eepro100.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069
  1. /*
  2. * QEMU i8255x (PRO100) emulation
  3. *
  4. * Copyright (C) 2006-2011 Stefan Weil
  5. *
  6. * Portions of the code are copies from grub / etherboot eepro100.c
  7. * and linux e100.c.
  8. *
  9. * This program is free software: you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation, either version 2 of the License, or
  12. * (at your option) version 3 or any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  21. *
  22. * Tested features (i82559):
  23. * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
  24. * Linux networking (i386) ok
  25. *
  26. * Untested:
  27. * Windows networking
  28. *
  29. * References:
  30. *
  31. * Intel 8255x 10/100 Mbps Ethernet Controller Family
  32. * Open Source Software Developer Manual
  33. *
  34. * TODO:
  35. * * PHY emulation should be separated from nic emulation.
  36. * Most nic emulations could share the same phy code.
  37. * * i82550 is untested. It is programmed like the i82559.
  38. * * i82562 is untested. It is programmed like the i82559.
  39. * * Power management (i82558 and later) is not implemented.
  40. * * Wake-on-LAN is not implemented.
  41. */
  42. #include <stddef.h> /* offsetof */
  43. #include "hw.h"
  44. #include "pci.h"
  45. #include "net.h"
  46. #include "eeprom93xx.h"
  47. #include "sysemu.h"
  48. /* QEMU sends frames smaller than 60 bytes to ethernet nics.
  49. * Such frames are rejected by real nics and their emulations.
  50. * To avoid this behaviour, other nic emulations pad received
  51. * frames. The following definition enables this padding for
  52. * eepro100, too. We keep the define around in case it might
  53. * become useful the future if the core networking is ever
  54. * changed to pad short packets itself. */
  55. #define CONFIG_PAD_RECEIVED_FRAMES
  56. #define KiB 1024
  57. /* Debug EEPRO100 card. */
  58. #if 0
  59. # define DEBUG_EEPRO100
  60. #endif
  61. #ifdef DEBUG_EEPRO100
  62. #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
  63. #else
  64. #define logout(fmt, ...) ((void)0)
  65. #endif
  66. /* Set flags to 0 to disable debug output. */
  67. #define INT 1 /* interrupt related actions */
  68. #define MDI 1 /* mdi related actions */
  69. #define OTHER 1
  70. #define RXTX 1
  71. #define EEPROM 1 /* eeprom related actions */
  72. #define TRACE(flag, command) ((flag) ? (command) : (void)0)
  73. #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
  74. #define MAX_ETH_FRAME_SIZE 1514
  75. /* This driver supports several different devices which are declared here. */
  76. #define i82550 0x82550
  77. #define i82551 0x82551
  78. #define i82557A 0x82557a
  79. #define i82557B 0x82557b
  80. #define i82557C 0x82557c
  81. #define i82558A 0x82558a
  82. #define i82558B 0x82558b
  83. #define i82559A 0x82559a
  84. #define i82559B 0x82559b
  85. #define i82559C 0x82559c
  86. #define i82559ER 0x82559e
  87. #define i82562 0x82562
  88. #define i82801 0x82801
  89. /* Use 64 word EEPROM. TODO: could be a runtime option. */
  90. #define EEPROM_SIZE 64
  91. #define PCI_MEM_SIZE (4 * KiB)
  92. #define PCI_IO_SIZE 64
  93. #define PCI_FLASH_SIZE (128 * KiB)
  94. #define BIT(n) (1 << (n))
  95. #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
  96. /* The SCB accepts the following controls for the Tx and Rx units: */
  97. #define CU_NOP 0x0000 /* No operation. */
  98. #define CU_START 0x0010 /* CU start. */
  99. #define CU_RESUME 0x0020 /* CU resume. */
  100. #define CU_STATSADDR 0x0040 /* Load dump counters address. */
  101. #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
  102. #define CU_CMD_BASE 0x0060 /* Load CU base address. */
  103. #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
  104. #define CU_SRESUME 0x00a0 /* CU static resume. */
  105. #define RU_NOP 0x0000
  106. #define RX_START 0x0001
  107. #define RX_RESUME 0x0002
  108. #define RU_ABORT 0x0004
  109. #define RX_ADDR_LOAD 0x0006
  110. #define RX_RESUMENR 0x0007
  111. #define INT_MASK 0x0100
  112. #define DRVR_INT 0x0200 /* Driver generated interrupt. */
  113. typedef struct {
  114. PCIDeviceInfo pci;
  115. uint32_t device;
  116. uint8_t stats_size;
  117. bool has_extended_tcb_support;
  118. bool power_management;
  119. } E100PCIDeviceInfo;
  120. /* Offsets to the various registers.
