omap1.c 116 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084
  1. /*
  2. * TI OMAP processors emulation.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qapi/error.h"
  21. #include "qemu-common.h"
  22. #include "cpu.h"
  23. #include "hw/boards.h"
  24. #include "hw/hw.h"
  25. #include "hw/arm/arm.h"
  26. #include "hw/arm/omap.h"
  27. #include "sysemu/sysemu.h"
  28. #include "hw/arm/soc_dma.h"
  29. #include "sysemu/block-backend.h"
  30. #include "sysemu/blockdev.h"
  31. #include "qemu/range.h"
  32. #include "hw/sysbus.h"
  33. /* Should signal the TCMI/GPMC */
  34. uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  35. {
  36. uint8_t ret;
  37. OMAP_8B_REG(addr);
  38. cpu_physical_memory_read(addr, &ret, 1);
  39. return ret;
  40. }
  41. void omap_badwidth_write8(void *opaque, hwaddr addr,
  42. uint32_t value)
  43. {
  44. uint8_t val8 = value;
  45. OMAP_8B_REG(addr);
  46. cpu_physical_memory_write(addr, &val8, 1);
  47. }
  48. uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  49. {
  50. uint16_t ret;
  51. OMAP_16B_REG(addr);
  52. cpu_physical_memory_read(addr, &ret, 2);
  53. return ret;
  54. }
  55. void omap_badwidth_write16(void *opaque, hwaddr addr,
  56. uint32_t value)
  57. {
  58. uint16_t val16 = value;
  59. OMAP_16B_REG(addr);
  60. cpu_physical_memory_write(addr, &val16, 2);
  61. }
  62. uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  63. {
  64. uint32_t ret;
  65. OMAP_32B_REG(addr);
  66. cpu_physical_memory_read(addr, &ret, 4);
  67. return ret;
  68. }
  69. void omap_badwidth_write32(void *opaque, hwaddr addr,
  70. uint32_t value)
  71. {
  72. OMAP_32B_REG(addr);
  73. cpu_physical_memory_write(addr, &value, 4);
  74. }
  75. /* MPU OS timers */
  76. struct omap_mpu_timer_s {
  77. MemoryRegion iomem;
  78. qemu_irq irq;
  79. omap_clk clk;
  80. uint32_t val;
  81. int64_t time;
  82. QEMUTimer *timer;
  83. QEMUBH *tick;
  84. int64_t rate;
  85. int it_ena;
  86. int enable;
  87. int ptv;
  88. int ar;
  89. int st;
  90. uint32_t reset_val;
  91. };
  92. static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
  93. {
  94. uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
  95. if (timer->st && timer->enable && timer->rate)
  96. return timer->val - muldiv64(distance >> (timer->ptv + 1),
  97. timer->rate, NANOSECONDS_PER_SECOND);
  98. else
  99. return timer->val;
  100. }
  101. static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
  102. {
  103. timer->val = omap_timer_read(timer);
  104. timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  105. }
  106. static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
  107. {
  108. int64_t expires;
  109. if (timer->enable && timer->st && timer->rate) {
  110. timer->val = timer->reset_val; /* Should skip this on clk enable */
  111. expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
  112. NANOSECONDS_PER_SECOND, timer->rate);
  113. /* If timer expiry would be sooner than in about 1 ms and
  114. * auto-reload isn't set, then fire immediately. This is a hack
  115. * to make systems like PalmOS run in acceptable time. PalmOS
  116. * sets the interval to a very low value and polls the status bit
  117. * in a busy loop when it wants to sleep just a couple of CPU
  118. * ticks. */
  119. if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
  120. timer_mod(timer->timer, timer->time + expires);
  121. } else {
  122. qemu_bh_schedule(timer->tick);
  123. }
  124. } else
  125. timer_del(timer->timer);
  126. }
  127. static void omap_timer_fire(void *opaque)
  128. {
  129. struct omap_mpu_timer_s *timer = opaque;
  130. if (!timer->ar) {
  131. timer->val = 0;
  132. timer->st = 0;
  133. }
  134. if (timer->it_ena)
  135. /* Edge-triggered irq */
  136. qemu_irq_pulse(timer->irq);
  137. }
  138. static void omap_timer_tick(void *opaque)
  139. {
  140. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  141. omap_timer_sync(timer);
  142. omap_timer_fire(timer);
  143. omap_timer_update(timer);
  144. }
  145. static void omap_timer_clk_update(void *opaque, int line, int on)
  146. {
  147. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  148. omap_timer_sync(timer);
  149. timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
  150. omap_timer_update(timer);
  151. }
  152. static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
  153. {
  154. omap_clk_adduser(timer->clk,
  155. qemu_allocate_irq(omap_timer_clk_update, timer, 0));
  156. timer->rate = omap_clk_getrate(timer->clk);
  157. }
  158. static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
  159. unsigned size)
  160. {
  161. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  162. if (size != 4) {
  163. return omap_badwidth_read32(opaque, addr);
  164. }
  165. switch (addr) {
  166. case 0x00: /* CNTL_TIMER */
  167. return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
  168. case 0x04: /* LOAD_TIM */
  169. break;
  170. case 0x08: /* READ_TIM */
  171. return omap_timer_read(s);
  172. }
  173. OMAP_BAD_REG(addr);
  174. return 0;
  175. }
  176. static void omap_mpu_timer_write(void *opaque, hwaddr addr,
  177. uint64_t value, unsigned size)
  178. {
  179. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  180. if (size != 4) {
  181. omap_badwidth_write32(opaque, addr, value);
  182. return;
  183. }
  184. switch (addr) {
  185. case 0x00: /* CNTL_TIMER */
  186. omap_timer_sync(s);
  187. s->enable = (value >> 5) & 1;
  188. s->ptv = (value >> 2) & 7;
  189. s->ar = (value >> 1) & 1;
  190. s->st = value & 1;
  191. omap_timer_update(s);
  192. return;
  193. case 0x04: /* LOAD_TIM */
  194. s->reset_val = value;
  195. return;
  196. case 0x08: /* READ_TIM */
  197. OMAP_RO_REG(addr);
  198. break;
  199. default:
  200. OMAP_BAD_REG(addr);
  201. }
  202. }
  203. static const MemoryRegionOps omap_mpu_timer_ops = {
  204. .read = omap_mpu_timer_read,
  205. .write = omap_mpu_timer_write,
  206. .endianness = DEVICE_LITTLE_ENDIAN,
  207. };
  208. static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
  209. {
  210. timer_del(s->timer);
  211. s->enable = 0;
  212. s->reset_val = 31337;
  213. s->val = 0;
  214. s->ptv = 0;
  215. s->ar = 0;
  216. s->st = 0;
  217. s->it_ena = 1;
  218. }
  219. static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
  220. hwaddr base,
  221. qemu_irq irq, omap_clk clk)
  222. {
  223. struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
  224. s->irq = irq;
  225. s->clk = clk;
  226. s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
  227. s->tick = qemu_bh_new(omap_timer_fire, s);
  228. omap_mpu_timer_reset(s);
  229. omap_timer_clk_setup(s);
  230. memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
  231. "omap-mpu-timer", 0x100);
  232. memory_region_add_subregion(system_memory, base, &s->iomem);
  233. return s;
  234. }
  235. /* Watchdog timer */
  236. struct omap_watchdog_timer_s {
  237. struct omap_mpu_timer_s timer;
  238. MemoryRegion iomem;
  239. uint8_t last_wr;
  240. int mode;
  241. int free;
  242. int reset;
  243. };
  244. static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
  245. unsigned size)
  246. {
  247. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  248. if (size != 2) {
  249. return omap_badwidth_read16(opaque, addr);
  250. }
  251. switch (addr) {
  252. case 0x00: /* CNTL_TIMER */
  253. return (s->timer.ptv << 9) | (s->timer.ar << 8) |
  254. (s->timer.st << 7) | (s->free << 1);
  255. case 0x04: /* READ_TIMER */
  256. return omap_timer_read(&s->timer);
  257. case 0x08: /* TIMER_MODE */
  258. return s->mode << 15;
  259. }
  260. OMAP_BAD_REG(addr);
  261. return 0;
  262. }
  263. static void omap_wd_timer_write(void *opaque, hwaddr addr,
  264. uint64_t value, unsigned size)
  265. {
  266. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  267. if (size != 2) {
  268. omap_badwidth_write16(opaque, addr, value);
  269. return;
  270. }
  271. switch (addr) {
  272. case 0x00: /* CNTL_TIMER */
  273. omap_timer_sync(&s->timer);
  274. s->timer.ptv = (value >> 9) & 7;
  275. s->timer.ar = (value >> 8) & 1;
  276. s->timer.st = (value >> 7) & 1;
  277. s->free = (value >> 1) & 1;
  278. omap_timer_update(&s->timer);
  279. break;
  280. case 0x04: /* LOAD_TIMER */
  281. s->timer.reset_val = value & 0xffff;
  282. break;
  283. case 0x08: /* TIMER_MODE */
  284. if (!s->mode && ((value >> 15) & 1))
  285. omap_clk_get(s->timer.clk);
  286. s->mode |= (value >> 15) & 1;
  287. if (s->last_wr == 0xf5) {
  288. if ((value & 0xff) == 0xa0) {
  289. if (s->mode) {
  290. s->mode = 0;
  291. omap_clk_put(s->timer.clk);
  292. }
  293. } else {
  294. /* XXX: on T|E hardware somehow this has no effect,
  295. * on Zire 71 it works as specified. */
  296. s->reset = 1;
  297. qemu_system_reset_request();
  298. }
  299. }
  300. s->last_wr = value & 0xff;
  301. break;
  302. default:
  303. OMAP_BAD_REG(addr);
  304. }
  305. }
  306. static const MemoryRegionOps omap_wd_timer_ops = {
  307. .read = omap_wd_timer_read,
  308. .write = omap_wd_timer_write,
  309. .endianness = DEVICE_NATIVE_ENDIAN,
  310. };
  311. static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
  312. {
  313. timer_del(s->timer.timer);
  314. if (!s->mode)
  315. omap_clk_get(s->timer.clk);
  316. s->mode = 1;
  317. s->free = 1;
  318. s->reset = 0;
  319. s->timer.enable = 1;
  320. s->timer.it_ena = 1;
  321. s->timer.reset_val = 0xffff;
  322. s->timer.val = 0;
  323. s->timer.st = 0;
  324. s->timer.ptv = 0;
  325. s->timer.ar = 0;
  326. omap_timer_update(&s->timer);
  327. }
  328. static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
  329. hwaddr base,
  330. qemu_irq irq, omap_clk clk)
  331. {
  332. struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
  333. s->timer.irq = irq;
  334. s->timer.clk = clk;
  335. s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
  336. omap_wd_timer_reset(s);
  337. omap_timer_clk_setup(&s->timer);
  338. memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
  339. "omap-wd-timer", 0x100);
  340. memory_region_add_subregion(memory, base, &s->iomem);
  341. return s;
  342. }
  343. /* 32-kHz timer */
  344. struct omap_32khz_timer_s {
  345. struct omap_mpu_timer_s timer;
  346. MemoryRegion iomem;
  347. };
  348. static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
  349. unsigned size)
  350. {
  351. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  352. int offset = addr & OMAP_MPUI_REG_MASK;
  353. if (size != 4) {
  354. return omap_badwidth_read32(opaque, addr);
  355. }
  356. switch (offset) {
  357. case 0x00: /* TVR */
  358. return s->timer.reset_val;
  359. case 0x04: /* TCR */
  360. return omap_timer_read(&s->timer);
  361. case 0x08: /* CR */
  362. return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
  363. default:
  364. break;
  365. }
  366. OMAP_BAD_REG(addr);
  367. return 0;
  368. }
  369. static void omap_os_timer_write(void *opaque, hwaddr addr,
  370. uint64_t value, unsigned size)
  371. {
  372. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  373. int offset = addr & OMAP_MPUI_REG_MASK;
  374. if (size != 4) {
  375. omap_badwidth_write32(opaque, addr, value);
  376. return;
  377. }
  378. switch (offset) {
  379. case 0x00: /* TVR */
  380. s->timer.reset_val = value & 0x00ffffff;
  381. break;
  382. case 0x04: /* TCR */
  383. OMAP_RO_REG(addr);
  384. break;
  385. case 0x08: /* CR */
  386. s->timer.ar = (value >> 3) & 1;
  387. s->timer.it_ena = (value >> 2) & 1;
  388. if (s->timer.st != (value & 1) || (value & 2)) {
  389. omap_timer_sync(&s->timer);
  390. s->timer.enable = value & 1;
  391. s->timer.st = value & 1;
  392. omap_timer_update(&s->timer);
  393. }
  394. break;
  395. default:
  396. OMAP_BAD_REG(addr);
  397. }
  398. }
  399. static const MemoryRegionOps omap_os_timer_ops = {
  400. .read = omap_os_timer_read,
  401. .write = omap_os_timer_write,
  402. .endianness = DEVICE_NATIVE_ENDIAN,
  403. };
  404. static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
  405. {
  406. timer_del(s->timer.timer);
  407. s->timer.enable = 0;
  408. s->timer.it_ena = 0;
  409. s->timer.reset_val = 0x00ffffff;
  410. s->timer.val = 0;
  411. s->timer.st = 0;
  412. s->timer.ptv = 0;
  413. s->timer.ar = 1;
  414. }
  415. static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
  416. hwaddr base,
  417. qemu_irq irq, omap_clk clk)
  418. {
  419. struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
  420. s->timer.irq = irq;
  421. s->timer.clk = clk;
  422. s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
  423. omap_os_timer_reset(s);
  424. omap_timer_clk_setup(&s->timer);
  425. memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
  426. "omap-os-timer", 0x800);
  427. memory_region_add_subregion(memory, base, &s->iomem);
  428. return s;
  429. }
  430. /* Ultra Low-Power Device Module */
  431. static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
  432. unsigned size)
  433. {
  434. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  435. uint16_t ret;
  436. if (size != 2) {
  437. return omap_badwidth_read16(opaque, addr);
  438. }
  439. switch (addr) {
  440. case 0x14: /* IT_STATUS */
  441. ret = s->ulpd_pm_regs[addr >> 2];
  442. s->ulpd_pm_regs[addr >> 2] = 0;
  443. qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  444. return ret;
  445. case 0x18: /* Reserved */
  446. case 0x1c: /* Reserved */
  447. case 0x20: /* Reserved */
  448. case 0x28: /* Reserved */
  449. case 0x2c: /* Reserved */
  450. OMAP_BAD_REG(addr);
  451. /* fall through */
  452. case 0x00: /* COUNTER_32_LSB */
  453. case 0x04: /* COUNTER_32_MSB */
  454. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  455. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  456. case 0x10: /* GAUGING_CTRL */
  457. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  458. case 0x30: /* CLOCK_CTRL */
  459. case 0x34: /* SOFT_REQ */
  460. case 0x38: /* COUNTER_32_FIQ */
  461. case 0x3c: /* DPLL_CTRL */
  462. case 0x40: /* STATUS_REQ */
  463. /* XXX: check clk::usecount state for every clock */
  464. case 0x48: /* LOCL_TIME */
  465. case 0x4c: /* APLL_CTRL */
  466. case 0x50: /* POWER_CTRL */
  467. return s->ulpd_pm_regs[addr >> 2];
  468. }
  469. OMAP_BAD_REG(addr);
  470. return 0;
  471. }
  472. static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
  473. uint16_t diff, uint16_t value)
  474. {
  475. if (diff & (1 << 4)) /* USB_MCLK_EN */
  476. omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
  477. if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
  478. omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
  479. }
  480. static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
  481. uint16_t diff, uint16_t value)
  482. {
  483. if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
  484. omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
  485. if (diff & (1 << 1)) /* SOFT_COM_REQ */
  486. omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
