_id = lx_id,
  1149. .iommu_version = 0x04000000,
  1150. .max_mem = 0x10000000,
  1151. };
  1152. mc->desc = "Sun4m platform, SPARCstation LX";
  1153. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1154. smc->hwdef = &ss_lx_hwdef;
  1155. }
  1156. static void ss4_class_init(ObjectClass *oc, void *data)
  1157. {
  1158. MachineClass *mc = MACHINE_CLASS(oc);
  1159. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1160. static const struct sun4m_hwdef ss4_hwdef = {
  1161. .iommu_base = 0x10000000,
  1162. .tcx_base = 0x50000000,
  1163. .cs_base = 0x6c000000,
  1164. .slavio_base = 0x70000000,
  1165. .ms_kb_base = 0x71000000,
  1166. .serial_base = 0x71100000,
  1167. .nvram_base = 0x71200000,
  1168. .fd_base = 0x71400000,
  1169. .counter_base = 0x71d00000,
  1170. .intctl_base = 0x71e00000,
  1171. .idreg_base = 0x78000000,
  1172. .dma_base = 0x78400000,
  1173. .esp_base = 0x78800000,
  1174. .le_base = 0x78c00000,
  1175. .apc_base = 0x6a000000,
  1176. .aux1_base = 0x71900000,
  1177. .aux2_base = 0x71910000,
  1178. .nvram_machine_id = 0x80,
  1179. .machine_id = ss4_id,
  1180. .iommu_version = 0x05000000,
  1181. .max_mem = 0x10000000,
  1182. };
  1183. mc->desc = "Sun4m platform, SPARCstation 4";
  1184. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1185. smc->hwdef = &ss4_hwdef;
  1186. }
  1187. static void scls_class_init(ObjectClass *oc, void *data)
  1188. {
  1189. MachineClass *mc = MACHINE_CLASS(oc);
  1190. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1191. static const struct sun4m_hwdef scls_hwdef = {
  1192. .iommu_base = 0x10000000,
  1193. .tcx_base = 0x50000000,
  1194. .slavio_base = 0x70000000,
  1195. .ms_kb_base = 0x71000000,
  1196. .serial_base = 0x71100000,
  1197. .nvram_base = 0x71200000,
  1198. .fd_base = 0x71400000,
  1199. .counter_base = 0x71d00000,
  1200. .intctl_base = 0x71e00000,
  1201. .idreg_base = 0x78000000,
  1202. .dma_base = 0x78400000,
  1203. .esp_base = 0x78800000,
  1204. .le_base = 0x78c00000,
  1205. .apc_base = 0x6a000000,
  1206. .aux1_base = 0x71900000,
  1207. .aux2_base = 0x71910000,
  1208. .nvram_machine_id = 0x80,
  1209. .machine_id = scls_id,
  1210. .iommu_version = 0x05000000,
  1211. .max_mem = 0x10000000,
  1212. };
  1213. mc->desc = "Sun4m platform, SPARCClassic";
  1214. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1215. smc->hwdef = &scls_hwdef;
  1216. }
  1217. static void sbook_class_init(ObjectClass *oc, void *data)
  1218. {
  1219. MachineClass *mc = MACHINE_CLASS(oc);
  1220. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1221. static const struct sun4m_hwdef sbook_hwdef = {
  1222. .iommu_base = 0x10000000,
  1223. .tcx_base = 0x50000000, /* XXX */
  1224. .slavio_base = 0x70000000,
  1225. .ms_kb_base = 0x71000000,
  1226. .serial_base = 0x71100000,
  1227. .nvram_base = 0x71200000,
  1228. .fd_base = 0x71400000,
  1229. .counter_base = 0x71d00000,
  1230. .intctl_base = 0x71e00000,
  1231. .idreg_base = 0x78000000,
  1232. .dma_base = 0x78400000,
  1233. .esp_base = 0x78800000,
  1234. .le_base = 0x78c00000,
  1235. .apc_base = 0x6a000000,
  1236. .aux1_base = 0x71900000,
  1237. .aux2_base = 0x71910000,
  1238. .nvram_machine_id = 0x80,
  1239. .machine_id = sbook_id,
  1240. .iommu_version = 0x05000000,
  1241. .max_mem = 0x10000000,
  1242. };
  1243. mc->desc = "Sun4m platform, SPARCbook";
  1244. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1245. smc->hwdef = &sbook_hwdef;
  1246. }
  1247. static const TypeInfo sun4m_machine_types[] = {
  1248. {
  1249. .name = MACHINE_TYPE_NAME("SS-5"),
  1250. .parent = TYPE_SUN4M_MACHINE,
  1251. .class_init = ss5_class_init,
  1252. }, {
  1253. .name = MACHINE_TYPE_NAME("SS-10"),
  1254. .parent = TYPE_SUN4M_MACHINE,
  1255. .class_init = ss10_class_init,
  1256. }, {
  1257. .name = MACHINE_TYPE_NAME("SS-600MP"),
  1258. .parent = TYPE_SUN4M_MACHINE,
  1259. .class_init = ss600mp_class_init,
  1260. }, {
  1261. .name = MACHINE_TYPE_NAME("SS-20"),
  1262. .parent = TYPE_SUN4M_MACHINE,
  1263. .class_init = ss20_class_init,
  1264. }, {
  1265. .name = MACHINE_TYPE_NAME("Voyager"),
  1266. .parent = TYPE_SUN4M_MACHINE,
  1267. .class_init = voyager_class_init,
  1268. }, {
  1269. .name = MACHINE_TYPE_NAME("LX"),
  1270. .parent = TYPE_SUN4M_MACHINE,
  1271. .class_init = ss_lx_class_init,
  1272. }, {
  1273. .name = MACHINE_TYPE_NAME("SS-4"),
  1274. .parent = TYPE_SUN4M_MACHINE,
  1275. .class_init = ss4_class_init,
  1276. }, {
  1277. .name = MACHINE_TYPE_NAME("SPARCClassic"),
  1278. .parent = TYPE_SUN4M_MACHINE,
  1279. .class_init = scls_class_init,
  1280. }, {
  1281. .name = MACHINE_TYPE_NAME("SPARCbook"),
  1282. .parent = TYPE_SUN4M_MACHINE,
  1283. .class_init = sbook_class_init,
  1284. }, {
  1285. .name = TYPE_SUN4M_MACHINE,
  1286. .parent = TYPE_MACHINE,
  1287. .class_size = sizeof(Sun4mMachineClass),
  1288. .class_init = sun4m_machine_class_init,
  1289. .abstract = true,
  1290. }
  1291. };
  1292. DEFINE_TYPES(sun4m_machine_types)
  1293. static void sun4m_register_types(void)
  1294. {
  1295. type_register_static(&idreg_info);
  1296. type_register_static(&afx_info);
  1297. type_register_static(&prom_info);
  1298. type_register_static(&ram_info);
  1299. }
  1300. type_init(sun4m_register_types)