  121. All accesses need not be longword aligned. */
  122. typedef enum {
  123. SCBStatus = 0, /* Status Word. */
  124. SCBAck = 1,
  125. SCBCmd = 2, /* Rx/Command Unit command and status. */
  126. SCBIntmask = 3,
  127. SCBPointer = 4, /* General purpose pointer. */
  128. SCBPort = 8, /* Misc. commands and operands. */
  129. SCBflash = 12, /* Flash memory control. */
  130. SCBeeprom = 14, /* EEPROM control. */
  131. SCBCtrlMDI = 16, /* MDI interface control. */
  132. SCBEarlyRx = 20, /* Early receive byte count. */
  133. SCBFlow = 24, /* Flow Control. */
  134. SCBpmdr = 27, /* Power Management Driver. */
  135. SCBgctrl = 28, /* General Control. */
  136. SCBgstat = 29, /* General Status. */
  137. } E100RegisterOffset;
  138. /* A speedo3 transmit buffer descriptor with two buffers... */
  139. typedef struct {
  140. uint16_t status;
  141. uint16_t command;
  142. uint32_t link; /* void * */
  143. uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
  144. uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
  145. uint8_t tx_threshold; /* transmit threshold */
  146. uint8_t tbd_count; /* TBD number */
  147. #if 0
  148. /* This constitutes two "TBD" entries: hdr and data */
  149. uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
  150. int32_t tx_buf_size0; /* Length of Tx hdr. */
  151. uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
  152. int32_t tx_buf_size1; /* Length of Tx data. */
  153. #endif
  154. } eepro100_tx_t;
  155. /* Receive frame descriptor. */
  156. typedef struct {
  157. int16_t status;
  158. uint16_t command;
  159. uint32_t link; /* struct RxFD * */
  160. uint32_t rx_buf_addr; /* void * */
  161. uint16_t count;
  162. uint16_t size;
  163. /* Ethernet frame data follows. */
  164. } eepro100_rx_t;
  165. typedef enum {
  166. COMMAND_EL = BIT(15),
  167. COMMAND_S = BIT(14),
  168. COMMAND_I = BIT(13),
  169. COMMAND_NC = BIT(4),
  170. COMMAND_SF = BIT(3),
  171. COMMAND_CMD = BITS(2, 0),
  172. } scb_command_bit;
  173. typedef enum {
  174. STATUS_C = BIT(15),
  175. STATUS_OK = BIT(13),
  176. } scb_status_bit;
  177. typedef struct {
  178. uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
  179. tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
  180. tx_multiple_collisions, tx_total_collisions;
  181. uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
  182. rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
  183. rx_short_frame_errors;
  184. uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
  185. uint16_t xmt_tco_frames, rcv_tco_frames;
  186. /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
  187. uint32_t reserved[4];
  188. } eepro100_stats_t;
  189. typedef enum {
  190. cu_idle = 0,
  191. cu_suspended = 1,
  192. cu_active = 2,
  193. cu_lpq_active = 2,
  194. cu_hqp_active = 3
  195. } cu_state_t;
  196. typedef enum {
  197. ru_idle = 0,
  198. ru_suspended = 1,
  199. ru_no_resources = 2,
  200. ru_ready = 4
  201. } ru_state_t;
  202. typedef struct {
  203. PCIDevice dev;
  204. /* Hash register (multicast mask array, multiple individual addresses). */
  205. uint8_t mult[8];
  206. MemoryRegion mmio_bar;
  207. MemoryRegion io_bar;
  208. MemoryRegion flash_bar;
  209. NICState *nic;
  210. NICConf conf;
  211. uint8_t scb_stat; /* SCB stat/ack byte */
  212. uint8_t int_stat; /* PCI interrupt status */
  213. /* region must not be saved by nic_save. */
  214. uint16_t mdimem[32];
  215. eeprom_t *eeprom;
  216. uint32_t device; /* device variant */
  217. /* (cu_base + cu_offset) address the next command block in the command block list. */
  218. uint32_t cu_base; /* CU base address */
  219. uint32_t cu_offset; /* CU address offset */
  220. /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
  221. uint32_t ru_base; /* RU base address */
  222. uint32_t ru_offset; /* RU address offset */
  223. uint32_t statsaddr; /* pointer to eepro100_stats_t */
  224. /* Temporary status information (no need to save these values),
  225. * used while processing CU commands. */
  226. eepro100_tx_t tx; /* transmit buffer descriptor */
  227. uint32_t cb_address; /* = cu_base + cu_offset */
  228. /* Statistical counters. Also used for wake-up packet (i82559). */
  229. eepro100_stats_t statistics;
  230. /* Data in mem is always in the byte order of the controller (le).
  231. * It must be dword aligned to allow direct access to 32 bit values. */
  232. uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));;
  233. /* Configuration bytes. */
  234. uint8_t configuration[22];
  235. /* vmstate for each particular nic */
  236. VMStateDescription *vmstate;
  237. /* Quasi static device properties (no need to save them). */
  238. uint16_t stats_size;
  239. bool has_extended_tcb_support;
  240. } EEPRO100State;
  241. /* Word indices in EEPROM. */
  242. typedef enum {
  243. EEPROM_CNFG_MDIX = 0x03,
  244. EEPROM_ID = 0x05,
  245. EEPROM_PHY_ID = 0x06,
  246. EEPROM_VENDOR_ID = 0x0c,
  247. EEPROM_CONFIG_ASF = 0x0d,
  248. EEPROM_DEVICE_ID = 0x23,
  249. EEPROM_SMBUS_ADDR = 0x90,
  250. } EEPROMOffset;
  251. /* Bit values for EEPROM ID word. */
  252. typedef enum {
  253. EEPROM_ID_MDM = BIT(0), /* Modem */
  254. EEPROM_ID_STB = BIT(1), /* Standby Enable */
  255. EEPROM_ID_WMR = BIT(2), /* ??? */
  256. EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
  257. EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
  258. EEPROM_ID_ALT = BIT(7), /* */
  259. /* BITS(10, 8) device revision */
  260. EEPROM_ID_BD = BIT(11), /* boot disable */
  261. EEPROM_ID_ID = BIT(13), /* id bit */
  262. /* BITS(15, 14) signature */
  263. EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
  264. } eeprom_id_bit;
  265. /* Default values for MDI (PHY) registers */
  266. static const uint16_t eepro100_mdi_default[] = {
  267. /* MDI Registers 0 - 6, 7 */
  268. 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
  269. /* MDI Registers 8 - 15 */
  270. 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  271. /* MDI Registers 16 - 31 */
  272. 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  273. 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  274. };
  275. /* Readonly mask for MDI (PHY) registers */
  276. static const uint16_t eepro100_mdi_mask[] = {
  277. 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
  278. 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  279. 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
  280. 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
  281. };