  487. if (diff & (1 << 2)) /* SOFT_SDW_REQ */
  488. omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
  489. if (diff & (1 << 3)) /* SOFT_USB_REQ */
  490. omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
  491. }
  492. static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
  493. uint64_t value, unsigned size)
  494. {
  495. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  496. int64_t now, ticks;
  497. int div, mult;
  498. static const int bypass_div[4] = { 1, 2, 4, 4 };
  499. uint16_t diff;
  500. if (size != 2) {
  501. omap_badwidth_write16(opaque, addr, value);
  502. return;
  503. }
  504. switch (addr) {
  505. case 0x00: /* COUNTER_32_LSB */
  506. case 0x04: /* COUNTER_32_MSB */
  507. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  508. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  509. case 0x14: /* IT_STATUS */
  510. case 0x40: /* STATUS_REQ */
  511. OMAP_RO_REG(addr);
  512. break;
  513. case 0x10: /* GAUGING_CTRL */
  514. /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
  515. if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
  516. now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  517. if (value & 1)
  518. s->ulpd_gauge_start = now;
  519. else {
  520. now -= s->ulpd_gauge_start;
  521. /* 32-kHz ticks */
  522. ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
  523. s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
  524. s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
  525. if (ticks >> 32) /* OVERFLOW_32K */
  526. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
  527. /* High frequency ticks */
  528. ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
  529. s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
  530. s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
  531. if (ticks >> 32) /* OVERFLOW_HI_FREQ */
  532. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
  533. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
  534. qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  535. }
  536. }
  537. s->ulpd_pm_regs[addr >> 2] = value;
  538. break;
  539. case 0x18: /* Reserved */
  540. case 0x1c: /* Reserved */
  541. case 0x20: /* Reserved */
  542. case 0x28: /* Reserved */
  543. case 0x2c: /* Reserved */
  544. OMAP_BAD_REG(addr);
  545. /* fall through */
  546. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  547. case 0x38: /* COUNTER_32_FIQ */
  548. case 0x48: /* LOCL_TIME */
  549. case 0x50: /* POWER_CTRL */
  550. s->ulpd_pm_regs[addr >> 2] = value;
  551. break;
  552. case 0x30: /* CLOCK_CTRL */
  553. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  554. s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
  555. omap_ulpd_clk_update(s, diff, value);
  556. break;
  557. case 0x34: /* SOFT_REQ */
  558. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  559. s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
  560. omap_ulpd_req_update(s, diff, value);
  561. break;
  562. case 0x3c: /* DPLL_CTRL */
  563. /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
  564. * omitted altogether, probably a typo. */
  565. /* This register has identical semantics with DPLL(1:3) control
  566. * registers, see omap_dpll_write() */
  567. diff = s->ulpd_pm_regs[addr >> 2] & value;
  568. s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
  569. if (diff & (0x3ff << 2)) {
  570. if (value & (1 << 4)) { /* PLL_ENABLE */
  571. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  572. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  573. } else {
  574. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  575. mult = 1;
  576. }
  577. omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
  578. }
  579. /* Enter the desired mode. */
  580. s->ulpd_pm_regs[addr >> 2] =
  581. (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
  582. ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
  583. /* Act as if the lock is restored. */
  584. s->ulpd_pm_regs[addr >> 2] |= 2;
  585. break;
  586. case 0x4c: /* APLL_CTRL */
  587. diff = s->ulpd_pm_regs[addr >> 2] & value;
  588. s->ulpd_pm_regs[addr >> 2] = value & 0xf;
  589. if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
  590. omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
  591. (value & (1 << 0)) ? "apll" : "dpll4"));
  592. break;
  593. default:
  594. OMAP_BAD_REG(addr);
  595. }
  596. }
  597. static const MemoryRegionOps omap_ulpd_pm_ops = {
  598. .read = omap_ulpd_pm_read,
  599. .write = omap_ulpd_pm_write,
  600. .endianness = DEVICE_NATIVE_ENDIAN,
  601. };
  602. static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
  603. {
  604. mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
  605. mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
  606. mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
  607. mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
  608. mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
  609. mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
  610. mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
  611. mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
  612. mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
  613. mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
  614. mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
  615. omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
  616. mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
  617. omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
  618. mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
  619. mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
  620. mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
  621. mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
  622. mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
  623. mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
  624. mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
  625. omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
  626. omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
  627. }
  628. static void omap_ulpd_pm_init(MemoryRegion *system_memory,
  629. hwaddr base,
  630. struct omap_mpu_state_s *mpu)
  631. {
  632. memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
  633. "omap-ulpd-pm", 0x800);
  634. memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
  635. omap_ulpd_pm_reset(mpu);
  636. }
  637. /* OMAP Pin Configuration */
  638. static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
  639. unsigned size)
  640. {
  641. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  642. if (size != 4) {
  643. return omap_badwidth_read32(opaque, addr);
  644. }
  645. switch (addr) {
  646. case 0x00: /* FUNC_MUX_CTRL_0 */
  647. case 0x04: /* FUNC_MUX_CTRL_1 */
  648. case 0x08: /* FUNC_MUX_CTRL_2 */
  649. return s->func_mux_ctrl[addr >> 2];
  650. case 0x0c: /* COMP_MODE_CTRL_0 */
  651. return s->comp_mode_ctrl[0];
  652. case 0x10: /* FUNC_MUX_CTRL_3 */
  653. case 0x14: /* FUNC_MUX_CTRL_4 */
  654. case 0x18: /* FUNC_MUX_CTRL_5 */
  655. case 0x1c: /* FUNC_MUX_CTRL_6 */
  656. case 0x20: /* FUNC_MUX_CTRL_7 */
  657. case 0x24: /* FUNC_MUX_CTRL_8 */
  658. case 0x28: /* FUNC_MUX_CTRL_9 */
  659. case 0x2c: /* FUNC_MUX_CTRL_A */
  660. case 0x30: /* FUNC_MUX_CTRL_B */
  661. case 0x34: /* FUNC_MUX_CTRL_C */
  662. case 0x38: /* FUNC_MUX_CTRL_D */
  663. return s->func_mux_ctrl[(addr >> 2) - 1];
  664. case 0x40: /* PULL_DWN_CTRL_0 */
  665. case 0x44: /* PULL_DWN_CTRL_1 */
  666. case 0x48: /* PULL_DWN_CTRL_2 */
  667. case 0x4c: /* PULL_DWN_CTRL_3 */
  668. return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
  669. case 0x50: /* GATE_INH_CTRL_0 */
  670. return s->gate_inh_ctrl[0];
  671. case 0x60: /* VOLTAGE_CTRL_0 */
  672. return s->voltage_ctrl[0];
  673. case 0x70: /* TEST_DBG_CTRL_0 */
  674. return s->test_dbg_ctrl[0];
  675. case 0x80: /* MOD_CONF_CTRL_0 */
  676. return s->mod_conf_ctrl[0];
  677. }
  678. OMAP_BAD_REG(addr);
  679. return 0;
  680. }
  681. static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
  682. uint32_t diff, uint32_t value)
  683. {
  684. if (s->compat1509) {
  685. if (diff & (1 << 9)) /* BLUETOOTH */
  686. omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
  687. (~value >> 9) & 1);
  688. if (diff & (1 << 7)) /* USB.CLKO */
  689. omap_clk_onoff(omap_findclk(s, "usb.clko"),
  690. (value >> 7) & 1);
  691. }
  692. }
  693. static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
  694. uint32_t diff, uint32_t value)
  695. {
  696. if (s->compat1509) {
  697. if (diff & (1U << 31)) {
  698. /* MCBSP3_CLK_HIZ_DI */
  699. omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
  700. }
  701. if (diff & (1 << 1)) {
  702. /* CLK32K */
  703. omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
  704. }
  705. }
  706. }
  707. static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
  708. uint32_t diff, uint32_t value)
  709. {
  710. if (diff & (1U << 31)) {
  711. /* CONF_MOD_UART3_CLK_MODE_R */
  712. omap_clk_reparent(omap_findclk(s, "uart3_ck"),
  713. omap_findclk(s, ((value >> 31) & 1) ?
  714. "ck_48m" : "armper_ck"));
  715. }
  716. if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
  717. omap_clk_reparent(omap_findclk(s, "uart2_ck"),
  718. omap_findclk(s, ((value >> 30) & 1) ?
  719. "ck_48m" : "armper_ck"));
  720. if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
  721. omap_clk_reparent(omap_findclk(s, "uart1_ck"),
  722. omap_findclk(s, ((value >> 29) & 1) ?
  723. "ck_48m" : "armper_ck"));
  724. if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
  725. omap_clk_reparent(omap_findclk(s, "mmc_ck"),
  726. omap_findclk(s, ((value >> 23) & 1) ?
  727. "ck_48m" : "armper_ck"));
  728. if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
  729. omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
  730. omap_findclk(s, ((value >> 12) & 1) ?
  731. "ck_48m" : "armper_ck"));
  732. if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
  733. omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
  734. }
  735. static void omap_pin_cfg_write(void *opaque, hwaddr addr,
  736. uint64_t value, unsigned size)
  737. {
  738. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  739. uint32_t diff;
  740. if (size != 4) {
  741. omap_badwidth_write32(opaque, addr, value);
  742. return;
  743. }
  744. switch (addr) {
  745. case 0x00: /* FUNC_MUX_CTRL_0 */
  746. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  747. s->func_mux_ctrl[addr >> 2] = value;
  748. omap_pin_funcmux0_update(s, diff, value);
  749. return;
  750. case 0x04: /* FUNC_MUX_CTRL_1 */
  751. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  752. s->func_mux_ctrl[addr >> 2] = value;
  753. omap_pin_funcmux1_update(s, diff, value);
  754. return;
  755. case 0x08: /* FUNC_MUX_CTRL_2 */
  756. s->func_mux_ctrl[addr >> 2] = value;
  757. return;
  758. case 0x0c: /* COMP_MODE_CTRL_0 */
  759. s->comp_mode_ctrl[0] = value;
  760. s->compat1509 = (value != 0x0000eaef);
  761. omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
  762. omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
  763. return;
  764. case 0x10: /* FUNC_MUX_CTRL_3 */
  765. case 0x14: /* FUNC_MUX_CTRL_4 */
  766. case 0x18: /* FUNC_MUX_CTRL_5 */
  767. case 0x1c: /* FUNC_MUX_CTRL_6 */
  768. case 0x20: /* FUNC_MUX_CTRL_7 */
  769. case 0x24: /* FUNC_MUX_CTRL_8 */
  770. case 0x28: /* FUNC_MUX_CTRL_9 */
  771. case 0x2c: /* FUNC_MUX_CTRL_A */
  772. case 0x30: /* FUNC_MUX_CTRL_B */
  773. case 0x34: /* FUNC_MUX_CTRL_C */
  774. case 0x38: /* FUNC_MUX_CTRL_D */
  775. s->func_mux_ctrl[(addr >> 2) - 1] = value;
  776. return;
  777. case 0x40: /* PULL_DWN_CTRL_0 */
  778. case 0x44: /* PULL_DWN_CTRL_1 */
  779. case 0x48: /* PULL_DWN_CTRL_2 */
  780. case 0x4c: /* PULL_DWN_CTRL_3 */
  781. s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
  782. return;
  783. case 0x50: /* GATE_INH_CTRL_0 */
  784. s->gate_inh_ctrl[0] = value;
  785. return;
  786. case 0x60: /* VOLTAGE_CTRL_0 */
  787. s->voltage_ctrl[0] = value;
  788. return;
  789. case 0x70: /* TEST_DBG_CTRL_0 */
  790. s->test_dbg_ctrl[0] = value;
  791. return;
  792. case 0x80: /* MOD_CONF_CTRL_0 */
  793. diff = s->mod_conf_ctrl[0] ^ value;
  794. s->mod_conf_ctrl[0] = value;
  795. omap_pin_modconf1_update(s, diff, value);
  796. return;
  797. default:
  798. OMAP_BAD_REG(addr);
  799. }
  800. }
  801. static const MemoryRegionOps omap_pin_cfg_ops = {
  802. .read = omap_pin_cfg_read,
  803. .write = omap_pin_cfg_write,
  804. .endianness = DEVICE_NATIVE_ENDIAN,
  805. };
  806. static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
  807. {
  808. /* Start in Compatibility Mode. */
  809. mpu->compat1509 = 1;
  810. omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
  811. omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
  812. omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
  813. memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
  814. memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
  815. memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
  816. memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
  817. memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
  818. memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
  819. memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
  820. }
  821. static void omap_pin_cfg_init(MemoryRegion *system_memory,
  822. hwaddr base,
  823. struct omap_mpu_state_s *mpu)
  824. {
  825. memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
  826. "omap-pin-cfg", 0x800);
  827. memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
  828. omap_pin_cfg_reset(mpu);
  829. }
  830. /* Device Identification, Die Identification */
  831. static uint64_t omap_id_read(void *opaque, hwaddr addr,
  832. unsigned size)
  833. {
  834. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  835. if (size != 4) {
  836. return omap_badwidth_read32(opaque, addr);
  837. }
  838. switch (addr) {
  839. case 0xfffe1800: /* DIE_ID_LSB */
  840. return 0xc9581f0e;
  841. case 0xfffe1804: /* DIE_ID_MSB */
  842. return 0xa8858bfa;
  843. case 0xfffe2000: /* PRODUCT_ID_LSB */
  844. return 0x00aaaafc;
  845. case 0xfffe2004: /* PRODUCT_ID_MSB */
  846. return 0xcafeb574;
  847. case 0xfffed400: /* JTAG_ID_LSB */
  848. switch (s->mpu_model) {
  849. case omap310:
  850. return 0x03310315;
  851. case omap1510:
  852. return 0x03310115;
  853. default:
  854. hw_error("%s: bad mpu model\n", __FUNCTION__);
  855. }
  856. break;
  857. case 0xfffed404: /* JTAG_ID_MSB */
  858. switch (s->mpu_model) {
  859. case omap310:
  860. return 0xfb57402f;
  861. case omap1510:
  862. return 0xfb47002f;
  863. default:
  864. hw_error("%s: bad mpu model\n", __FUNCTION__);
  865. }
  866. break;
  867. }
  868. OMAP_BAD_REG(addr);
  869. return 0;
  870. }
  871. static void omap_id_write(void *opaque, hwaddr addr,
  872. uint64_t value, unsigned size)