  282. /* Read a 16 bit little endian value from physical memory. */
  283. static uint16_t e100_ldw_le_phys(target_phys_addr_t addr)
  284. {
  285. /* Load 16 bit (little endian) word from emulated hardware. */
  286. uint16_t val;
  287. cpu_physical_memory_read(addr, &val, sizeof(val));
  288. return le16_to_cpu(val);
  289. }
  290. /* Read a 32 bit little endian value from physical memory. */
  291. static uint32_t e100_ldl_le_phys(target_phys_addr_t addr)
  292. {
  293. /* Load 32 bit (little endian) word from emulated hardware. */
  294. uint32_t val;
  295. cpu_physical_memory_read(addr, &val, sizeof(val));
  296. return le32_to_cpu(val);
  297. }
  298. /* Write a 16 bit little endian value to physical memory. */
  299. static void e100_stw_le_phys(target_phys_addr_t addr, uint16_t val)
  300. {
  301. val = cpu_to_le16(val);
  302. cpu_physical_memory_write(addr, &val, sizeof(val));
  303. }
  304. /* Write a 32 bit little endian value to physical memory. */
  305. static void e100_stl_le_phys(target_phys_addr_t addr, uint32_t val)
  306. {
  307. val = cpu_to_le32(val);
  308. cpu_physical_memory_write(addr, &val, sizeof(val));
  309. }
  310. #define POLYNOMIAL 0x04c11db6
  311. /* From FreeBSD */
  312. /* XXX: optimize */
  313. static unsigned compute_mcast_idx(const uint8_t * ep)
  314. {
  315. uint32_t crc;
  316. int carry, i, j;
  317. uint8_t b;
  318. crc = 0xffffffff;
  319. for (i = 0; i < 6; i++) {
  320. b = *ep++;
  321. for (j = 0; j < 8; j++) {
  322. carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
  323. crc <<= 1;
  324. b >>= 1;
  325. if (carry) {
  326. crc = ((crc ^ POLYNOMIAL) | carry);
  327. }
  328. }
  329. }
  330. return (crc & BITS(7, 2)) >> 2;
  331. }
  332. /* Read a 16 bit control/status (CSR) register. */
  333. static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
  334. {
  335. assert(!((uintptr_t)&s->mem[addr] & 1));
  336. return le16_to_cpup((uint16_t *)&s->mem[addr]);
  337. }
  338. /* Read a 32 bit control/status (CSR) register. */
  339. static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
  340. {
  341. assert(!((uintptr_t)&s->mem[addr] & 3));
  342. return le32_to_cpup((uint32_t *)&s->mem[addr]);
  343. }
  344. /* Write a 16 bit control/status (CSR) register. */
  345. static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
  346. uint16_t val)
  347. {
  348. assert(!((uintptr_t)&s->mem[addr] & 1));
  349. cpu_to_le16w((uint16_t *)&s->mem[addr], val);
  350. }
  351. /* Read a 32 bit control/status (CSR) register. */
  352. static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
  353. uint32_t val)
  354. {
  355. assert(!((uintptr_t)&s->mem[addr] & 3));
  356. cpu_to_le32w((uint32_t *)&s->mem[addr], val);
  357. }
  358. #if defined(DEBUG_EEPRO100)
  359. static const char *nic_dump(const uint8_t * buf, unsigned size)
  360. {
  361. static char dump[3 * 16 + 1];
  362. char *p = &dump[0];
  363. if (size > 16) {
  364. size = 16;
  365. }
  366. while (size-- > 0) {
  367. p += sprintf(p, " %02x", *buf++);
  368. }
  369. return dump;
  370. }
  371. #endif /* DEBUG_EEPRO100 */
  372. enum scb_stat_ack {
  373. stat_ack_not_ours = 0x00,
  374. stat_ack_sw_gen = 0x04,
  375. stat_ack_rnr = 0x10,
  376. stat_ack_cu_idle = 0x20,
  377. stat_ack_frame_rx = 0x40,
  378. stat_ack_cu_cmd_done = 0x80,
  379. stat_ack_not_present = 0xFF,
  380. stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
  381. stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
  382. };
  383. static void disable_interrupt(EEPRO100State * s)
  384. {
  385. if (s->int_stat) {
  386. TRACE(INT, logout("interrupt disabled\n"));
  387. qemu_irq_lower(s->dev.irq[0]);
  388. s->int_stat = 0;
  389. }
  390. }
  391. static void enable_interrupt(EEPRO100State * s)
  392. {
  393. if (!s->int_stat) {
  394. TRACE(INT, logout("interrupt enabled\n"));
  395. qemu_irq_raise(s->dev.irq[0]);
  396. s->int_stat = 1;
  397. }
  398. }
  399. static void eepro100_acknowledge(EEPRO100State * s)
  400. {
  401. s->scb_stat &= ~s->mem[SCBAck];
  402. s->mem[SCBAck] = s->scb_stat;
  403. if (s->scb_stat == 0) {
  404. disable_interrupt(s);
  405. }
  406. }
  407. static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
  408. {
  409. uint8_t mask = ~s->mem[SCBIntmask];
  410. s->mem[SCBAck] |= status;
  411. status = s->scb_stat = s->mem[SCBAck];
  412. status &= (mask | 0x0f);
  413. #if 0
  414. status &= (~s->mem[SCBIntmask] | 0x0xf);
  415. #endif
  416. if (status && (mask & 0x01)) {
  417. /* SCB mask and SCB Bit M do not disable interrupt. */
  418. enable_interrupt(s);
  419. } else if (s->int_stat) {
  420. disable_interrupt(s);
  421. }
  422. }
  423. static void eepro100_cx_interrupt(EEPRO100State * s)
  424. {
  425. /* CU completed action command. */
  426. /* Transmit not ok (82557 only, not in emulation). */
  427. eepro100_interrupt(s, 0x80);
  428. }
  429. static void eepro100_cna_interrupt(EEPRO100State * s)
  430. {
  431. /* CU left the active state. */
  432. eepro100_interrupt(s, 0x20);
  433. }
  434. static void eepro100_fr_interrupt(EEPRO100State * s)
  435. {
  436. /* RU received a complete frame. */
  437. eepro100_interrupt(s, 0x40);
  438. }
  439. static void eepro100_rnr_interrupt(EEPRO100State * s)
  440. {
  441. /* RU is not ready. */
  442. eepro100_interrupt(s, 0x10);
  443. }
  444. static void eepro100_mdi_interrupt(EEPRO100State * s)
  445. {
  446. /* MDI completed read or write cycle. */
  447. eepro100_interrupt(s, 0x08);
  448. }
  449. static void eepro100_swi_interrupt(EEPRO100State * s)
  450. {
  451. /* Software has requested an interrupt. */
  452. eepro100_interrupt(s, 0x04);
  453. }
  454. #if 0
  455. static void eepro100_fcp_interrupt(EEPRO100State * s)
  456. {
  457. /* Flow control pause interrupt (82558 and later). */
  458. eepro100_interrupt(s, 0x01);
  459. }
  460. #endif
  461. static void e100_pci_reset(EEPRO100State * s, E100PCIDeviceInfo *e100_device)
  462. {
  463. uint32_t device = s->device;
  464. uint8_t *pci_conf = s->dev.config;
  465. TRACE(OTHER, logout("%p\n", s));
  466. /* PCI Status */
  467. pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
  468. PCI_STATUS_FAST_BACK);
  469. /* PCI Latency Timer */
  470. pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
  471. /* Capability Pointer is set by PCI framework. */
  472. /* Interrupt Line */
  473. /* Interrupt Pin */
  474. pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
  475. /* Minimum Grant */
  476. pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
  477. /* Maximum Latency */
  478. pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
  479. s->stats_size = e100_device->stats_size;
  480. s->has_extended_tcb_support = e100_device->has_extended_tcb_support;
  481. switch (device) {
  482. case i82550:
  483. case i82551:
  484. case i82557A:
  485. case i82557B:
  486. case i82557C:
  487. case i82558A:
  488. case i82558B:
  489. case i82559A:
  490. case i82559B:
  491. case i82559ER:
  492. case i82562:
  493. case i82801:
  494. case i82559C:
  495. break;
  496. default:
  497. logout("Device %X is undefined!\n", device);
  498. }
  499. /* Standard TxCB. */
  500. s->configuration[6] |= BIT(4);
  501. /* Standard statistical counters. */
  502. s->configuration[6] |= BIT(5);
  503. if (s->stats_size == 80) {
  504. /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
  505. if (s->configuration[6] & BIT(2)) {
  506. /* TCO statistical counters. */
  507. assert(s->configuration[6] & BIT(5));
  508. } else {
  509. if (s->configuration[6] & BIT(5)) {
  510. /* No extended statistical counters, i82557 compatible. */
  511. s->stats_size = 64;
  512. } else {
  513. /* i82558 compatible. */
  514. s->stats_size = 76;
  515. }
  516. }
  517. } else {
  518. if (s->configuration[6] & BIT(5)) {
  519. /* No extended statistical counters. */
  520. s->stats_size = 64;
  521. }
  522. }
  523. assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
  524. if (e100_device->power_management) {
  525. /* Power Management Capabilities */
  526. int cfg_offset = 0xdc;
  527. int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
  528. cfg_offset, PCI_PM_SIZEOF);
  529. assert(r >= 0);
  530. pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
  531. #if 0 /* TODO: replace dummy code for power management emulation. */
  532. /* TODO: Power Management Control / Status. */
  533. pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
  534. /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
  535. pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
  536. #endif
  537. }
  538. #if EEPROM_SIZE > 0
  539. if (device == i82557C || device == i82558B || device == i82559C) {
  540. /*
  541. TODO: get vendor id from EEPROM for i82557C or later.
  542. TODO: get device id from EEPROM for i82557C or later.
  543. TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
  544. TODO: header type is determined by EEPROM for i82559.
  545. TODO: get subsystem id from EEPROM for i82557C or later.
  546. TODO: get subsystem vendor id from EEPROM for i82557C or later.
  547. TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
  548. TODO: capability pointer depends on EEPROM for i82558.
  549. */
  550. logout("Get device id and revision from EEPROM!!!\n");
  551. }
  552. #endif /* EEPROM_SIZE > 0 */
  553. }
  554. static void nic_selective_reset(EEPRO100State * s)
  555. {
  556. size_t i;
  557. uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
  558. #if 0
  559. eeprom93xx_reset(s->eeprom);
  560. #endif
  561. memcpy(eeprom_contents, s->conf.macaddr.a, 6);
  562. eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
  563. if (s->device == i82557B || s->device == i82557C)
  564. eeprom_contents[5] = 0x0100;
  565. eeprom_contents[EEPROM_PHY_ID] = 1;
  566. uint16_t sum = 0;
  567. for (i = 0; i < EEPROM_SIZE - 1; i++) {
  568. sum += eeprom_contents[i];
  569. }
  570. eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
  571. TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
  572. memset(s->mem, 0, sizeof(s->mem));
  573. e100_write_reg4(s, SCBCtrlMDI, BIT(21));
  574. assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
  575. memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
  576. }
  577. static void nic_reset(void *opaque)
  578. {
  579. EEPRO100State *s = opaque;
  580. TRACE(OTHER, logout("%p\n", s));
  581. /* TODO: Clearing of hash register for selective reset, too? */
  582. memset(&s->mult[0], 0, sizeof(s->mult));
  583. nic_selective_reset(s);
  584. }
  585. #if defined(DEBUG_EEPRO100)
  586. static const char * const e100_reg[PCI_IO_SIZE / 4] = {
  587. "Command/Status",
  588. "General Pointer",
  589. "Port",
  590. "EEPROM/Flash Control",
  591. "MDI Control",
  592. "Receive DMA Byte Count",
  593. "Flow Control",
  594. "General Status/Control"
  595. };
  596. static char *regname(uint32_t addr)
  597. {
  598. static char buf[32];
  599. if (addr < PCI_IO_SIZE) {
  600. const char *r = e100_reg[addr / 4];
  601. if (r != 0) {
  602. snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
  603. } else {
  604. snprintf(buf, sizeof(buf), "0x%02x", addr);
  605. }
  606. } else {
  607. snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
  608. }
  609. return buf;
  610. }
  611. #endif /* DEBUG_EEPRO100 */
  612. /*****************************************************************************
  613. *
  614. * Command emulation.
  615. *
  616. ****************************************************************************/
  617. #if 0
  618. static uint16_t eepro100_read_command(EEPRO100State * s)
  619. {
  620. uint16_t val = 0xffff;
  621. TRACE(OTHER, logout("val=0x%04x\n", val));
  622. return val;
  623. }
  624. #endif
  625. /* Commands that can be put in a command list entry. */
  626. enum commands {
  627. CmdNOp = 0,
  628. CmdIASetup = 1,
  629. CmdConfigure = 2,
  630. CmdMulticastList = 3,
  631. CmdTx = 4,
  632. CmdTDR = 5, /* load microcode */
  633. CmdDump = 6,
  634. CmdDiagnose = 7,
  635. /* And some extra flags: */
  636. CmdSuspend = 0x4000, /* Suspend after completion. */
  637. CmdIntr = 0x2000, /* Interrupt after completion. */
  638. CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
  639. };
  640. static cu_state_t get_cu_state(EEPRO100State * s)
  641. {
  642. return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
  643. }
  644. static void set_cu_state(EEPRO100State * s, cu_state_t state)
  645. {
  646. s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
  647. }
  648. static ru_state_t get_ru_state(EEPRO100State * s)
  649. {
  650. return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
  651. }
  652. static void set_ru_state(EEPRO100State * s, ru_state_t state)
  653. {
  654. s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
  655. }
  656. static void dump_statistics(EEPRO100State * s)
  657. {
  658. /* Dump statistical data. Most data is never changed by the emulation
  659. * and always 0, so we first just copy the whole block and then those
  660. * values which really matter.