  873. {
  874. if (size != 4) {
  875. omap_badwidth_write32(opaque, addr, value);
  876. return;
  877. }
  878. OMAP_BAD_REG(addr);
  879. }
  880. static const MemoryRegionOps omap_id_ops = {
  881. .read = omap_id_read,
  882. .write = omap_id_write,
  883. .endianness = DEVICE_NATIVE_ENDIAN,
  884. };
  885. static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
  886. {
  887. memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
  888. "omap-id", 0x100000000ULL);
  889. memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
  890. 0xfffe1800, 0x800);
  891. memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
  892. memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
  893. 0xfffed400, 0x100);
  894. memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
  895. if (!cpu_is_omap15xx(mpu)) {
  896. memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
  897. &mpu->id_iomem, 0xfffe2000, 0x800);
  898. memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
  899. }
  900. }
  901. /* MPUI Control (Dummy) */
  902. static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
  903. unsigned size)
  904. {
  905. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  906. if (size != 4) {
  907. return omap_badwidth_read32(opaque, addr);
  908. }
  909. switch (addr) {
  910. case 0x00: /* CTRL */
  911. return s->mpui_ctrl;
  912. case 0x04: /* DEBUG_ADDR */
  913. return 0x01ffffff;
  914. case 0x08: /* DEBUG_DATA */
  915. return 0xffffffff;
  916. case 0x0c: /* DEBUG_FLAG */
  917. return 0x00000800;
  918. case 0x10: /* STATUS */
  919. return 0x00000000;
  920. /* Not in OMAP310 */
  921. case 0x14: /* DSP_STATUS */
  922. case 0x18: /* DSP_BOOT_CONFIG */
  923. return 0x00000000;
  924. case 0x1c: /* DSP_MPUI_CONFIG */
  925. return 0x0000ffff;
  926. }
  927. OMAP_BAD_REG(addr);
  928. return 0;
  929. }
  930. static void omap_mpui_write(void *opaque, hwaddr addr,
  931. uint64_t value, unsigned size)
  932. {
  933. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  934. if (size != 4) {
  935. omap_badwidth_write32(opaque, addr, value);
  936. return;
  937. }
  938. switch (addr) {
  939. case 0x00: /* CTRL */
  940. s->mpui_ctrl = value & 0x007fffff;
  941. break;
  942. case 0x04: /* DEBUG_ADDR */
  943. case 0x08: /* DEBUG_DATA */
  944. case 0x0c: /* DEBUG_FLAG */
  945. case 0x10: /* STATUS */
  946. /* Not in OMAP310 */
  947. case 0x14: /* DSP_STATUS */
  948. OMAP_RO_REG(addr);
  949. break;
  950. case 0x18: /* DSP_BOOT_CONFIG */
  951. case 0x1c: /* DSP_MPUI_CONFIG */
  952. break;
  953. default:
  954. OMAP_BAD_REG(addr);
  955. }
  956. }
  957. static const MemoryRegionOps omap_mpui_ops = {
  958. .read = omap_mpui_read,
  959. .write = omap_mpui_write,
  960. .endianness = DEVICE_NATIVE_ENDIAN,
  961. };
  962. static void omap_mpui_reset(struct omap_mpu_state_s *s)
  963. {
  964. s->mpui_ctrl = 0x0003ff1b;
  965. }
  966. static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
  967. struct omap_mpu_state_s *mpu)
  968. {
  969. memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
  970. "omap-mpui", 0x100);
  971. memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
  972. omap_mpui_reset(mpu);
  973. }
  974. /* TIPB Bridges */
  975. struct omap_tipb_bridge_s {
  976. qemu_irq abort;
  977. MemoryRegion iomem;
  978. int width_intr;
  979. uint16_t control;
  980. uint16_t alloc;
  981. uint16_t buffer;
  982. uint16_t enh_control;
  983. };
  984. static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
  985. unsigned size)
  986. {
  987. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  988. if (size < 2) {
  989. return omap_badwidth_read16(opaque, addr);
  990. }
  991. switch (addr) {
  992. case 0x00: /* TIPB_CNTL */
  993. return s->control;
  994. case 0x04: /* TIPB_BUS_ALLOC */
  995. return s->alloc;
  996. case 0x08: /* MPU_TIPB_CNTL */
  997. return s->buffer;
  998. case 0x0c: /* ENHANCED_TIPB_CNTL */
  999. return s->enh_control;
  1000. case 0x10: /* ADDRESS_DBG */
  1001. case 0x14: /* DATA_DEBUG_LOW */
  1002. case 0x18: /* DATA_DEBUG_HIGH */
  1003. return 0xffff;
  1004. case 0x1c: /* DEBUG_CNTR_SIG */
  1005. return 0x00f8;
  1006. }
  1007. OMAP_BAD_REG(addr);
  1008. return 0;
  1009. }
  1010. static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
  1011. uint64_t value, unsigned size)
  1012. {
  1013. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  1014. if (size < 2) {
  1015. omap_badwidth_write16(opaque, addr, value);
  1016. return;
  1017. }
  1018. switch (addr) {
  1019. case 0x00: /* TIPB_CNTL */
  1020. s->control = value & 0xffff;
  1021. break;
  1022. case 0x04: /* TIPB_BUS_ALLOC */
  1023. s->alloc = value & 0x003f;
  1024. break;
  1025. case 0x08: /* MPU_TIPB_CNTL */
  1026. s->buffer = value & 0x0003;
  1027. break;
  1028. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1029. s->width_intr = !(value & 2);
  1030. s->enh_control = value & 0x000f;
  1031. break;
  1032. case 0x10: /* ADDRESS_DBG */
  1033. case 0x14: /* DATA_DEBUG_LOW */
  1034. case 0x18: /* DATA_DEBUG_HIGH */
  1035. case 0x1c: /* DEBUG_CNTR_SIG */
  1036. OMAP_RO_REG(addr);
  1037. break;
  1038. default:
  1039. OMAP_BAD_REG(addr);
  1040. }
  1041. }
  1042. static const MemoryRegionOps omap_tipb_bridge_ops = {
  1043. .read = omap_tipb_bridge_read,
  1044. .write = omap_tipb_bridge_write,
  1045. .endianness = DEVICE_NATIVE_ENDIAN,
  1046. };
  1047. static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
  1048. {
  1049. s->control = 0xffff;
  1050. s->alloc = 0x0009;
  1051. s->buffer = 0x0000;
  1052. s->enh_control = 0x000f;
  1053. }
  1054. static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
  1055. MemoryRegion *memory, hwaddr base,
  1056. qemu_irq abort_irq, omap_clk clk)
  1057. {
  1058. struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
  1059. s->abort = abort_irq;
  1060. omap_tipb_bridge_reset(s);
  1061. memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
  1062. "omap-tipb-bridge", 0x100);
  1063. memory_region_add_subregion(memory, base, &s->iomem);
  1064. return s;
  1065. }
  1066. /* Dummy Traffic Controller's Memory Interface */
  1067. static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
  1068. unsigned size)
  1069. {
  1070. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1071. uint32_t ret;
  1072. if (size != 4) {
  1073. return omap_badwidth_read32(opaque, addr);
  1074. }
  1075. switch (addr) {
  1076. case 0x00: /* IMIF_PRIO */
  1077. case 0x04: /* EMIFS_PRIO */
  1078. case 0x08: /* EMIFF_PRIO */
  1079. case 0x0c: /* EMIFS_CONFIG */
  1080. case 0x10: /* EMIFS_CS0_CONFIG */
  1081. case 0x14: /* EMIFS_CS1_CONFIG */
  1082. case 0x18: /* EMIFS_CS2_CONFIG */
  1083. case 0x1c: /* EMIFS_CS3_CONFIG */
  1084. case 0x24: /* EMIFF_MRS */
  1085. case 0x28: /* TIMEOUT1 */
  1086. case 0x2c: /* TIMEOUT2 */
  1087. case 0x30: /* TIMEOUT3 */
  1088. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1089. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1090. return s->tcmi_regs[addr >> 2];
  1091. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1092. ret = s->tcmi_regs[addr >> 2];
  1093. s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
  1094. /* XXX: We can try using the VGA_DIRTY flag for this */
  1095. return ret;
  1096. }
  1097. OMAP_BAD_REG(addr);
  1098. return 0;
  1099. }
  1100. static void omap_tcmi_write(void *opaque, hwaddr addr,
  1101. uint64_t value, unsigned size)
  1102. {
  1103. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1104. if (size != 4) {
  1105. omap_badwidth_write32(opaque, addr, value);
  1106. return;
  1107. }
  1108. switch (addr) {
  1109. case 0x00: /* IMIF_PRIO */
  1110. case 0x04: /* EMIFS_PRIO */
  1111. case 0x08: /* EMIFF_PRIO */
  1112. case 0x10: /* EMIFS_CS0_CONFIG */
  1113. case 0x14: /* EMIFS_CS1_CONFIG */
  1114. case 0x18: /* EMIFS_CS2_CONFIG */
  1115. case 0x1c: /* EMIFS_CS3_CONFIG */
  1116. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1117. case 0x24: /* EMIFF_MRS */
  1118. case 0x28: /* TIMEOUT1 */
  1119. case 0x2c: /* TIMEOUT2 */
  1120. case 0x30: /* TIMEOUT3 */
  1121. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1122. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1123. s->tcmi_regs[addr >> 2] = value;
  1124. break;
  1125. case 0x0c: /* EMIFS_CONFIG */
  1126. s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
  1127. break;
  1128. default:
  1129. OMAP_BAD_REG(addr);
  1130. }
  1131. }
  1132. static const MemoryRegionOps omap_tcmi_ops = {
  1133. .read = omap_tcmi_read,
  1134. .write = omap_tcmi_write,
  1135. .endianness = DEVICE_NATIVE_ENDIAN,
  1136. };
  1137. static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
  1138. {
  1139. mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
  1140. mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
  1141. mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
  1142. mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
  1143. mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
  1144. mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
  1145. mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
  1146. mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
  1147. mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
  1148. mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
  1149. mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
  1150. mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
  1151. mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
  1152. mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
  1153. mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
  1154. }
  1155. static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
  1156. struct omap_mpu_state_s *mpu)
  1157. {
  1158. memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
  1159. "omap-tcmi", 0x100);
  1160. memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
  1161. omap_tcmi_reset(mpu);
  1162. }
  1163. /* Digital phase-locked loops control */
  1164. struct dpll_ctl_s {
  1165. MemoryRegion iomem;
  1166. uint16_t mode;
  1167. omap_clk dpll;
  1168. };
  1169. static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
  1170. unsigned size)
  1171. {
  1172. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1173. if (size != 2) {
  1174. return omap_badwidth_read16(opaque, addr);
  1175. }
  1176. if (addr == 0x00) /* CTL_REG */
  1177. return s->mode;
  1178. OMAP_BAD_REG(addr);
  1179. return 0;
  1180. }
  1181. static void omap_dpll_write(void *opaque, hwaddr addr,
  1182. uint64_t value, unsigned size)
  1183. {
  1184. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1185. uint16_t diff;
  1186. static const int bypass_div[4] = { 1, 2, 4, 4 };
  1187. int div, mult;
  1188. if (size != 2) {
  1189. omap_badwidth_write16(opaque, addr, value);
  1190. return;
  1191. }
  1192. if (addr == 0x00) { /* CTL_REG */
  1193. /* See omap_ulpd_pm_write() too */
  1194. diff = s->mode & value;
  1195. s->mode = value & 0x2fff;
  1196. if (diff & (0x3ff << 2)) {
  1197. if (value & (1 << 4)) { /* PLL_ENABLE */
  1198. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1199. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1200. } else {
  1201. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1202. mult = 1;
  1203. }
  1204. omap_clk_setrate(s->dpll, div, mult);
  1205. }
  1206. /* Enter the desired mode. */
  1207. s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
  1208. /* Act as if the lock is restored. */
  1209. s->mode |= 2;
  1210. } else {
  1211. OMAP_BAD_REG(addr);
  1212. }
  1213. }
  1214. static const MemoryRegionOps omap_dpll_ops = {
  1215. .read = omap_dpll_read,
  1216. .write = omap_dpll_write,
  1217. .endianness = DEVICE_NATIVE_ENDIAN,
  1218. };
  1219. static void omap_dpll_reset(struct dpll_ctl_s *s)
  1220. {
  1221. s->mode = 0x2002;
  1222. omap_clk_setrate(s->dpll, 1, 1);
  1223. }
  1224. static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
  1225. hwaddr base, omap_clk clk)
  1226. {
  1227. struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
  1228. memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
  1229. s->dpll = clk;
  1230. omap_dpll_reset(s);
  1231. memory_region_add_subregion(memory, base, &s->iomem);
  1232. return s;
  1233. }
  1234. /* MPU Clock/Reset/Power Mode Control */
  1235. static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
  1236. unsigned size)
  1237. {
  1238. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1239. if (size != 2) {
  1240. return omap_badwidth_read16(opaque, addr);
  1241. }
  1242. switch (addr) {
  1243. case 0x00: /* ARM_CKCTL */
  1244. return s->clkm.arm_ckctl;
  1245. case 0x04: /* ARM_IDLECT1 */
  1246. return s->clkm.arm_idlect1;
  1247. case 0x08: /* ARM_IDLECT2 */
  1248. return s->clkm.arm_idlect2;
  1249. case 0x0c: /* ARM_EWUPCT */
  1250. return s->clkm.arm_ewupct;
  1251. case 0x10: /* ARM_RSTCT1 */
  1252. return s->clkm.arm_rstct1;
  1253. case 0x14: /* ARM_RSTCT2 */
  1254. return s->clkm.arm_rstct2;
  1255. case 0x18: /* ARM_SYSST */
  1256. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
  1257. case 0x1c: /* ARM_CKOUT1 */
  1258. return s->clkm.arm_ckout1;
  1259. case 0x20: /* ARM_CKOUT2 */
  1260. break;
  1261. }
  1262. OMAP_BAD_REG(addr);
  1263. return 0;
  1264. }
  1265. static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
  1266. uint16_t diff, uint16_t value)
  1267. {
  1268. omap_clk clk;
  1269. if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
  1270. if (value & (1 << 14))
  1271. /* Reserved */;
  1272. else {
  1273. clk = omap_findclk(s, "arminth_ck");
  1274. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1275. }
  1276. }
  1277. if (diff & (1 << 12)) { /* ARM_TIMXO */
  1278. clk = omap_findclk(s, "armtim_ck");
  1279. if (value & (1 << 12))
  1280. omap_clk_reparent(clk, omap_findclk(s, "clkin"));
  1281. else
  1282. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1283. }
  1284. /* XXX: en_dspck */
  1285. if (diff & (3 << 10)) { /* DSPMMUDIV */
  1286. clk = omap_findclk(s, "dspmmu_ck");
  1287. omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
  1288. }
  1289. if (diff & (3 << 8)) { /* TCDIV */
  1290. clk = omap_findclk(s, "tc_ck");
  1291. omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
  1292. }
  1293. if (diff & (3 << 6)) { /* DSPDIV */
  1294. clk = omap_findclk(s, "dsp_ck");
  1295. omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
  1296. }
  1297. if (diff & (3 << 4)) { /* ARMDIV */
  1298. clk = omap_findclk(s, "arm_ck");
  1299. omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
  1300. }
  1301. if (diff & (3 << 2)) { /* LCDDIV */
  1302. clk = omap_findclk(s, "lcd_ck");
  1303. omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
  1304. }
  1305. if (diff & (3 << 0)) { /* PERDIV */
  1306. clk = omap_findclk(s, "armper_ck");
  1307. omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