  661. * Number of data should check configuration!!!
  662. */
  663. cpu_physical_memory_write(s->statsaddr, &s->statistics, s->stats_size);
  664. e100_stl_le_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
  665. e100_stl_le_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
  666. e100_stl_le_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
  667. e100_stl_le_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
  668. #if 0
  669. e100_stw_le_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
  670. e100_stw_le_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
  671. missing("CU dump statistical counters");
  672. #endif
  673. }
  674. static void read_cb(EEPRO100State *s)
  675. {
  676. cpu_physical_memory_read(s->cb_address, &s->tx, sizeof(s->tx));
  677. s->tx.status = le16_to_cpu(s->tx.status);
  678. s->tx.command = le16_to_cpu(s->tx.command);
  679. s->tx.link = le32_to_cpu(s->tx.link);
  680. s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
  681. s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
  682. }
  683. static void tx_command(EEPRO100State *s)
  684. {
  685. uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
  686. uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
  687. /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
  688. uint8_t buf[2600];
  689. uint16_t size = 0;
  690. uint32_t tbd_address = s->cb_address + 0x10;
  691. TRACE(RXTX, logout
  692. ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
  693. tbd_array, tcb_bytes, s->tx.tbd_count));
  694. if (tcb_bytes > 2600) {
  695. logout("TCB byte count too large, using 2600\n");
  696. tcb_bytes = 2600;
  697. }
  698. if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
  699. logout
  700. ("illegal values of TBD array address and TCB byte count!\n");
  701. }
  702. assert(tcb_bytes <= sizeof(buf));
  703. while (size < tcb_bytes) {
  704. uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
  705. uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
  706. #if 0
  707. uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
  708. #endif
  709. tbd_address += 8;
  710. TRACE(RXTX, logout
  711. ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
  712. tx_buffer_address, tx_buffer_size));
  713. tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
  714. cpu_physical_memory_read(tx_buffer_address, &buf[size],
  715. tx_buffer_size);
  716. size += tx_buffer_size;
  717. }
  718. if (tbd_array == 0xffffffff) {
  719. /* Simplified mode. Was already handled by code above. */
  720. } else {
  721. /* Flexible mode. */
  722. uint8_t tbd_count = 0;
  723. if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
  724. /* Extended Flexible TCB. */
  725. for (; tbd_count < 2; tbd_count++) {
  726. uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
  727. uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
  728. uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
  729. tbd_address += 8;
  730. TRACE(RXTX, logout
  731. ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
  732. tx_buffer_address, tx_buffer_size));
  733. tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
  734. cpu_physical_memory_read(tx_buffer_address, &buf[size],
  735. tx_buffer_size);
  736. size += tx_buffer_size;
  737. if (tx_buffer_el & 1) {
  738. break;
  739. }
  740. }
  741. }
  742. tbd_address = tbd_array;
  743. for (; tbd_count < s->tx.tbd_count; tbd_count++) {
  744. uint32_t tx_buffer_address = e100_ldl_le_phys(tbd_address);
  745. uint16_t tx_buffer_size = e100_ldw_le_phys(tbd_address + 4);
  746. uint16_t tx_buffer_el = e100_ldw_le_phys(tbd_address + 6);
  747. tbd_address += 8;
  748. TRACE(RXTX, logout
  749. ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
  750. tx_buffer_address, tx_buffer_size));
  751. tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
  752. cpu_physical_memory_read(tx_buffer_address, &buf[size],
  753. tx_buffer_size);
  754. size += tx_buffer_size;
  755. if (tx_buffer_el & 1) {
  756. break;
  757. }
  758. }
  759. }
  760. TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
  761. qemu_send_packet(&s->nic->nc, buf, size);
  762. s->statistics.tx_good_frames++;
  763. /* Transmit with bad status would raise an CX/TNO interrupt.
  764. * (82557 only). Emulation never has bad status. */
  765. #if 0
  766. eepro100_cx_interrupt(s);
  767. #endif
  768. }
  769. static void set_multicast_list(EEPRO100State *s)
  770. {
  771. uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
  772. uint16_t i;
  773. memset(&s->mult[0], 0, sizeof(s->mult));
  774. TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
  775. for (i = 0; i < multicast_count; i += 6) {
  776. uint8_t multicast_addr[6];
  777. cpu_physical_memory_read(s->cb_address + 10 + i, multicast_addr, 6);
  778. TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
  779. unsigned mcast_idx = compute_mcast_idx(multicast_addr);
  780. assert(mcast_idx < 64);
  781. s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
  782. }
  783. }
  784. static void action_command(EEPRO100State *s)
  785. {
  786. for (;;) {
  787. bool bit_el;
  788. bool bit_s;
  789. bool bit_i;
  790. bool bit_nc;
  791. uint16_t ok_status = STATUS_OK;
  792. s->cb_address = s->cu_base + s->cu_offset;
  793. read_cb(s);
  794. bit_el = ((s->tx.command & COMMAND_EL) != 0);
  795. bit_s = ((s->tx.command & COMMAND_S) != 0);
  796. bit_i = ((s->tx.command & COMMAND_I) != 0);
  797. bit_nc = ((s->tx.command & COMMAND_NC) != 0);
  798. #if 0
  799. bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
  800. #endif
  801. s->cu_offset = s->tx.link;
  802. TRACE(OTHER,
  803. logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
  804. s->tx.status, s->tx.command, s->tx.link));
  805. switch (s->tx.command & COMMAND_CMD) {
  806. case CmdNOp:
  807. /* Do nothing. */
  808. break;
  809. case CmdIASetup:
  810. cpu_physical_memory_read(s->cb_address + 8, &s->conf.macaddr.a[0], 6);