  1308. }
  1309. }
  1310. static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
  1311. uint16_t diff, uint16_t value)
  1312. {
  1313. omap_clk clk;
  1314. if (value & (1 << 11)) { /* SETARM_IDLE */
  1315. cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
  1316. }
  1317. if (!(value & (1 << 10))) /* WKUP_MODE */
  1318. qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
  1319. #define SET_CANIDLE(clock, bit) \
  1320. if (diff & (1 << bit)) { \
  1321. clk = omap_findclk(s, clock); \
  1322. omap_clk_canidle(clk, (value >> bit) & 1); \
  1323. }
  1324. SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
  1325. SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
  1326. SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
  1327. SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
  1328. SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
  1329. SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
  1330. SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
  1331. SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
  1332. SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
  1333. SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
  1334. SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
  1335. SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
  1336. SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
  1337. SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
  1338. }
  1339. static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
  1340. uint16_t diff, uint16_t value)
  1341. {
  1342. omap_clk clk;
  1343. #define SET_ONOFF(clock, bit) \
  1344. if (diff & (1 << bit)) { \
  1345. clk = omap_findclk(s, clock); \
  1346. omap_clk_onoff(clk, (value >> bit) & 1); \
  1347. }
  1348. SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
  1349. SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
  1350. SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
  1351. SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
  1352. SET_ONOFF("lb_ck", 4) /* EN_LBCK */
  1353. SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
  1354. SET_ONOFF("mpui_ck", 6) /* EN_APICK */
  1355. SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
  1356. SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
  1357. SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
  1358. SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
  1359. }
  1360. static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
  1361. uint16_t diff, uint16_t value)
  1362. {
  1363. omap_clk clk;
  1364. if (diff & (3 << 4)) { /* TCLKOUT */
  1365. clk = omap_findclk(s, "tclk_out");
  1366. switch ((value >> 4) & 3) {
  1367. case 1:
  1368. omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
  1369. omap_clk_onoff(clk, 1);
  1370. break;
  1371. case 2:
  1372. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1373. omap_clk_onoff(clk, 1);
  1374. break;
  1375. default:
  1376. omap_clk_onoff(clk, 0);
  1377. }
  1378. }
  1379. if (diff & (3 << 2)) { /* DCLKOUT */
  1380. clk = omap_findclk(s, "dclk_out");
  1381. switch ((value >> 2) & 3) {
  1382. case 0:
  1383. omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
  1384. break;
  1385. case 1:
  1386. omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
  1387. break;
  1388. case 2:
  1389. omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
  1390. break;
  1391. case 3:
  1392. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1393. break;
  1394. }
  1395. }
  1396. if (diff & (3 << 0)) { /* ACLKOUT */
  1397. clk = omap_findclk(s, "aclk_out");
  1398. switch ((value >> 0) & 3) {
  1399. case 1:
  1400. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1401. omap_clk_onoff(clk, 1);
  1402. break;
  1403. case 2:
  1404. omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
  1405. omap_clk_onoff(clk, 1);
  1406. break;
  1407. case 3:
  1408. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1409. omap_clk_onoff(clk, 1);
  1410. break;
  1411. default:
  1412. omap_clk_onoff(clk, 0);
  1413. }
  1414. }
  1415. }
  1416. static void omap_clkm_write(void *opaque, hwaddr addr,
  1417. uint64_t value, unsigned size)
  1418. {
  1419. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1420. uint16_t diff;
  1421. omap_clk clk;
  1422. static const char *clkschemename[8] = {
  1423. "fully synchronous", "fully asynchronous", "synchronous scalable",
  1424. "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
  1425. };
  1426. if (size != 2) {
  1427. omap_badwidth_write16(opaque, addr, value);
  1428. return;
  1429. }
  1430. switch (addr) {
  1431. case 0x00: /* ARM_CKCTL */
  1432. diff = s->clkm.arm_ckctl ^ value;
  1433. s->clkm.arm_ckctl = value & 0x7fff;
  1434. omap_clkm_ckctl_update(s, diff, value);
  1435. return;
  1436. case 0x04: /* ARM_IDLECT1 */
  1437. diff = s->clkm.arm_idlect1 ^ value;
  1438. s->clkm.arm_idlect1 = value & 0x0fff;
  1439. omap_clkm_idlect1_update(s, diff, value);
  1440. return;
  1441. case 0x08: /* ARM_IDLECT2 */
  1442. diff = s->clkm.arm_idlect2 ^ value;
  1443. s->clkm.arm_idlect2 = value & 0x07ff;
  1444. omap_clkm_idlect2_update(s, diff, value);
  1445. return;
  1446. case 0x0c: /* ARM_EWUPCT */
  1447. s->clkm.arm_ewupct = value & 0x003f;
  1448. return;
  1449. case 0x10: /* ARM_RSTCT1 */
  1450. diff = s->clkm.arm_rstct1 ^ value;
  1451. s->clkm.arm_rstct1 = value & 0x0007;
  1452. if (value & 9) {
  1453. qemu_system_reset_request();
  1454. s->clkm.cold_start = 0xa;
  1455. }
  1456. if (diff & ~value & 4) { /* DSP_RST */
  1457. omap_mpui_reset(s);
  1458. omap_tipb_bridge_reset(s->private_tipb);
  1459. omap_tipb_bridge_reset(s->public_tipb);
  1460. }
  1461. if (diff & 2) { /* DSP_EN */
  1462. clk = omap_findclk(s, "dsp_ck");
  1463. omap_clk_canidle(clk, (~value >> 1) & 1);
  1464. }
  1465. return;
  1466. case 0x14: /* ARM_RSTCT2 */
  1467. s->clkm.arm_rstct2 = value & 0x0001;
  1468. return;
  1469. case 0x18: /* ARM_SYSST */
  1470. if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
  1471. s->clkm.clocking_scheme = (value >> 11) & 7;
  1472. printf("%s: clocking scheme set to %s\n", __FUNCTION__,
  1473. clkschemename[s->clkm.clocking_scheme]);
  1474. }
  1475. s->clkm.cold_start &= value & 0x3f;
  1476. return;
  1477. case 0x1c: /* ARM_CKOUT1 */
  1478. diff = s->clkm.arm_ckout1 ^ value;
  1479. s->clkm.arm_ckout1 = value & 0x003f;
  1480. omap_clkm_ckout1_update(s, diff, value);
  1481. return;
  1482. case 0x20: /* ARM_CKOUT2 */
  1483. default:
  1484. OMAP_BAD_REG(addr);
  1485. }
  1486. }
  1487. static const MemoryRegionOps omap_clkm_ops = {
  1488. .read = omap_clkm_read,
  1489. .write = omap_clkm_write,
  1490. .endianness = DEVICE_NATIVE_ENDIAN,
  1491. };
  1492. static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
  1493. unsigned size)
  1494. {
  1495. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1496. CPUState *cpu = CPU(s->cpu);
  1497. if (size != 2) {
  1498. return omap_badwidth_read16(opaque, addr);
  1499. }
  1500. switch (addr) {
  1501. case 0x04: /* DSP_IDLECT1 */
  1502. return s->clkm.dsp_idlect1;
  1503. case 0x08: /* DSP_IDLECT2 */
  1504. return s->clkm.dsp_idlect2;
  1505. case 0x14: /* DSP_RSTCT2 */
  1506. return s->clkm.dsp_rstct2;
  1507. case 0x18: /* DSP_SYSST */
  1508. cpu = CPU(s->cpu);
  1509. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
  1510. (cpu->halted << 6); /* Quite useless... */
  1511. }
  1512. OMAP_BAD_REG(addr);
  1513. return 0;
  1514. }
  1515. static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
  1516. uint16_t diff, uint16_t value)
  1517. {
  1518. omap_clk clk;
  1519. SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
  1520. }
  1521. static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
  1522. uint16_t diff, uint16_t value)
  1523. {
  1524. omap_clk clk;
  1525. SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
  1526. }
  1527. static void omap_clkdsp_write(void *opaque, hwaddr addr,
  1528. uint64_t value, unsigned size)
  1529. {
  1530. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1531. uint16_t diff;
  1532. if (size != 2) {
  1533. omap_badwidth_write16(opaque, addr, value);
  1534. return;
  1535. }
  1536. switch (addr) {
  1537. case 0x04: /* DSP_IDLECT1 */
  1538. diff = s->clkm.dsp_idlect1 ^ value;
  1539. s->clkm.dsp_idlect1 = value & 0x01f7;
  1540. omap_clkdsp_idlect1_update(s, diff, value);
  1541. break;
  1542. case 0x08: /* DSP_IDLECT2 */
  1543. s->clkm.dsp_idlect2 = value & 0x0037;
  1544. diff = s->clkm.dsp_idlect1 ^ value;
  1545. omap_clkdsp_idlect2_update(s, diff, value);
  1546. break;
  1547. case 0x14: /* DSP_RSTCT2 */
  1548. s->clkm.dsp_rstct2 = value & 0x0001;
  1549. break;
  1550. case 0x18: /* DSP_SYSST */
  1551. s->clkm.cold_start &= value & 0x3f;
  1552. break;
  1553. default:
  1554. OMAP_BAD_REG(addr);
  1555. }
  1556. }
  1557. static const MemoryRegionOps omap_clkdsp_ops = {
  1558. .read = omap_clkdsp_read,
  1559. .write = omap_clkdsp_write,
  1560. .endianness = DEVICE_NATIVE_ENDIAN,
  1561. };
  1562. static void omap_clkm_reset(struct omap_mpu_state_s *s)
  1563. {
  1564. if (s->wdt && s->wdt->reset)
  1565. s->clkm.cold_start = 0x6;
  1566. s->clkm.clocking_scheme = 0;
  1567. omap_clkm_ckctl_update(s, ~0, 0x3000);
  1568. s->clkm.arm_ckctl = 0x3000;
  1569. omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
  1570. s->clkm.arm_idlect1 = 0x0400;
  1571. omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
  1572. s->clkm.arm_idlect2 = 0x0100;
  1573. s->clkm.arm_ewupct = 0x003f;
  1574. s->clkm.arm_rstct1 = 0x0000;
  1575. s->clkm.arm_rstct2 = 0x0000;
  1576. s->clkm.arm_ckout1 = 0x0015;
  1577. s->clkm.dpll1_mode = 0x2002;
  1578. omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
  1579. s->clkm.dsp_idlect1 = 0x0040;
  1580. omap_clkdsp_idlect2_update(s, ~0, 0x0000);
  1581. s->clkm.dsp_idlect2 = 0x0000;
  1582. s->clkm.dsp_rstct2 = 0x0000;
  1583. }
  1584. static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
  1585. hwaddr dsp_base, struct omap_mpu_state_s *s)
  1586. {
  1587. memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
  1588. "omap-clkm", 0x100);
  1589. memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
  1590. "omap-clkdsp", 0x1000);
  1591. s->clkm.arm_idlect1 = 0x03ff;
  1592. s->clkm.arm_idlect2 = 0x0100;
  1593. s->clkm.dsp_idlect1 = 0x0002;
  1594. omap_clkm_reset(s);
  1595. s->clkm.cold_start = 0x3a;
  1596. memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
  1597. memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
  1598. }
  1599. /* MPU I/O */
  1600. struct omap_mpuio_s {
  1601. qemu_irq irq;
  1602. qemu_irq kbd_irq;
  1603. qemu_irq *in;
  1604. qemu_irq handler[16];
  1605. qemu_irq wakeup;
  1606. MemoryRegion iomem;
  1607. uint16_t inputs;
  1608. uint16_t outputs;
  1609. uint16_t dir;
  1610. uint16_t edge;
  1611. uint16_t mask;
  1612. uint16_t ints;
  1613. uint16_t debounce;
  1614. uint16_t latch;
  1615. uint8_t event;
  1616. uint8_t buttons[5];
  1617. uint8_t row_latch;
  1618. uint8_t cols;
  1619. int kbd_mask;
  1620. int clk;
  1621. };
  1622. static void omap_mpuio_set(void *opaque, int line, int level)
  1623. {
  1624. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1625. uint16_t prev = s->inputs;
  1626. if (level)
  1627. s->inputs |= 1 << line;
  1628. else
  1629. s->inputs &= ~(1 << line);
  1630. if (((1 << line) & s->dir & ~s->mask) && s->clk) {
  1631. if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
  1632. s->ints |= 1 << line;
  1633. qemu_irq_raise(s->irq);
  1634. /* TODO: wakeup */
  1635. }
  1636. if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
  1637. (s->event >> 1) == line) /* PIN_SELECT */
  1638. s->latch = s->inputs;
  1639. }
  1640. }
  1641. static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
  1642. {
  1643. int i;
  1644. uint8_t *row, rows = 0, cols = ~s->cols;
  1645. for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
  1646. if (*row & cols)
  1647. rows |= i;
  1648. qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
  1649. s->row_latch = ~rows;
  1650. }
  1651. static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
  1652. unsigned size)
  1653. {
  1654. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1655. int offset = addr & OMAP_MPUI_REG_MASK;
  1656. uint16_t ret;
  1657. if (size != 2) {
  1658. return omap_badwidth_read16(opaque, addr);
  1659. }
  1660. switch (offset) {
  1661. case 0x00: /* INPUT_LATCH */
  1662. return s->inputs;
  1663. case 0x04: /* OUTPUT_REG */
  1664. return s->outputs;
  1665. case 0x08: /* IO_CNTL */
  1666. return s->dir;
  1667. case 0x10: /* KBR_LATCH */
  1668. return s->row_latch;
  1669. case 0x14: /* KBC_REG */
  1670. return s->cols;
  1671. case 0x18: /* GPIO_EVENT_MODE_REG */
  1672. return s->event;
  1673. case 0x1c: /* GPIO_INT_EDGE_REG */
  1674. return s->edge;
  1675. case 0x20: /* KBD_INT */
  1676. return (~s->row_latch & 0x1f) && !s->kbd_mask;
  1677. case 0x24: /* GPIO_INT */
  1678. ret = s->ints;
  1679. s->ints &= s->mask;
  1680. if (ret)
  1681. qemu_irq_lower(s->irq);
  1682. return ret;
  1683. case 0x28: /* KBD_MASKIT */
  1684. return s->kbd_mask;
  1685. case 0x2c: /* GPIO_MASKIT */
  1686. return s->mask;
  1687. case 0x30: /* GPIO_DEBOUNCING_REG */
  1688. return s->debounce;
  1689. case 0x34: /* GPIO_LATCH_REG */
  1690. return s->latch;
  1691. }
  1692. OMAP_BAD_REG(addr);
  1693. return 0;
  1694. }
  1695. static void omap_mpuio_write(void *opaque, hwaddr addr,
  1696. uint64_t value, unsigned size)
  1697. {
  1698. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1699. int offset = addr & OMAP_MPUI_REG_MASK;
  1700. uint16_t diff;
  1701. int ln;
  1702. if (size != 2) {
  1703. omap_badwidth_write16(opaque, addr, value);
  1704. return;
  1705. }
  1706. switch (offset) {
  1707. case 0x04: /* OUTPUT_REG */
  1708. diff = (s->outputs ^ value) & ~s->dir;
  1709. s->outputs = value;
  1710. while ((ln = ctz32(diff)) != 32) {
  1711. if (s->handler[ln])
  1712. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1713. diff &= ~(1 << ln);
  1714. }
  1715. break;
  1716. case 0x08: /* IO_CNTL */
  1717. diff = s->outputs & (s->dir ^ value);
  1718. s->dir = value;
  1719. value = s->outputs & ~s->dir;
  1720. while ((ln = ctz32(diff)) != 32) {
  1721. if (s->handler[ln])
  1722. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1723. diff &= ~(1 << ln);
  1724. }
  1725. break;
  1726. case 0x14: /* KBC_REG */
  1727. s->cols = value;
  1728. omap_mpuio_kbd_update(s);
  1729. break;
  1730. case 0x18: /* GPIO_EVENT_MODE_REG */
  1731. s->event = value & 0x1f;
  1732. break;
  1733. case 0x1c: /* GPIO_INT_EDGE_REG */
  1734. s->edge = value;
  1735. break;
  1736. case 0x28: /* KBD_MASKIT */
  1737. s->kbd_mask = value & 1;
  1738. omap_mpuio_kbd_update(s);
  1739. break;
  1740. case 0x2c: /* GPIO_MASKIT */
  1741. s->mask = value;
  1742. break;