  811. TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
  812. break;
  813. case CmdConfigure:
  814. cpu_physical_memory_read(s->cb_address + 8, &s->configuration[0],
  815. sizeof(s->configuration));
  816. TRACE(OTHER, logout("configuration: %s\n",
  817. nic_dump(&s->configuration[0], 16)));
  818. TRACE(OTHER, logout("configuration: %s\n",
  819. nic_dump(&s->configuration[16],
  820. ARRAY_SIZE(s->configuration) - 16)));
  821. if (s->configuration[20] & BIT(6)) {
  822. TRACE(OTHER, logout("Multiple IA bit\n"));
  823. }
  824. break;
  825. case CmdMulticastList:
  826. set_multicast_list(s);
  827. break;
  828. case CmdTx:
  829. if (bit_nc) {
  830. missing("CmdTx: NC = 0");
  831. ok_status = 0;
  832. break;
  833. }
  834. tx_command(s);
  835. break;
  836. case CmdTDR:
  837. TRACE(OTHER, logout("load microcode\n"));
  838. /* Starting with offset 8, the command contains
  839. * 64 dwords microcode which we just ignore here. */
  840. break;
  841. case CmdDiagnose:
  842. TRACE(OTHER, logout("diagnose\n"));
  843. /* Make sure error flag is not set. */
  844. s->tx.status = 0;
  845. break;
  846. default:
  847. missing("undefined command");
  848. ok_status = 0;
  849. break;
  850. }
  851. /* Write new status. */
  852. e100_stw_le_phys(s->cb_address, s->tx.status | ok_status | STATUS_C);
  853. if (bit_i) {
  854. /* CU completed action. */
  855. eepro100_cx_interrupt(s);
  856. }
  857. if (bit_el) {
  858. /* CU becomes idle. Terminate command loop. */
  859. set_cu_state(s, cu_idle);
  860. eepro100_cna_interrupt(s);
  861. break;
  862. } else if (bit_s) {
  863. /* CU becomes suspended. Terminate command loop. */
  864. set_cu_state(s, cu_suspended);
  865. eepro100_cna_interrupt(s);
  866. break;
  867. } else {
  868. /* More entries in list. */
  869. TRACE(OTHER, logout("CU list with at least one more entry\n"));
  870. }
  871. }
  872. TRACE(OTHER, logout("CU list empty\n"));
  873. /* List is empty. Now CU is idle or suspended. */
  874. }
  875. static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
  876. {
  877. cu_state_t cu_state;
  878. switch (val) {
  879. case CU_NOP:
  880. /* No operation. */
  881. break;
  882. case CU_START:
  883. cu_state = get_cu_state(s);
  884. if (cu_state != cu_idle && cu_state != cu_suspended) {
  885. /* Intel documentation says that CU must be idle or suspended
  886. * for the CU start command. */
  887. logout("unexpected CU state is %u\n", cu_state);
  888. }
  889. set_cu_state(s, cu_active);
  890. s->cu_offset = e100_read_reg4(s, SCBPointer);
  891. action_command(s);
  892. break;
  893. case CU_RESUME:
  894. if (get_cu_state(s) != cu_suspended) {
  895. logout("bad CU resume from CU state %u\n", get_cu_state(s));
  896. /* Workaround for bad Linux eepro100 driver which resumes
  897. * from idle state. */
  898. #if 0
  899. missing("cu resume");
  900. #endif
  901. set_cu_state(s, cu_suspended);
  902. }
  903. if (get_cu_state(s) == cu_suspended) {
  904. TRACE(OTHER, logout("CU resuming\n"));
  905. set_cu_state(s, cu_active);
  906. action_command(s);
  907. }
  908. break;
  909. case CU_STATSADDR:
  910. /* Load dump counters address. */
  911. s->statsaddr = e100_read_reg4(s, SCBPointer);
  912. TRACE(OTHER, logout("val=0x%02x (status address)\n", val));
  913. break;
  914. case CU_SHOWSTATS:
  915. /* Dump statistical counters. */
  916. TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
  917. dump_statistics(s);
  918. e100_stl_le_phys(s->statsaddr + s->stats_size, 0xa005);
  919. break;
  920. case CU_CMD_BASE:
  921. /* Load CU base. */
  922. TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
  923. s->cu_base = e100_read_reg4(s, SCBPointer);
  924. break;
  925. case CU_DUMPSTATS:
  926. /* Dump and reset statistical counters. */
  927. TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
  928. dump_statistics(s);
  929. e100_stl_le_phys(s->statsaddr + s->stats_size, 0xa007);
  930. memset(&s->statistics, 0, sizeof(s->statistics));
  931. break;
  932. case CU_SRESUME:
  933. /* CU static resume. */
  934. missing("CU static resume");
  935. break;
  936. default:
  937. missing("Undefined CU command");
  938. }
  939. }
  940. static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
  941. {
  942. switch (val) {
  943. case RU_NOP:
  944. /* No operation. */
  945. break;
  946. case RX_START:
  947. /* RU start. */
  948. if (get_ru_state(s) != ru_idle) {
  949. logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
  950. #if 0
  951. assert(!"wrong RU state");
  952. #endif
  953. }
  954. set_ru_state(s, ru_ready);
  955. s->ru_offset = e100_read_reg4(s, SCBPointer);
  956. TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
  957. break;
  958. case RX_RESUME:
  959. /* Restart RU. */
  960. if (get_ru_state(s) != ru_suspended) {
  961. logout("RU state is %u, should be %u\n", get_ru_state(s),
  962. ru_suspended);
  963. #if 0
  964. assert(!"wrong RU state");
  965. #endif
  966. }
  967. set_ru_state(s, ru_ready);
  968. break;
  969. case RU_ABORT:
  970. /* RU abort. */
  971. if (get_ru_state(s) == ru_ready) {
  972. eepro100_rnr_interrupt(s);
  973. }
  974. set_ru_state(s, ru_idle);
  975. break;
  976. case RX_ADDR_LOAD:
  977. /* Load RU base. */
  978. TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
  979. s->ru_base = e100_read_reg4(s, SCBPointer);
  980. break;
  981. default:
  982. logout("val=0x%02x (undefined RU command)\n", val);
  983. missing("Undefined SU command");
  984. }
  985. }
  986. static void eepro100_write_command(EEPRO100State * s, uint8_t val)
  987. {
  988. eepro100_ru_command(s, val & 0x0f);
  989. eepro100_cu_command(s, val & 0xf0);
  990. if ((val) == 0) {
  991. TRACE(OTHER, logout("val=0x%02x\n", val));
  992. }
  993. /* Clear command byte after command was accepted. */
  994. s->mem[SCBCmd] = 0;
  995. }
  996. /*****************************************************************************
  997. *
  998. * EEPROM emulation.