  1743. case 0x30: /* GPIO_DEBOUNCING_REG */
  1744. s->debounce = value & 0x1ff;
  1745. break;
  1746. case 0x00: /* INPUT_LATCH */
  1747. case 0x10: /* KBR_LATCH */
  1748. case 0x20: /* KBD_INT */
  1749. case 0x24: /* GPIO_INT */
  1750. case 0x34: /* GPIO_LATCH_REG */
  1751. OMAP_RO_REG(addr);
  1752. return;
  1753. default:
  1754. OMAP_BAD_REG(addr);
  1755. return;
  1756. }
  1757. }
  1758. static const MemoryRegionOps omap_mpuio_ops = {
  1759. .read = omap_mpuio_read,
  1760. .write = omap_mpuio_write,
  1761. .endianness = DEVICE_NATIVE_ENDIAN,
  1762. };
  1763. static void omap_mpuio_reset(struct omap_mpuio_s *s)
  1764. {
  1765. s->inputs = 0;
  1766. s->outputs = 0;
  1767. s->dir = ~0;
  1768. s->event = 0;
  1769. s->edge = 0;
  1770. s->kbd_mask = 0;
  1771. s->mask = 0;
  1772. s->debounce = 0;
  1773. s->latch = 0;
  1774. s->ints = 0;
  1775. s->row_latch = 0x1f;
  1776. s->clk = 1;
  1777. }
  1778. static void omap_mpuio_onoff(void *opaque, int line, int on)
  1779. {
  1780. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  1781. s->clk = on;
  1782. if (on)
  1783. omap_mpuio_kbd_update(s);
  1784. }
  1785. static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
  1786. hwaddr base,
  1787. qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
  1788. omap_clk clk)
  1789. {
  1790. struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
  1791. s->irq = gpio_int;
  1792. s->kbd_irq = kbd_int;
  1793. s->wakeup = wakeup;
  1794. s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
  1795. omap_mpuio_reset(s);
  1796. memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
  1797. "omap-mpuio", 0x800);
  1798. memory_region_add_subregion(memory, base, &s->iomem);
  1799. omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
  1800. return s;
  1801. }
  1802. qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
  1803. {
  1804. return s->in;
  1805. }
  1806. void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
  1807. {
  1808. if (line >= 16 || line < 0)
  1809. hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
  1810. s->handler[line] = handler;
  1811. }
  1812. void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
  1813. {
  1814. if (row >= 5 || row < 0)
  1815. hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
  1816. if (down)
  1817. s->buttons[row] |= 1 << col;
  1818. else
  1819. s->buttons[row] &= ~(1 << col);
  1820. omap_mpuio_kbd_update(s);
  1821. }
  1822. /* MicroWire Interface */
  1823. struct omap_uwire_s {
  1824. MemoryRegion iomem;
  1825. qemu_irq txirq;
  1826. qemu_irq rxirq;
  1827. qemu_irq txdrq;
  1828. uint16_t txbuf;
  1829. uint16_t rxbuf;
  1830. uint16_t control;
  1831. uint16_t setup[5];
  1832. uWireSlave *chip[4];
  1833. };
  1834. static void omap_uwire_transfer_start(struct omap_uwire_s *s)
  1835. {
  1836. int chipselect = (s->control >> 10) & 3; /* INDEX */
  1837. uWireSlave *slave = s->chip[chipselect];
  1838. if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
  1839. if (s->control & (1 << 12)) /* CS_CMD */
  1840. if (slave && slave->send)
  1841. slave->send(slave->opaque,
  1842. s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
  1843. s->control &= ~(1 << 14); /* CSRB */
  1844. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1845. * a DRQ. When is the level IRQ supposed to be reset? */
  1846. }
  1847. if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
  1848. if (s->control & (1 << 12)) /* CS_CMD */
  1849. if (slave && slave->receive)
  1850. s->rxbuf = slave->receive(slave->opaque);
  1851. s->control |= 1 << 15; /* RDRB */
  1852. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1853. * a DRQ. When is the level IRQ supposed to be reset? */
  1854. }
  1855. }
  1856. static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
  1857. unsigned size)
  1858. {
  1859. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1860. int offset = addr & OMAP_MPUI_REG_MASK;
  1861. if (size != 2) {
  1862. return omap_badwidth_read16(opaque, addr);
  1863. }
  1864. switch (offset) {
  1865. case 0x00: /* RDR */
  1866. s->control &= ~(1 << 15); /* RDRB */
  1867. return s->rxbuf;
  1868. case 0x04: /* CSR */
  1869. return s->control;
  1870. case 0x08: /* SR1 */
  1871. return s->setup[0];
  1872. case 0x0c: /* SR2 */
  1873. return s->setup[1];
  1874. case 0x10: /* SR3 */
  1875. return s->setup[2];
  1876. case 0x14: /* SR4 */
  1877. return s->setup[3];
  1878. case 0x18: /* SR5 */
  1879. return s->setup[4];
  1880. }
  1881. OMAP_BAD_REG(addr);
  1882. return 0;
  1883. }
  1884. static void omap_uwire_write(void *opaque, hwaddr addr,
  1885. uint64_t value, unsigned size)
  1886. {
  1887. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  1888. int offset = addr & OMAP_MPUI_REG_MASK;
  1889. if (size != 2) {
  1890. omap_badwidth_write16(opaque, addr, value);
  1891. return;
  1892. }
  1893. switch (offset) {
  1894. case 0x00: /* TDR */
  1895. s->txbuf = value; /* TD */
  1896. if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
  1897. ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
  1898. (s->control & (1 << 12)))) { /* CS_CMD */
  1899. s->control |= 1 << 14; /* CSRB */
  1900. omap_uwire_transfer_start(s);
  1901. }
  1902. break;
  1903. case 0x04: /* CSR */
  1904. s->control = value & 0x1fff;
  1905. if (value & (1 << 13)) /* START */
  1906. omap_uwire_transfer_start(s);
  1907. break;
  1908. case 0x08: /* SR1 */
  1909. s->setup[0] = value & 0x003f;
  1910. break;
  1911. case 0x0c: /* SR2 */
  1912. s->setup[1] = value & 0x0fc0;
  1913. break;
  1914. case 0x10: /* SR3 */
  1915. s->setup[2] = value & 0x0003;
  1916. break;
  1917. case 0x14: /* SR4 */
  1918. s->setup[3] = value & 0x0001;
  1919. break;
  1920. case 0x18: /* SR5 */
  1921. s->setup[4] = value & 0x000f;
  1922. break;
  1923. default:
  1924. OMAP_BAD_REG(addr);
  1925. return;
  1926. }
  1927. }
  1928. static const MemoryRegionOps omap_uwire_ops = {
  1929. .read = omap_uwire_read,
  1930. .write = omap_uwire_write,
  1931. .endianness = DEVICE_NATIVE_ENDIAN,
  1932. };
  1933. static void omap_uwire_reset(struct omap_uwire_s *s)
  1934. {
  1935. s->control = 0;
  1936. s->setup[0] = 0;
  1937. s->setup[1] = 0;
  1938. s->setup[2] = 0;
  1939. s->setup[3] = 0;
  1940. s->setup[4] = 0;
  1941. }
  1942. static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
  1943. hwaddr base,
  1944. qemu_irq txirq, qemu_irq rxirq,
  1945. qemu_irq dma,
  1946. omap_clk clk)
  1947. {
  1948. struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
  1949. s->txirq = txirq;
  1950. s->rxirq = rxirq;
  1951. s->txdrq = dma;
  1952. omap_uwire_reset(s);
  1953. memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
  1954. memory_region_add_subregion(system_memory, base, &s->iomem);
  1955. return s;
  1956. }
  1957. void omap_uwire_attach(struct omap_uwire_s *s,
  1958. uWireSlave *slave, int chipselect)
  1959. {
  1960. if (chipselect < 0 || chipselect > 3) {
  1961. fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
  1962. exit(-1);
  1963. }
  1964. s->chip[chipselect] = slave;
  1965. }
  1966. /* Pseudonoise Pulse-Width Light Modulator */
  1967. struct omap_pwl_s {
  1968. MemoryRegion iomem;
  1969. uint8_t output;
  1970. uint8_t level;
  1971. uint8_t enable;
  1972. int clk;
  1973. };
  1974. static void omap_pwl_update(struct omap_pwl_s *s)
  1975. {
  1976. int output = (s->clk && s->enable) ? s->level : 0;
  1977. if (output != s->output) {
  1978. s->output = output;
  1979. printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
  1980. }
  1981. }
  1982. static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
  1983. unsigned size)
  1984. {
  1985. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  1986. int offset = addr & OMAP_MPUI_REG_MASK;
  1987. if (size != 1) {
  1988. return omap_badwidth_read8(opaque, addr);
  1989. }
  1990. switch (offset) {
  1991. case 0x00: /* PWL_LEVEL */
  1992. return s->level;
  1993. case 0x04: /* PWL_CTRL */
  1994. return s->enable;
  1995. }
  1996. OMAP_BAD_REG(addr);
  1997. return 0;
  1998. }
  1999. static void omap_pwl_write(void *opaque, hwaddr addr,
  2000. uint64_t value, unsigned size)
  2001. {
  2002. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  2003. int offset = addr & OMAP_MPUI_REG_MASK;
  2004. if (size != 1) {
  2005. omap_badwidth_write8(opaque, addr, value);
  2006. return;
  2007. }
  2008. switch (offset) {
  2009. case 0x00: /* PWL_LEVEL */
  2010. s->level = value;
  2011. omap_pwl_update(s);
  2012. break;
  2013. case 0x04: /* PWL_CTRL */
  2014. s->enable = value & 1;
  2015. omap_pwl_update(s);
  2016. break;
  2017. default:
  2018. OMAP_BAD_REG(addr);
  2019. return;
  2020. }
  2021. }
  2022. static const MemoryRegionOps omap_pwl_ops = {
  2023. .read = omap_pwl_read,
  2024. .write = omap_pwl_write,
  2025. .endianness = DEVICE_NATIVE_ENDIAN,
  2026. };
  2027. static void omap_pwl_reset(struct omap_pwl_s *s)
  2028. {
  2029. s->output = 0;
  2030. s->level = 0;
  2031. s->enable = 0;
  2032. s->clk = 1;
  2033. omap_pwl_update(s);
  2034. }
  2035. static void omap_pwl_clk_update(void *opaque, int line, int on)
  2036. {
  2037. struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
  2038. s->clk = on;
  2039. omap_pwl_update(s);
  2040. }
  2041. static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
  2042. hwaddr base,
  2043. omap_clk clk)
  2044. {
  2045. struct omap_pwl_s *s = g_malloc0(sizeof(*s));
  2046. omap_pwl_reset(s);
  2047. memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
  2048. "omap-pwl", 0x800);
  2049. memory_region_add_subregion(system_memory, base, &s->iomem);
  2050. omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
  2051. return s;
  2052. }
  2053. /* Pulse-Width Tone module */
  2054. struct omap_pwt_s {
  2055. MemoryRegion iomem;
  2056. uint8_t frc;
  2057. uint8_t vrc;
  2058. uint8_t gcr;
  2059. omap_clk clk;
  2060. };
  2061. static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
  2062. unsigned size)
  2063. {
  2064. struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
  2065. int offset = addr & OMAP_MPUI_REG_MASK;
  2066. if (size != 1) {
  2067. return omap_badwidth_read8(opaque, addr);
  2068. }
  2069. switch (offset) {
  2070. case 0x00: /* FRC */
  2071. return s->frc;
  2072. case 0x04: /* VCR */
  2073. return s->vrc;
  2074. case 0x08: /* GCR */
  2075. return s->gcr;
  2076. }
  2077. OMAP_BAD_REG(addr);
  2078. return 0;
  2079. }
  2080. static void omap_pwt_write(void *opaque, hwaddr addr,
  2081. uint64_t value, unsigned size)
  2082. {
  2083. struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
  2084. int offset = addr & OMAP_MPUI_REG_MASK;
  2085. if (size != 1) {
  2086. omap_badwidth_write8(opaque, addr, value);
  2087. return;
  2088. }
  2089. switch (offset) {
  2090. case 0x00: /* FRC */
  2091. s->frc = value & 0x3f;
  2092. break;
  2093. case 0x04: /* VRC */
  2094. if ((value ^ s->vrc) & 1) {
  2095. if (value & 1)
  2096. printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
  2097. /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
  2098. ((omap_clk_getrate(s->clk) >> 3) /
  2099. /* Pre-multiplexer divider */
  2100. ((s->gcr & 2) ? 1 : 154) /
  2101. /* Octave multiplexer */
  2102. (2 << (value & 3)) *
  2103. /* 101/107 divider */
  2104. ((value & (1 << 2)) ? 101 : 107) *
  2105. /* 49/55 divider */
  2106. ((value & (1 << 3)) ? 49 : 55) *
  2107. /* 50/63 divider */
  2108. ((value & (1 << 4)) ? 50 : 63) *
  2109. /* 80/127 divider */
  2110. ((value & (1 << 5)) ? 80 : 127) /
  2111. (107 * 55 * 63 * 127)));
  2112. else
  2113. printf("%s: silence!\n", __FUNCTION__);
  2114. }
  2115. s->vrc = value & 0x7f;
  2116. break;
  2117. case 0x08: /* GCR */
  2118. s->gcr = value & 3;
  2119. break;
  2120. default:
  2121. OMAP_BAD_REG(addr);
  2122. return;
  2123. }
  2124. }
  2125. static const MemoryRegionOps omap_pwt_ops = {
  2126. .read =omap_pwt_read,
  2127. .write = omap_pwt_write,
  2128. .endianness = DEVICE_NATIVE_ENDIAN,
  2129. };
  2130. static void omap_pwt_reset(struct omap_pwt_s *s)
  2131. {
  2132. s->frc = 0;
  2133. s->vrc = 0;
  2134. s->gcr = 0;
  2135. }
  2136. static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
  2137. hwaddr base,
  2138. omap_clk clk)
  2139. {
  2140. struct omap_pwt_s *s = g_malloc0(sizeof(*s));
  2141. s->clk = clk;
  2142. omap_pwt_reset(s);
  2143. memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
  2144. "omap-pwt", 0x800);
  2145. memory_region_add_subregion(system_memory, base, &s->iomem);
  2146. return s;
  2147. }
  2148. /* Real-time Clock module */
  2149. struct omap_rtc_s {
  2150. MemoryRegion iomem;
  2151. qemu_irq irq;
  2152. qemu_irq alarm;
  2153. QEMUTimer *clk;
  2154. uint8_t interrupts;
  2155. uint8_t status;
  2156. int16_t comp_reg;
  2157. int running;
  2158. int pm_am;
  2159. int auto_comp;
  2160. int round;
  2161. struct tm alarm_tm;
  2162. time_t alarm_ti;
  2163. struct tm current_tm;
  2164. time_t ti;
  2165. uint64_t tick;
  2166. };
  2167. static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
  2168. {
  2169. /* s->alarm is level-triggered */
  2170. qemu_set_irq(s->alarm, (s->status >> 6) & 1);
  2171. }
  2172. static void omap_rtc_alarm_update(struct omap_rtc_s *s)
  2173. {
  2174. s->alarm_ti = mktimegm(&s->alarm_tm);
  2175. if (s->alarm_ti == -1)
  2176. printf("%s: conversion failed\n", __FUNCTION__);
  2177. }
  2178. static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
  2179. unsigned size)
  2180. {
  2181. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2182. int offset = addr & OMAP_MPUI_REG_MASK;
  2183. uint8_t i;
  2184. if (size != 1) {
  2185. return omap_badwidth_read8(opaque, addr);
  2186. }
  2187. switch (offset) {
  2188. case 0x00: /* SECONDS_REG */
  2189. return to_bcd(s->current_tm.tm_sec);
  2190. case 0x04: /* MINUTES_REG */
  2191. return to_bcd(s->current_tm.tm_min);
  2192. case 0x08: /* HOURS_REG */
  2193. if (s->pm_am)
  2194. return ((s->current_tm.tm_hour > 11) << 7) |
  2195. to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
  2196. else
  2197. return to_bcd(s->current_tm.tm_hour);
  2198. case 0x0c: /* DAYS_REG */
  2199. return to_bcd(s->current_tm.tm_mday);
  2200. case 0x10: /* MONTHS_REG */
  2201. return to_bcd(s->current_tm.tm_mon + 1);
  2202. case 0x14: /* YEARS_REG */
  2203. return to_bcd(s->current_tm.tm_year % 100);
  2204. case 0x18: /* WEEK_REG */
  2205. return s->current_tm.tm_wday;
  2206. case 0x20: /* ALARM_SECONDS_REG */
  2207. return to_bcd(s->alarm_tm.tm_sec);
  2208. case 0x24: /* ALARM_MINUTES_REG */
  2209. return to_bcd(s->alarm_tm.tm_min);
  2210. case 0x28: /* ALARM_HOURS_REG */
  2211. if (s->pm_am)
  2212. return ((s->alarm_tm.tm_hour > 11) << 7) |
  2213. to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
  2214. else
  2215. return to_bcd(s->alarm_tm.tm_hour);
  2216. case 0x2c: /* ALARM_DAYS_REG */
  2217. return to_bcd(s->alarm_tm.tm_mday);
  2218. case 0x30: /* ALARM_MONTHS_REG */
  2219. return to_bcd(s->alarm_tm.tm_mon + 1);
  2220. case 0x34: /* ALARM_YEARS_REG */
  2221. return to_bcd(s->alarm_tm.tm_year % 100);
  2222. case 0x40: /* RTC_CTRL_REG */
  2223. return (s->pm_am << 3) | (s->auto_comp << 2) |
  2224. (s->round << 1) | s->running;
  2225. case 0x44: /* RTC_STATUS_REG */
  2226. i = s->status;
  2227. s->status &= ~0x3d;
  2228. return i;
  2229. case 0x48: /* RTC_INTERRUPTS_REG */
  2230. return s->interrupts;
  2231. case 0x4c: /* RTC_COMP_LSB_REG */
  2232. return ((uint16_t) s->comp_reg) & 0xff;
  2233. case 0x50: /* RTC_COMP_MSB_REG */
  2234. return ((uint16_t) s->comp_reg) >> 8;
  2235. }
  2236. OMAP_BAD_REG(addr);
  2237. return 0;
  2238. }
  2239. static void omap_rtc_write(void *opaque, hwaddr addr,
  2240. uint64_t value, unsigned size)
  2241. {
  2242. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2243. int offset = addr & OMAP_MPUI_REG_MASK;
  2244. struct tm new_tm;
  2245. time_t ti[2];
  2246. if (size != 1) {
  2247. omap_badwidth_write8(opaque, addr, value);
  2248. return;
  2249. }
  2250. switch (offset) {
  2251. case 0x00: /* SECONDS_REG */
  2252. #ifdef ALMDEBUG
  2253. printf("RTC SEC_REG <-- %02x\n", value);
  2254. #endif
  2255. s->ti -= s->current_tm.tm_sec;
  2256. s->ti += from_bcd(value);
  2257. return;
  2258. case 0x04: /* MINUTES_REG */
  2259. #ifdef ALMDEBUG
  2260. printf("RTC MIN_REG <-- %02x\n", value);
  2261. #endif
  2262. s->ti -= s->current_tm.tm_min * 60;
  2263. s->ti += from_bcd(value) * 60;
  2264. return;
  2265. case 0x08: /* HOURS_REG */
  2266. #ifdef ALMDEBUG
  2267. printf("RTC HRS_REG <-- %02x\n", value);
  2268. #endif
  2269. s->ti -= s->current_tm.tm_hour * 3600;
  2270. if (s->pm_am) {
  2271. s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
  2272. s->ti += ((value >> 7) & 1) * 43200;
  2273. } else
  2274. s->ti += from_bcd(value & 0x3f) * 3600;
  2275. return;
  2276. case 0x0c: /* DAYS_REG */
  2277. #ifdef ALMDEBUG
  2278. printf("RTC DAY_REG <-- %02x\n", value);
  2279. #endif
  2280. s->ti -= s->current_tm.tm_mday * 86400;
  2281. s->ti += from_bcd(value) * 86400;
  2282. return;
  2283. case 0x10: /* MONTHS_REG */
  2284. #ifdef ALMDEBUG
  2285. printf("RTC MTH_REG <-- %02x\n", value);
  2286. #endif
  2287. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2288. new_tm.tm_mon = from_bcd(value);
  2289. ti[0] = mktimegm(&s->current_tm);
  2290. ti[1] = mktimegm(&new_tm);
  2291. if (ti[0] != -1 && ti[1] != -1) {
  2292. s->ti -= ti[0];
  2293. s->ti += ti[1];
  2294. } else {
  2295. /* A less accurate version */
  2296. s->ti -= s->current_tm.tm_mon * 2592000;
  2297. s->ti += from_bcd(value) * 2592000;
  2298. }
  2299. return;
  2300. case 0x14: /* YEARS_REG */
  2301. #ifdef ALMDEBUG
  2302. printf("RTC YRS_REG <-- %02x\n", value);
  2303. #endif
  2304. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2305. new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
  2306. ti[0] = mktimegm(&s->current_tm);
  2307. ti[1] = mktimegm(&new_tm);
  2308. if (ti[0] != -1 && ti[1] != -1) {
  2309. s->ti -= ti[0];
  2310. s->ti += ti[1];
  2311. } else {
  2312. /* A less accurate version */
  2313. s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
  2314. s->ti += (time_t)from_bcd(value) * 31536000;
  2315. }
  2316. return;
  2317. case 0x18: /* WEEK_REG */
  2318. return; /* Ignored */
  2319. case 0x20: /* ALARM_SECONDS_REG */
  2320. #ifdef ALMDEBUG
  2321. printf("ALM SEC_REG <-- %02x\n", value);
  2322. #endif
  2323. s->alarm_tm.tm_sec = from_bcd(value);
  2324. omap_rtc_alarm_update(s);
  2325. return;
  2326. case 0x24: /* ALARM_MINUTES_REG */
  2327. #ifdef ALMDEBUG
  2328. printf("ALM MIN_REG <-- %02x\n", value);
  2329. #endif
  2330. s->alarm_tm.tm_min = from_bcd(value);
  2331. omap_rtc_alarm_update(s);
  2332. return;
  2333. case 0x28: /* ALARM_HOURS_REG */
  2334. #ifdef ALMDEBUG
  2335. printf("ALM HRS_REG <-- %02x\n", value);
  2336. #endif
  2337. if (s->pm_am)
  2338. s->alarm_tm.tm_hour =
  2339. ((from_bcd(value & 0x3f)) % 12) +
  2340. ((value >> 7) & 1) * 12;
  2341. else
  2342. s->alarm_tm.tm_hour = from_bcd(value);
  2343. omap_rtc_alarm_update(s);
  2344. return;
  2345. case 0x2c: /* ALARM_DAYS_REG */
  2346. #ifdef ALMDEBUG
  2347. printf("ALM DAY_REG <-- %02x\n", value);
  2348. #endif
  2349. s->alarm_tm.tm_mday = from_bcd(value);
  2350. omap_rtc_alarm_update(s);
  2351. return;
  2352. case 0x30: /* ALARM_MONTHS_REG */
  2353. #ifdef ALMDEBUG
  2354. printf("ALM MON_REG <-- %02x\n", value);
  2355. #endif
  2356. s->alarm_tm.tm_mon = from_bcd(value);
  2357. omap_rtc_alarm_update(s);
  2358. return;
  2359. case 0x34: /* ALARM_YEARS_REG */
  2360. #ifdef ALMDEBUG
  2361. printf("ALM YRS_REG <-- %02x\n", value);
  2362. #endif
  2363. s->alarm_tm.tm_year = from_bcd(value);
  2364. omap_rtc_alarm_update(s);
  2365. return;
  2366. case 0x40: /* RTC_CTRL_REG */
  2367. #ifdef ALMDEBUG
  2368. printf("RTC CONTROL <-- %02x\n", value);
  2369. #endif
  2370. s->pm_am = (value >> 3) & 1;
  2371. s->auto_comp = (value >> 2) & 1;
  2372. s->round = (value >> 1) & 1;
  2373. s->running = value & 1;
  2374. s->status &= 0xfd;
  2375. s->status |= s->running << 1;
  2376. return;
  2377. case 0x44: /* RTC_STATUS_REG */
  2378. #ifdef ALMDEBUG
  2379. printf("RTC STATUSL <-- %02x\n", value);
  2380. #endif
  2381. s->status &= ~((value & 0xc0) ^ 0x80);
  2382. omap_rtc_interrupts_update(s);
  2383. return;
  2384. case 0x48: /* RTC_INTERRUPTS_REG */
  2385. #ifdef ALMDEBUG
  2386. printf("RTC INTRS <-- %02x\n", value);
  2387. #endif
  2388. s->interrupts = value;
  2389. return;
  2390. case 0x4c: /* RTC_COMP_LSB_REG */
  2391. #ifdef ALMDEBUG
  2392. printf("RTC COMPLSB <-- %02x\n", value);
  2393. #endif
  2394. s->comp_reg &= 0xff00;
  2395. s->comp_reg |= 0x00ff & value;
  2396. return;
  2397. case 0x50: /* RTC_COMP_MSB_REG */
  2398. #ifdef ALMDEBUG
  2399. printf("RTC COMPMSB <-- %02x\n", value);
  2400. #endif
  2401. s->comp_reg &= 0x00ff;
  2402. s->comp_reg |= 0xff00 & (value << 8);
  2403. return;
  2404. default:
  2405. OMAP_BAD_REG(addr);
  2406. return;
  2407. }
  2408. }
  2409. static const MemoryRegionOps omap_rtc_ops = {
  2410. .read = omap_rtc_read,
  2411. .write = omap_rtc_write,
  2412. .endianness = DEVICE_NATIVE_ENDIAN,
  2413. };
  2414. static void omap_rtc_tick(void *opaque)
  2415. {
  2416. struct omap_rtc_s *s = opaque;
  2417. if (s->round) {
  2418. /* Round to nearest full minute. */
  2419. if (s->current_tm.tm_sec < 30)
  2420. s->ti -= s->current_tm.tm_sec;
  2421. else
  2422. s->ti += 60 - s->current_tm.tm_sec;
  2423. s->round = 0;
  2424. }
  2425. localtime_r(&s->ti, &s->current_tm);
  2426. if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
  2427. s->status |= 0x40;
  2428. omap_rtc_interrupts_update(s);
  2429. }
  2430. if (s->interrupts & 0x04)
  2431. switch (s->interrupts & 3) {
  2432. case 0:
  2433. s->status |= 0x04;
  2434. qemu_irq_pulse(s->irq);
  2435. break;
  2436. case 1:
  2437. if (s->current_tm.tm_sec)
  2438. break;
  2439. s->status |= 0x08;
  2440. qemu_irq_pulse(s->irq);
  2441. break;
  2442. case 2:
  2443. if (s->current_tm.tm_sec || s->current_tm.tm_min)
  2444. break;
  2445. s->status |= 0x10;
  2446. qemu_irq_pulse(s->irq);
  2447. break;
  2448. case 3:
  2449. if (s->current_tm.tm_sec ||
  2450. s->current_tm.tm_min || s->current_tm.tm_hour)
  2451. break;
  2452. s->status |= 0x20;
  2453. qemu_irq_pulse(s->irq);
  2454. break;
  2455. }
  2456. /* Move on */
  2457. if (s->running)
  2458. s->ti ++;
  2459. s->tick += 1000;
  2460. /*
  2461. * Every full hour add a rough approximation of the compensation
  2462. * register to the 32kHz Timer (which drives the RTC) value.
  2463. */
  2464. if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
  2465. s->tick += s->comp_reg * 1000 / 32768;
  2466. timer_mod(s->clk, s->tick);
  2467. }
  2468. static void omap_rtc_reset(struct omap_rtc_s *s)
  2469. {
  2470. struct tm tm;
  2471. s->interrupts = 0;
  2472. s->comp_reg = 0;
  2473. s->running = 0;
  2474. s->pm_am = 0;
  2475. s->auto_comp = 0;
  2476. s->round = 0;
  2477. s->tick = qemu_clock_get_ms(rtc_clock);
  2478. memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
  2479. s->alarm_tm.tm_mday = 0x01;
  2480. s->status = 1 << 7;
  2481. qemu_get_timedate(&tm, 0);
  2482. s->ti = mktimegm(&tm);
  2483. omap_rtc_alarm_update(s);
  2484. omap_rtc_tick(s);
  2485. }
  2486. static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
  2487. hwaddr base,
  2488. qemu_irq timerirq, qemu_irq alarmirq,
  2489. omap_clk clk)
  2490. {
  2491. struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
  2492. s->irq = timerirq;
  2493. s->alarm = alarmirq;
  2494. s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
  2495. omap_rtc_reset(s);
  2496. memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
  2497. "omap-rtc", 0x800);
  2498. memory_region_add_subregion(system_memory, base, &s->iomem);
  2499. return s;
  2500. }
  2501. /* Multi-channel Buffered Serial Port interfaces */
  2502. struct omap_mcbsp_s {
  2503. MemoryRegion iomem;
  2504. qemu_irq txirq;
  2505. qemu_irq rxirq;
  2506. qemu_irq txdrq;
  2507. qemu_irq rxdrq;
  2508. uint16_t spcr[2];
  2509. uint16_t rcr[2];
  2510. uint16_t xcr[2];
  2511. uint16_t srgr[2];
  2512. uint16_t mcr[2];
  2513. uint16_t pcr;
  2514. uint16_t rcer[8];
  2515. uint16_t xcer[8];
  2516. int tx_rate;
  2517. int rx_rate;
  2518. int tx_req;
  2519. int rx_req;
  2520. I2SCodec *codec;
  2521. QEMUTimer *source_timer;
  2522. QEMUTimer *sink_timer;
  2523. };
  2524. static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
  2525. {
  2526. int irq;
  2527. switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
  2528. case 0:
  2529. irq = (s->spcr[0] >> 1) & 1; /* RRDY */
  2530. break;
  2531. case 3:
  2532. irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
  2533. break;
  2534. default:
  2535. irq = 0;
  2536. break;
  2537. }
  2538. if (irq)
  2539. qemu_irq_pulse(s->rxirq);
  2540. switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
  2541. case 0:
  2542. irq = (s->spcr[1] >> 1) & 1; /* XRDY */
  2543. break;
  2544. case 3:
  2545. irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
  2546. break;
  2547. default:
  2548. irq = 0;
  2549. break;
  2550. }
  2551. if (irq)
  2552. qemu_irq_pulse(s->txirq);
  2553. }
  2554. static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
  2555. {
  2556. if ((s->spcr[0] >> 1) & 1) /* RRDY */
  2557. s->spcr[0] |= 1 << 2; /* RFULL */
  2558. s->spcr[0] |= 1 << 1; /* RRDY */
  2559. qemu_irq_raise(s->rxdrq);
  2560. omap_mcbsp_intr_update(s);
  2561. }
  2562. static void omap_mcbsp_source_tick(void *opaque)
  2563. {
  2564. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2565. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2566. if (!s->rx_rate)
  2567. return;
  2568. if (s->rx_req)
  2569. printf("%s: Rx FIFO overrun\n", __FUNCTION__);
  2570. s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
  2571. omap_mcbsp_rx_newdata(s);
  2572. timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  2573. NANOSECONDS_PER_SECOND);
  2574. }
  2575. static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
  2576. {
  2577. if (!s->codec || !s->codec->rts)
  2578. omap_mcbsp_source_tick(s);
  2579. else if (s->codec->in.len) {
  2580. s->rx_req = s->codec->in.len;
  2581. omap_mcbsp_rx_newdata(s);
  2582. }
  2583. }
  2584. static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
  2585. {
  2586. timer_del(s->source_timer);
  2587. }
  2588. static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
  2589. {
  2590. s->spcr[0] &= ~(1 << 1); /* RRDY */
  2591. qemu_irq_lower(s->rxdrq);
  2592. omap_mcbsp_intr_update(s);
  2593. }
  2594. static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
  2595. {
  2596. s->spcr[1] |= 1 << 1; /* XRDY */
  2597. qemu_irq_raise(s->txdrq);
  2598. omap_mcbsp_intr_update(s);
  2599. }
  2600. static void omap_mcbsp_sink_tick(void *opaque)
  2601. {
  2602. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2603. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2604. if (!s->tx_rate)
  2605. return;
  2606. if (s->tx_req)
  2607. printf("%s: Tx FIFO underrun\n", __FUNCTION__);
  2608. s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
  2609. omap_mcbsp_tx_newdata(s);
  2610. timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  2611. NANOSECONDS_PER_SECOND);
  2612. }
  2613. static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
  2614. {
  2615. if (!s->codec || !s->codec->cts)
  2616. omap_mcbsp_sink_tick(s);
  2617. else if (s->codec->out.size) {
  2618. s->tx_req = s->codec->out.size;
  2619. omap_mcbsp_tx_newdata(s);
  2620. }
  2621. }
  2622. static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
  2623. {
  2624. s->spcr[1] &= ~(1 << 1); /* XRDY */
  2625. qemu_irq_lower(s->txdrq);
  2626. omap_mcbsp_intr_update(s);
  2627. if (s->codec && s->codec->cts)
  2628. s->codec->tx_swallow(s->codec->opaque);
  2629. }
  2630. static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
  2631. {
  2632. s->tx_req = 0;
  2633. omap_mcbsp_tx_done(s);
  2634. timer_del(s->sink_timer);
  2635. }
  2636. static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
  2637. {
  2638. int prev_rx_rate, prev_tx_rate;
  2639. int rx_rate = 0, tx_rate = 0;
  2640. int cpu_rate = 1500000; /* XXX */
  2641. /* TODO: check CLKSTP bit */
  2642. if (s->spcr[1] & (1 << 6)) { /* GRST */
  2643. if (s->spcr[0] & (1 << 0)) { /* RRST */
  2644. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2645. (s->pcr & (1 << 8))) { /* CLKRM */
  2646. if (~s->pcr & (1 << 7)) /* SCLKME */
  2647. rx_rate = cpu_rate /
  2648. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2649. } else
  2650. if (s->codec)
  2651. rx_rate = s->codec->rx_rate;
  2652. }
  2653. if (s->spcr[1] & (1 << 0)) { /* XRST */
  2654. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2655. (s->pcr & (1 << 9))) { /* CLKXM */
  2656. if (~s->pcr & (1 << 7)) /* SCLKME */
  2657. tx_rate = cpu_rate /
  2658. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2659. } else
  2660. if (s->codec)
  2661. tx_rate = s->codec->tx_rate;
  2662. }
  2663. }
  2664. prev_tx_rate = s->tx_rate;
  2665. prev_rx_rate = s->rx_rate;
  2666. s->tx_rate = tx_rate;
  2667. s->rx_rate = rx_rate;
  2668. if (s->codec)
  2669. s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
  2670. if (!prev_tx_rate && tx_rate)
  2671. omap_mcbsp_tx_start(s);
  2672. else if (s->tx_rate && !tx_rate)
  2673. omap_mcbsp_tx_stop(s);
  2674. if (!prev_rx_rate && rx_rate)
  2675. omap_mcbsp_rx_start(s);
  2676. else if (prev_tx_rate && !tx_rate)
  2677. omap_mcbsp_rx_stop(s);
  2678. }
  2679. static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
  2680. unsigned size)
  2681. {
  2682. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2683. int offset = addr & OMAP_MPUI_REG_MASK;