  999. *
  1000. ****************************************************************************/
  1001. #define EEPROM_CS 0x02
  1002. #define EEPROM_SK 0x01
  1003. #define EEPROM_DI 0x04
  1004. #define EEPROM_DO 0x08
  1005. static uint16_t eepro100_read_eeprom(EEPRO100State * s)
  1006. {
  1007. uint16_t val = e100_read_reg2(s, SCBeeprom);
  1008. if (eeprom93xx_read(s->eeprom)) {
  1009. val |= EEPROM_DO;
  1010. } else {
  1011. val &= ~EEPROM_DO;
  1012. }
  1013. TRACE(EEPROM, logout("val=0x%04x\n", val));
  1014. return val;
  1015. }
  1016. static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
  1017. {
  1018. TRACE(EEPROM, logout("val=0x%02x\n", val));
  1019. /* mask unwritable bits */
  1020. #if 0
  1021. val = SET_MASKED(val, 0x31, eeprom->value);
  1022. #endif
  1023. int eecs = ((val & EEPROM_CS) != 0);
  1024. int eesk = ((val & EEPROM_SK) != 0);
  1025. int eedi = ((val & EEPROM_DI) != 0);
  1026. eeprom93xx_write(eeprom, eecs, eesk, eedi);
  1027. }
  1028. /*****************************************************************************
  1029. *
  1030. * MDI emulation.
  1031. *
  1032. ****************************************************************************/
  1033. #if defined(DEBUG_EEPRO100)
  1034. static const char * const mdi_op_name[] = {
  1035. "opcode 0",
  1036. "write",
  1037. "read",
  1038. "opcode 3"
  1039. };
  1040. static const char * const mdi_reg_name[] = {
  1041. "Control",
  1042. "Status",
  1043. "PHY Identification (Word 1)",
  1044. "PHY Identification (Word 2)",
  1045. "Auto-Negotiation Advertisement",
  1046. "Auto-Negotiation Link Partner Ability",
  1047. "Auto-Negotiation Expansion"
  1048. };
  1049. static const char *reg2name(uint8_t reg)
  1050. {
  1051. static char buffer[10];
  1052. const char *p = buffer;
  1053. if (reg < ARRAY_SIZE(mdi_reg_name)) {
  1054. p = mdi_reg_name[reg];
  1055. } else {
  1056. snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
  1057. }
  1058. return p;
  1059. }
  1060. #endif /* DEBUG_EEPRO100 */
  1061. static uint32_t eepro100_read_mdi(EEPRO100State * s)
  1062. {
  1063. uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
  1064. #ifdef DEBUG_EEPRO100
  1065. uint8_t raiseint = (val & BIT(29)) >> 29;
  1066. uint8_t opcode = (val & BITS(27, 26)) >> 26;
  1067. uint8_t phy = (val & BITS(25, 21)) >> 21;
  1068. uint8_t reg = (val & BITS(20, 16)) >> 16;
  1069. uint16_t data = (val & BITS(15, 0));
  1070. #endif
  1071. /* Emulation takes no time to finish MDI transaction. */
  1072. val |= BIT(28);
  1073. TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
  1074. val, raiseint, mdi_op_name[opcode], phy,
  1075. reg2name(reg), data));
  1076. return val;
  1077. }
  1078. static void eepro100_write_mdi(EEPRO100State *s)
  1079. {
  1080. uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
  1081. uint8_t raiseint = (val & BIT(29)) >> 29;
  1082. uint8_t opcode = (val & BITS(27, 26)) >> 26;
  1083. uint8_t phy = (val & BITS(25, 21)) >> 21;
  1084. uint8_t reg = (val & BITS(20, 16)) >> 16;
  1085. uint16_t data = (val & BITS(15, 0));
  1086. TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
  1087. val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
  1088. if (phy != 1) {
  1089. /* Unsupported PHY address. */
  1090. #if 0
  1091. logout("phy must be 1 but is %u\n", phy);
  1092. #endif
  1093. data = 0;
  1094. } else if (opcode != 1 && opcode != 2) {
  1095. /* Unsupported opcode. */
  1096. logout("opcode must be 1 or 2 but is %u\n", opcode);
  1097. data = 0;
  1098. } else if (reg > 6) {
  1099. /* Unsupported register. */
  1100. logout("register must be 0...6 but is %u\n", reg);
  1101. data = 0;
  1102. } else {
  1103. TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
  1104. val, raiseint, mdi_op_name[opcode], phy,
  1105. reg2name(reg), data));
  1106. if (opcode == 1) {
  1107. /* MDI write */
  1108. switch (reg) {
  1109. case 0: /* Control Register */
  1110. if (data & 0x8000) {
  1111. /* Reset status and control registers to default. */
  1112. s->mdimem[0] = eepro100_mdi_default[0];
  1113. s->mdimem[1] = eepro100_mdi_default[1];
  1114. data = s->mdimem[reg];
  1115. } else {
  1116. /* Restart Auto Configuration = Normal Operation */
  1117. data &= ~0x0200;
  1118. }
  1119. break;
  1120. case 1: /* Status Register */
  1121. missing("not writable");
  1122. data = s->mdimem[reg];
  1123. break;
  1124. case 2: /* PHY Identification Register (Word 1) */
  1125. case 3: /* PHY Identification Register (Word 2) */
  1126. missing("not implemented");
  1127. break;
  1128. case 4: /* Auto-Negotiation Advertisement Register */
  1129. case 5: /* Auto-Negotiation Link Partner Ability Register */
  1130. break;
  1131. case 6: /* Auto-Negotiation Expansion Register */
  1132. default:
  1133. missing("not implemented");
  1134. }
  1135. s->mdimem[reg] = data;
  1136. } else if (opcode == 2) {
  1137. /* MDI read */
  1138. switch (reg) {
  1139. case 0: /* Control Register */
  1140. if (data & 0x8000) {
  1141. /* Reset status and control registers to default. */
  1142. s->mdimem[0] = eepro100_mdi_default[0];
  1143. s->mdimem[1] = eepro100_mdi_default[1];
  1144. }
  1145. break;
  1146. case 1: /* Status Register */
  1147. s->mdimem[reg] |= 0x0020;
  1148. break;
  1149. case 2: /* PHY Identification Register (Word 1) */
  1150. case 3: /* PHY Identification Register (Word 2) */
  1151. case 4: /* Auto-Negotiation Advertisement Register */
  1152. break;
  1153. case 5: /* Auto-Negotiation Link Partner Ability Register */
  1154. s->mdimem[reg] = 0x41fe;
  1155. break;
  1156. case 6: /* Auto-Negotiation Expansion Register */
  1157. s->mdimem[reg] = 0x0001;
  1158. break;
  1159. }
  1160. data = s->mdimem[reg];
  1161. }
  1162. /* Emulation takes no time to finish MDI transaction.