  2684. uint16_t ret;
  2685. if (size != 2) {
  2686. return omap_badwidth_read16(opaque, addr);
  2687. }
  2688. switch (offset) {
  2689. case 0x00: /* DRR2 */
  2690. if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
  2691. return 0x0000;
  2692. /* Fall through. */
  2693. case 0x02: /* DRR1 */
  2694. if (s->rx_req < 2) {
  2695. printf("%s: Rx FIFO underrun\n", __FUNCTION__);
  2696. omap_mcbsp_rx_done(s);
  2697. } else {
  2698. s->tx_req -= 2;
  2699. if (s->codec && s->codec->in.len >= 2) {
  2700. ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
  2701. ret |= s->codec->in.fifo[s->codec->in.start ++];
  2702. s->codec->in.len -= 2;
  2703. } else
  2704. ret = 0x0000;
  2705. if (!s->tx_req)
  2706. omap_mcbsp_rx_done(s);
  2707. return ret;
  2708. }
  2709. return 0x0000;
  2710. case 0x04: /* DXR2 */
  2711. case 0x06: /* DXR1 */
  2712. return 0x0000;
  2713. case 0x08: /* SPCR2 */
  2714. return s->spcr[1];
  2715. case 0x0a: /* SPCR1 */
  2716. return s->spcr[0];
  2717. case 0x0c: /* RCR2 */
  2718. return s->rcr[1];
  2719. case 0x0e: /* RCR1 */
  2720. return s->rcr[0];
  2721. case 0x10: /* XCR2 */
  2722. return s->xcr[1];
  2723. case 0x12: /* XCR1 */
  2724. return s->xcr[0];
  2725. case 0x14: /* SRGR2 */
  2726. return s->srgr[1];
  2727. case 0x16: /* SRGR1 */
  2728. return s->srgr[0];
  2729. case 0x18: /* MCR2 */
  2730. return s->mcr[1];
  2731. case 0x1a: /* MCR1 */
  2732. return s->mcr[0];
  2733. case 0x1c: /* RCERA */
  2734. return s->rcer[0];
  2735. case 0x1e: /* RCERB */
  2736. return s->rcer[1];
  2737. case 0x20: /* XCERA */
  2738. return s->xcer[0];
  2739. case 0x22: /* XCERB */
  2740. return s->xcer[1];
  2741. case 0x24: /* PCR0 */
  2742. return s->pcr;
  2743. case 0x26: /* RCERC */
  2744. return s->rcer[2];
  2745. case 0x28: /* RCERD */
  2746. return s->rcer[3];
  2747. case 0x2a: /* XCERC */
  2748. return s->xcer[2];
  2749. case 0x2c: /* XCERD */
  2750. return s->xcer[3];
  2751. case 0x2e: /* RCERE */
  2752. return s->rcer[4];
  2753. case 0x30: /* RCERF */
  2754. return s->rcer[5];
  2755. case 0x32: /* XCERE */
  2756. return s->xcer[4];
  2757. case 0x34: /* XCERF */
  2758. return s->xcer[5];
  2759. case 0x36: /* RCERG */
  2760. return s->rcer[6];
  2761. case 0x38: /* RCERH */
  2762. return s->rcer[7];
  2763. case 0x3a: /* XCERG */
  2764. return s->xcer[6];
  2765. case 0x3c: /* XCERH */
  2766. return s->xcer[7];
  2767. }
  2768. OMAP_BAD_REG(addr);
  2769. return 0;
  2770. }
  2771. static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
  2772. uint32_t value)
  2773. {
  2774. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2775. int offset = addr & OMAP_MPUI_REG_MASK;
  2776. switch (offset) {
  2777. case 0x00: /* DRR2 */
  2778. case 0x02: /* DRR1 */
  2779. OMAP_RO_REG(addr);
  2780. return;
  2781. case 0x04: /* DXR2 */
  2782. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2783. return;
  2784. /* Fall through. */
  2785. case 0x06: /* DXR1 */
  2786. if (s->tx_req > 1) {
  2787. s->tx_req -= 2;
  2788. if (s->codec && s->codec->cts) {
  2789. s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
  2790. s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
  2791. }
  2792. if (s->tx_req < 2)
  2793. omap_mcbsp_tx_done(s);
  2794. } else
  2795. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  2796. return;
  2797. case 0x08: /* SPCR2 */
  2798. s->spcr[1] &= 0x0002;
  2799. s->spcr[1] |= 0x03f9 & value;
  2800. s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
  2801. if (~value & 1) /* XRST */
  2802. s->spcr[1] &= ~6;
  2803. omap_mcbsp_req_update(s);
  2804. return;
  2805. case 0x0a: /* SPCR1 */
  2806. s->spcr[0] &= 0x0006;
  2807. s->spcr[0] |= 0xf8f9 & value;
  2808. if (value & (1 << 15)) /* DLB */
  2809. printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
  2810. if (~value & 1) { /* RRST */
  2811. s->spcr[0] &= ~6;
  2812. s->rx_req = 0;
  2813. omap_mcbsp_rx_done(s);
  2814. }
  2815. omap_mcbsp_req_update(s);
  2816. return;
  2817. case 0x0c: /* RCR2 */
  2818. s->rcr[1] = value & 0xffff;
  2819. return;
  2820. case 0x0e: /* RCR1 */
  2821. s->rcr[0] = value & 0x7fe0;
  2822. return;
  2823. case 0x10: /* XCR2 */
  2824. s->xcr[1] = value & 0xffff;
  2825. return;
  2826. case 0x12: /* XCR1 */
  2827. s->xcr[0] = value & 0x7fe0;
  2828. return;
  2829. case 0x14: /* SRGR2 */
  2830. s->srgr[1] = value & 0xffff;
  2831. omap_mcbsp_req_update(s);
  2832. return;
  2833. case 0x16: /* SRGR1 */
  2834. s->srgr[0] = value & 0xffff;
  2835. omap_mcbsp_req_update(s);
  2836. return;
  2837. case 0x18: /* MCR2 */
  2838. s->mcr[1] = value & 0x03e3;
  2839. if (value & 3) /* XMCM */
  2840. printf("%s: Tx channel selection mode enable attempt\n",
  2841. __FUNCTION__);
  2842. return;
  2843. case 0x1a: /* MCR1 */
  2844. s->mcr[0] = value & 0x03e1;
  2845. if (value & 1) /* RMCM */
  2846. printf("%s: Rx channel selection mode enable attempt\n",
  2847. __FUNCTION__);
  2848. return;
  2849. case 0x1c: /* RCERA */
  2850. s->rcer[0] = value & 0xffff;
  2851. return;
  2852. case 0x1e: /* RCERB */
  2853. s->rcer[1] = value & 0xffff;
  2854. return;
  2855. case 0x20: /* XCERA */
  2856. s->xcer[0] = value & 0xffff;
  2857. return;
  2858. case 0x22: /* XCERB */
  2859. s->xcer[1] = value & 0xffff;
  2860. return;
  2861. case 0x24: /* PCR0 */
  2862. s->pcr = value & 0x7faf;
  2863. return;
  2864. case 0x26: /* RCERC */
  2865. s->rcer[2] = value & 0xffff;
  2866. return;
  2867. case 0x28: /* RCERD */
  2868. s->rcer[3] = value & 0xffff;
  2869. return;
  2870. case 0x2a: /* XCERC */
  2871. s->xcer[2] = value & 0xffff;
  2872. return;
  2873. case 0x2c: /* XCERD */
  2874. s->xcer[3] = value & 0xffff;
  2875. return;
  2876. case 0x2e: /* RCERE */
  2877. s->rcer[4] = value & 0xffff;
  2878. return;
  2879. case 0x30: /* RCERF */
  2880. s->rcer[5] = value & 0xffff;
  2881. return;
  2882. case 0x32: /* XCERE */
  2883. s->xcer[4] = value & 0xffff;
  2884. return;
  2885. case 0x34: /* XCERF */
  2886. s->xcer[5] = value & 0xffff;
  2887. return;
  2888. case 0x36: /* RCERG */
  2889. s->rcer[6] = value & 0xffff;
  2890. return;
  2891. case 0x38: /* RCERH */
  2892. s->rcer[7] = value & 0xffff;
  2893. return;
  2894. case 0x3a: /* XCERG */
  2895. s->xcer[6] = value & 0xffff;
  2896. return;
  2897. case 0x3c: /* XCERH */
  2898. s->xcer[7] = value & 0xffff;
  2899. return;
  2900. }
  2901. OMAP_BAD_REG(addr);
  2902. }
  2903. static void omap_mcbsp_writew(void *opaque, hwaddr addr,
  2904. uint32_t value)
  2905. {
  2906. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2907. int offset = addr & OMAP_MPUI_REG_MASK;
  2908. if (offset == 0x04) { /* DXR */
  2909. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2910. return;
  2911. if (s->tx_req > 3) {
  2912. s->tx_req -= 4;
  2913. if (s->codec && s->codec->cts) {
  2914. s->codec->out.fifo[s->codec->out.len ++] =
  2915. (value >> 24) & 0xff;
  2916. s->codec->out.fifo[s->codec->out.len ++] =
  2917. (value >> 16) & 0xff;
  2918. s->codec->out.fifo[s->codec->out.len ++] =
  2919. (value >> 8) & 0xff;
  2920. s->codec->out.fifo[s->codec->out.len ++] =
  2921. (value >> 0) & 0xff;
  2922. }
  2923. if (s->tx_req < 4)
  2924. omap_mcbsp_tx_done(s);
  2925. } else
  2926. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  2927. return;
  2928. }
  2929. omap_badwidth_write16(opaque, addr, value);
  2930. }
  2931. static void omap_mcbsp_write(void *opaque, hwaddr addr,
  2932. uint64_t value, unsigned size)
  2933. {
  2934. switch (size) {
  2935. case 2:
  2936. omap_mcbsp_writeh(opaque, addr, value);
  2937. break;
  2938. case 4:
  2939. omap_mcbsp_writew(opaque, addr, value);
  2940. break;
  2941. default:
  2942. omap_badwidth_write16(opaque, addr, value);
  2943. }
  2944. }
  2945. static const MemoryRegionOps omap_mcbsp_ops = {
  2946. .read = omap_mcbsp_read,
  2947. .write = omap_mcbsp_write,
  2948. .endianness = DEVICE_NATIVE_ENDIAN,
  2949. };
  2950. static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
  2951. {
  2952. memset(&s->spcr, 0, sizeof(s->spcr));
  2953. memset(&s->rcr, 0, sizeof(s->rcr));
  2954. memset(&s->xcr, 0, sizeof(s->xcr));
  2955. s->srgr[0] = 0x0001;
  2956. s->srgr[1] = 0x2000;
  2957. memset(&s->mcr, 0, sizeof(s->mcr));
  2958. memset(&s->pcr, 0, sizeof(s->pcr));
  2959. memset(&s->rcer, 0, sizeof(s->rcer));
  2960. memset(&s->xcer, 0, sizeof(s->xcer));
  2961. s->tx_req = 0;
  2962. s->rx_req = 0;
  2963. s->tx_rate = 0;
  2964. s->rx_rate = 0;
  2965. timer_del(s->source_timer);
  2966. timer_del(s->sink_timer);
  2967. }
  2968. static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
  2969. hwaddr base,
  2970. qemu_irq txirq, qemu_irq rxirq,
  2971. qemu_irq *dma, omap_clk clk)
  2972. {
  2973. struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
  2974. s->txirq = txirq;
  2975. s->rxirq = rxirq;
  2976. s->txdrq = dma[0];
  2977. s->rxdrq = dma[1];
  2978. s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
  2979. s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
  2980. omap_mcbsp_reset(s);
  2981. memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
  2982. memory_region_add_subregion(system_memory, base, &s->iomem);
  2983. return s;
  2984. }
  2985. static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
  2986. {
  2987. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2988. if (s->rx_rate) {
  2989. s->rx_req = s->codec->in.len;
  2990. omap_mcbsp_rx_newdata(s);
  2991. }
  2992. }
  2993. static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
  2994. {
  2995. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  2996. if (s->tx_rate) {
  2997. s->tx_req = s->codec->out.size;
  2998. omap_mcbsp_tx_newdata(s);
  2999. }
  3000. }
  3001. void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
  3002. {
  3003. s->codec = slave;
  3004. slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
  3005. slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
  3006. }
  3007. /* LED Pulse Generators */
  3008. struct omap_lpg_s {
  3009. MemoryRegion iomem;
  3010. QEMUTimer *tm;
  3011. uint8_t control;
  3012. uint8_t power;
  3013. int64_t on;
  3014. int64_t period;
  3015. int clk;
  3016. int cycle;
  3017. };
  3018. static void omap_lpg_tick(void *opaque)
  3019. {
  3020. struct omap_lpg_s *s = opaque;
  3021. if (s->cycle)
  3022. timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
  3023. else
  3024. timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
  3025. s->cycle = !s->cycle;
  3026. printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
  3027. }
  3028. static void omap_lpg_update(struct omap_lpg_s *s)
  3029. {
  3030. int64_t on, period = 1, ticks = 1000;
  3031. static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
  3032. if (~s->control & (1 << 6)) /* LPGRES */
  3033. on = 0;
  3034. else if (s->control & (1 << 7)) /* PERM_ON */
  3035. on = period;
  3036. else {
  3037. period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
  3038. 256 / 32);
  3039. on = (s->clk && s->power) ? muldiv64(ticks,
  3040. per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
  3041. }
  3042. timer_del(s->tm);
  3043. if (on == period && s->on < s->period)
  3044. printf("%s: LED is on\n", __FUNCTION__);
  3045. else if (on == 0 && s->on)
  3046. printf("%s: LED is off\n", __FUNCTION__);
  3047. else if (on && (on != s->on || period != s->period)) {
  3048. s->cycle = 0;
  3049. s->on = on;
  3050. s->period = period;
  3051. omap_lpg_tick(s);
  3052. return;
  3053. }
  3054. s->on = on;
  3055. s->period = period;
  3056. }
  3057. static void omap_lpg_reset(struct omap_lpg_s *s)
  3058. {
  3059. s->control = 0x00;
  3060. s->power = 0x00;
  3061. s->clk = 1;
  3062. omap_lpg_update(s);
  3063. }
  3064. static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
  3065. unsigned size)
  3066. {
  3067. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3068. int offset = addr & OMAP_MPUI_REG_MASK;
  3069. if (size != 1) {
  3070. return omap_badwidth_read8(opaque, addr);
  3071. }
  3072. switch (offset) {
  3073. case 0x00: /* LCR */
  3074. return s->control;
  3075. case 0x04: /* PMR */
  3076. return s->power;
  3077. }
  3078. OMAP_BAD_REG(addr);
  3079. return 0;
  3080. }
  3081. static void omap_lpg_write(void *opaque, hwaddr addr,
  3082. uint64_t value, unsigned size)
  3083. {
  3084. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3085. int offset = addr & OMAP_MPUI_REG_MASK;
  3086. if (size != 1) {
  3087. omap_badwidth_write8(opaque, addr, value);
  3088. return;
  3089. }
  3090. switch (offset) {
  3091. case 0x00: /* LCR */
  3092. if (~value & (1 << 6)) /* LPGRES */
  3093. omap_lpg_reset(s);
  3094. s->control = value & 0xff;
  3095. omap_lpg_update(s);
  3096. return;
  3097. case 0x04: /* PMR */
  3098. s->power = value & 0x01;
  3099. omap_lpg_update(s);
  3100. return;
  3101. default:
  3102. OMAP_BAD_REG(addr);
  3103. return;
  3104. }
  3105. }
  3106. static const MemoryRegionOps omap_lpg_ops = {
  3107. .read = omap_lpg_read,
  3108. .write = omap_lpg_write,
  3109. .endianness = DEVICE_NATIVE_ENDIAN,
  3110. };
  3111. static void omap_lpg_clk_update(void *opaque, int line, int on)
  3112. {
  3113. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3114. s->clk = on;
  3115. omap_lpg_update(s);
  3116. }
  3117. static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
  3118. hwaddr base, omap_clk clk)
  3119. {
  3120. struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
  3121. s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
  3122. omap_lpg_reset(s);
  3123. memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
  3124. memory_region_add_subregion(system_memory, base, &s->iomem);
  3125. omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
  3126. return s;
  3127. }
  3128. /* MPUI Peripheral Bridge configuration */
  3129. static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
  3130. unsigned size)
  3131. {
  3132. if (size != 2) {
  3133. return omap_badwidth_read16(opaque, addr);
  3134. }
  3135. if (addr == OMAP_MPUI_BASE) /* CMR */
  3136. return 0xfe4d;
  3137. OMAP_BAD_REG(addr);
  3138. return 0;
  3139. }
  3140. static void omap_mpui_io_write(void *opaque, hwaddr addr,
  3141. uint64_t value, unsigned size)
  3142. {
  3143. /* FIXME: infinite loop */
  3144. omap_badwidth_write16(opaque, addr, value);
  3145. }
  3146. static const MemoryRegionOps omap_mpui_io_ops = {
  3147. .read = omap_mpui_io_read,
  3148. .write = omap_mpui_io_write,
  3149. .endianness = DEVICE_NATIVE_ENDIAN,
  3150. };
  3151. static void omap_setup_mpui_io(MemoryRegion *system_memory,
  3152. struct omap_mpu_state_s *mpu)
  3153. {
  3154. memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
  3155. "omap-mpui-io", 0x7fff);
  3156. memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
  3157. &mpu->mpui_io_iomem);
  3158. }
  3159. /* General chip reset */
  3160. static void omap1_mpu_reset(void *opaque)
  3161. {
  3162. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3163. omap_dma_reset(mpu->dma);
  3164. omap_mpu_timer_reset(mpu->timer[0]);
  3165. omap_mpu_timer_reset(mpu->timer[1]);
  3166. omap_mpu_timer_reset(mpu->timer[2]);
  3167. omap_wd_timer_reset(mpu->wdt);
  3168. omap_os_timer_reset(mpu->os_timer);
  3169. omap_lcdc_reset(mpu->lcd);
  3170. omap_ulpd_pm_reset(mpu);
  3171. omap_pin_cfg_reset(mpu);
  3172. omap_mpui_reset(mpu);
  3173. omap_tipb_bridge_reset(mpu->private_tipb);
  3174. omap_tipb_bridge_reset(mpu->public_tipb);
  3175. omap_dpll_reset(mpu->dpll[0]);
  3176. omap_dpll_reset(mpu->dpll[1]);
  3177. omap_dpll_reset(mpu->dpll[2]);
  3178. omap_uart_reset(mpu->uart[0]);
  3179. omap_uart_reset(mpu->uart[1]);
  3180. omap_uart_reset(mpu->uart[2]);
  3181. omap_mmc_reset(mpu->mmc);
  3182. omap_mpuio_reset(mpu->mpuio);
  3183. omap_uwire_reset(mpu->microwire);
  3184. omap_pwl_reset(mpu->pwl);
  3185. omap_pwt_reset(mpu->pwt);
  3186. omap_rtc_reset(mpu->rtc);
  3187. omap_mcbsp_reset(mpu->mcbsp1);
  3188. omap_mcbsp_reset(mpu->mcbsp2);
  3189. omap_mcbsp_reset(mpu->mcbsp3);
  3190. omap_lpg_reset(mpu->led[0]);
  3191. omap_lpg_reset(mpu->led[1]);
  3192. omap_clkm_reset(mpu);
  3193. cpu_reset(CPU(mpu->cpu));
  3194. }
  3195. static const struct omap_map_s {
  3196. hwaddr phys_dsp;
  3197. hwaddr phys_mpu;
  3198. uint32_t size;
  3199. const char *name;
  3200. } omap15xx_dsp_mm[] = {
  3201. /* Strobe 0 */
  3202. { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
  3203. { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
  3204. { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
  3205. { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
  3206. { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
  3207. { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
  3208. { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
  3209. { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
  3210. { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
  3211. { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
  3212. { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
  3213. { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
  3214. { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
  3215. { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
  3216. { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
  3217. { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
  3218. { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
  3219. /* Strobe 1 */
  3220. { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
  3221. { 0 }
  3222. };
  3223. static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
  3224. const struct omap_map_s *map)
  3225. {
  3226. MemoryRegion *io;
  3227. for (; map->phys_dsp; map ++) {
  3228. io = g_new(MemoryRegion, 1);
  3229. memory_region_init_alias(io, NULL, map->name,
  3230. system_memory, map->phys_mpu, map->size);
  3231. memory_region_add_subregion(system_memory, map->phys_dsp, io);
  3232. }
  3233. }
  3234. void omap_mpu_wakeup(void *opaque, int irq, int req)
  3235. {
  3236. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3237. CPUState *cpu = CPU(mpu->cpu);
  3238. if (cpu->halted) {
  3239. cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
  3240. }
  3241. }
  3242. static const struct dma_irq_map omap1_dma_irq_map[] = {
  3243. { 0, OMAP_INT_DMA_CH0_6 },
  3244. { 0, OMAP_INT_DMA_CH1_7 },
  3245. { 0, OMAP_INT_DMA_CH2_8 },
  3246. { 0, OMAP_INT_DMA_CH3 },
  3247. { 0, OMAP_INT_DMA_CH4 },
  3248. { 0, OMAP_INT_DMA_CH5 },
  3249. { 1, OMAP_INT_1610_DMA_CH6 },
  3250. { 1, OMAP_INT_1610_DMA_CH7 },
  3251. { 1, OMAP_INT_1610_DMA_CH8 },
  3252. { 1, OMAP_INT_1610_DMA_CH9 },
  3253. { 1, OMAP_INT_1610_DMA_CH10 },
  3254. { 1, OMAP_INT_1610_DMA_CH11 },
  3255. { 1, OMAP_INT_1610_DMA_CH12 },
  3256. { 1, OMAP_INT_1610_DMA_CH13 },
  3257. { 1, OMAP_INT_1610_DMA_CH14 },
  3258. { 1, OMAP_INT_1610_DMA_CH15 }
  3259. };
  3260. /* DMA ports for OMAP1 */
  3261. static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
  3262. hwaddr addr)
  3263. {
  3264. return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
  3265. }
  3266. static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
  3267. hwaddr addr)
  3268. {
  3269. return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
  3270. addr);
  3271. }
  3272. static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
  3273. hwaddr addr)
  3274. {
  3275. return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
  3276. }
  3277. static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
  3278. hwaddr addr)
  3279. {
  3280. return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
  3281. }
  3282. static int omap_validate_local_addr(struct omap_mpu_state_s *s,
  3283. hwaddr addr)
  3284. {
  3285. return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
  3286. }
  3287. static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
  3288. hwaddr addr)
  3289. {
  3290. return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
  3291. }
  3292. struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
  3293. unsigned long sdram_size,
  3294. const char *core)
  3295. {
  3296. int i;
  3297. struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
  3298. qemu_irq dma_irqs[6];
  3299. DriveInfo *dinfo;
  3300. SysBusDevice *busdev;
  3301. if (!core)
  3302. core = "ti925t";
  3303. /* Core */
  3304. s->mpu_model = omap310;
  3305. s->cpu = cpu_arm_init(core);
  3306. if (s->cpu == NULL) {
  3307. fprintf(stderr, "Unable to find CPU definition\n");
  3308. exit(1);
  3309. }
  3310. s->sdram_size = sdram_size;
  3311. s->sram_size = OMAP15XX_SRAM_SIZE;
  3312. s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
  3313. /* Clocks */
  3314. omap_clk_init(s);
  3315. /* Memory-mapped stuff */
  3316. memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
  3317. s->sdram_size);
  3318. memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
  3319. memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
  3320. &error_fatal);
  3321. vmstate_register_ram_global(&s->imif_ram);
  3322. memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
  3323. omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
  3324. s->ih[0] = qdev_create(NULL, "omap-intc");
  3325. qdev_prop_set_uint32(s->ih[0], "size", 0x100);
  3326. qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
  3327. qdev_init_nofail(s->ih[0]);
  3328. busdev = SYS_BUS_DEVICE(s->ih[0]);
  3329. sysbus_connect_irq(busdev, 0,
  3330. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
  3331. sysbus_connect_irq(busdev, 1,
  3332. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
  3333. sysbus_mmio_map(busdev, 0, 0xfffecb00);
  3334. s->ih[1] = qdev_create(NULL, "omap-intc");
  3335. qdev_prop_set_uint32(s->ih[1], "size", 0x800);
  3336. qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
  3337. qdev_init_nofail(s->ih[1]);
  3338. busdev = SYS_BUS_DEVICE(s->ih[1]);
  3339. sysbus_connect_irq(busdev, 0,
  3340. qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
  3341. /* The second interrupt controller's FIQ output is not wired up */
  3342. sysbus_mmio_map(busdev, 0, 0xfffe0000);
  3343. for (i = 0; i < 6; i++) {
  3344. dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
  3345. omap1_dma_irq_map[i].intr);
  3346. }
  3347. s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
  3348. qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
  3349. s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
  3350. s->port[emiff ].addr_valid = omap_validate_emiff_addr;
  3351. s->port[emifs ].addr_valid = omap_validate_emifs_addr;
  3352. s->port[imif ].addr_valid = omap_validate_imif_addr;
  3353. s->port[tipb ].addr_valid = omap_validate_tipb_addr;
  3354. s->port[local ].addr_valid = omap_validate_local_addr;
  3355. s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
  3356. /* Register SDRAM and SRAM DMA ports for fast transfers. */
  3357. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
  3358. OMAP_EMIFF_BASE, s->sdram_size);
  3359. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
  3360. OMAP_IMIF_BASE, s->sram_size);
  3361. s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
  3362. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
  3363. omap_findclk(s, "mputim_ck"));
  3364. s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
  3365. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
  3366. omap_findclk(s, "mputim_ck"));
  3367. s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
  3368. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
  3369. omap_findclk(s, "mputim_ck"));
  3370. s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
  3371. qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
  3372. omap_findclk(s, "armwdt_ck"));
  3373. s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
  3374. qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
  3375. omap_findclk(s, "clk32-kHz"));
  3376. s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
  3377. qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
  3378. omap_dma_get_lcdch(s->dma),
  3379. omap_findclk(s, "lcd_ck"));
  3380. omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
  3381. omap_pin_cfg_init(system_memory, 0xfffe1000, s);
  3382. omap_id_init(system_memory, s);
  3383. omap_mpui_init(system_memory, 0xfffec900, s);
  3384. s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
  3385. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
  3386. omap_findclk(s, "tipb_ck"));
  3387. s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
  3388. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
  3389. omap_findclk(s, "tipb_ck"));
  3390. omap_tcmi_init(system_memory, 0xfffecc00, s);
  3391. s->uart[0] = omap_uart_init(0xfffb0000,
  3392. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
  3393. omap_findclk(s, "uart1_ck"),
  3394. omap_findclk(s, "uart1_ck"),
  3395. s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
  3396. "uart1",
  3397. serial_hds[0]);
  3398. s->uart[1] = omap_uart_init(0xfffb0800,
  3399. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
  3400. omap_findclk(s, "uart2_ck"),
  3401. omap_findclk(s, "uart2_ck"),
  3402. s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
  3403. "uart2",
  3404. serial_hds[0] ? serial_hds[1] : NULL);
  3405. s->uart[2] = omap_uart_init(0xfffb9800,
  3406. qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
  3407. omap_findclk(s, "uart3_ck"),
  3408. omap_findclk(s, "uart3_ck"),
  3409. s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
  3410. "uart3",
  3411. serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
  3412. s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
  3413. omap_findclk(s, "dpll1"));
  3414. s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
  3415. omap_findclk(s, "dpll2"));
  3416. s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
  3417. omap_findclk(s, "dpll3"));
  3418. dinfo = drive_get(IF_SD, 0, 0);
  3419. if (!dinfo) {
  3420. fprintf(stderr, "qemu: missing SecureDigital device\n");
  3421. exit(1);
  3422. }
  3423. s->mmc = omap_mmc_init(0xfffb7800, system_memory,
  3424. blk_by_legacy_dinfo(dinfo),
  3425. qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
  3426. &s->drq[OMAP_DMA_MMC_TX],
  3427. omap_findclk(s, "mmc_ck"));
  3428. s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
  3429. qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
  3430. qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
  3431. s->wakeup, omap_findclk(s, "clk32-kHz"));
  3432. s->gpio = qdev_create(NULL, "omap-gpio");
  3433. qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
  3434. qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
  3435. qdev_init_nofail(s->gpio);
  3436. sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
  3437. qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
  3438. sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
  3439. s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
  3440. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
  3441. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
  3442. s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
  3443. s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
  3444. omap_findclk(s, "armxor_ck"));
  3445. s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
  3446. omap_findclk(s, "armxor_ck"));
  3447. s->i2c[0] = qdev_create(NULL, "omap_i2c");
  3448. qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
  3449. qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
  3450. qdev_init_nofail(s->i2c[0]);
  3451. busdev = SYS_BUS_DEVICE(s->i2c[0]);
  3452. sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
  3453. sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
  3454. sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
  3455. sysbus_mmio_map(busdev, 0, 0xfffb3800);
  3456. s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
  3457. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
  3458. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
  3459. omap_findclk(s, "clk32-kHz"));
  3460. s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
  3461. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
  3462. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
  3463. &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
  3464. s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
  3465. qdev_get_gpio_in(s->ih[0],
  3466. OMAP_INT_310_McBSP2_TX),
  3467. qdev_get_gpio_in(s->ih[0],
  3468. OMAP_INT_310_McBSP2_RX),
  3469. &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
  3470. s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
  3471. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
  3472. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
  3473. &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
  3474. s->led[0] = omap_lpg_init(system_memory,
  3475. 0xfffbd000, omap_findclk(s, "clk32-kHz"));
  3476. s->led[1] = omap_lpg_init(system_memory,
  3477. 0xfffbd800, omap_findclk(s, "clk32-kHz"));
  3478. /* Register mappings not currenlty implemented:
  3479. * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
  3480. * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
  3481. * USB W2FC fffb4000 - fffb47ff
  3482. * Camera Interface fffb6800 - fffb6fff
  3483. * USB Host fffba000 - fffba7ff
  3484. * FAC fffba800 - fffbafff
  3485. * HDQ/1-Wire fffbc000 - fffbc7ff
  3486. * TIPB switches fffbc800 - fffbcfff
  3487. * Mailbox fffcf000 - fffcf7ff
  3488. * Local bus IF fffec100 - fffec1ff
  3489. * Local bus MMU fffec200 - fffec2ff
  3490. * DSP MMU fffed200 - fffed2ff
  3491. */
  3492. omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
  3493. omap_setup_mpui_io(system_memory, s);
  3494. qemu_register_reset(omap1_mpu_reset, s);
  3495. return s;
  3496. }