  1163. * Set MDI bit in SCB status register. */
  1164. s->mem[SCBAck] |= 0x08;
  1165. val |= BIT(28);
  1166. if (raiseint) {
  1167. eepro100_mdi_interrupt(s);
  1168. }
  1169. }
  1170. val = (val & 0xffff0000) + data;
  1171. e100_write_reg4(s, SCBCtrlMDI, val);
  1172. }
  1173. /*****************************************************************************
  1174. *
  1175. * Port emulation.
  1176. *
  1177. ****************************************************************************/
  1178. #define PORT_SOFTWARE_RESET 0
  1179. #define PORT_SELFTEST 1
  1180. #define PORT_SELECTIVE_RESET 2
  1181. #define PORT_DUMP 3
  1182. #define PORT_SELECTION_MASK 3
  1183. typedef struct {
  1184. uint32_t st_sign; /* Self Test Signature */
  1185. uint32_t st_result; /* Self Test Results */
  1186. } eepro100_selftest_t;
  1187. static uint32_t eepro100_read_port(EEPRO100State * s)
  1188. {
  1189. return 0;
  1190. }
  1191. static void eepro100_write_port(EEPRO100State *s)
  1192. {
  1193. uint32_t val = e100_read_reg4(s, SCBPort);
  1194. uint32_t address = (val & ~PORT_SELECTION_MASK);
  1195. uint8_t selection = (val & PORT_SELECTION_MASK);
  1196. switch (selection) {
  1197. case PORT_SOFTWARE_RESET:
  1198. nic_reset(s);
  1199. break;
  1200. case PORT_SELFTEST:
  1201. TRACE(OTHER, logout("selftest address=0x%08x\n", address));
  1202. eepro100_selftest_t data;
  1203. cpu_physical_memory_read(address, &data, sizeof(data));
  1204. data.st_sign = 0xffffffff;
  1205. data.st_result = 0;
  1206. cpu_physical_memory_write(address, &data, sizeof(data));
  1207. break;
  1208. case PORT_SELECTIVE_RESET:
  1209. TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
  1210. nic_selective_reset(s);
  1211. break;
  1212. default:
  1213. logout("val=0x%08x\n", val);
  1214. missing("unknown port selection");
  1215. }
  1216. }
  1217. /*****************************************************************************
  1218. *
  1219. * General hardware emulation.
  1220. *
  1221. ****************************************************************************/
  1222. static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
  1223. {
  1224. uint8_t val = 0;
  1225. if (addr <= sizeof(s->mem) - sizeof(val)) {
  1226. val = s->mem[addr];
  1227. }
  1228. switch (addr) {
  1229. case SCBStatus:
  1230. case SCBAck:
  1231. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1232. break;
  1233. case SCBCmd:
  1234. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1235. #if 0
  1236. val = eepro100_read_command(s);
  1237. #endif
  1238. break;
  1239. case SCBIntmask:
  1240. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1241. break;
  1242. case SCBPort + 3:
  1243. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1244. break;
  1245. case SCBeeprom:
  1246. val = eepro100_read_eeprom(s);
  1247. break;
  1248. case SCBCtrlMDI:
  1249. case SCBCtrlMDI + 1:
  1250. case SCBCtrlMDI + 2:
  1251. case SCBCtrlMDI + 3:
  1252. val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
  1253. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1254. break;
  1255. case SCBpmdr: /* Power Management Driver Register */
  1256. val = 0;
  1257. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1258. break;
  1259. case SCBgctrl: /* General Control Register */
  1260. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1261. break;
  1262. case SCBgstat: /* General Status Register */
  1263. /* 100 Mbps full duplex, valid link */
  1264. val = 0x07;
  1265. TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
  1266. break;
  1267. default:
  1268. logout("addr=%s val=0x%02x\n", regname(addr), val);
  1269. missing("unknown byte read");
  1270. }
  1271. return val;
  1272. }
  1273. static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
  1274. {
  1275. uint16_t val = 0;
  1276. if (addr <= sizeof(s->mem) - sizeof(val)) {
  1277. val = e100_read_reg2(s, addr);
  1278. }
  1279. switch (addr) {
  1280. case SCBStatus:
  1281. case SCBCmd:
  1282. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1283. break;
  1284. case SCBeeprom:
  1285. val = eepro100_read_eeprom(s);
  1286. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1287. break;
  1288. case SCBCtrlMDI:
  1289. case SCBCtrlMDI + 2:
  1290. val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
  1291. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1292. break;
  1293. default:
  1294. logout("addr=%s val=0x%04x\n", regname(addr), val);
  1295. missing("unknown word read");
  1296. }
  1297. return val;
  1298. }
  1299. static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
  1300. {
  1301. uint32_t val = 0;
  1302. if (addr <= sizeof(s->mem) - sizeof(val)) {
  1303. val = e100_read_reg4(s, addr);
  1304. }
  1305. switch (addr) {
  1306. case SCBStatus:
  1307. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1308. break;
  1309. case SCBPointer:
  1310. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1311. break;
  1312. case SCBPort:
  1313. val = eepro100_read_port(s);
  1314. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1315. break;
  1316. case SCBflash:
  1317. val = eepro100_read_eeprom(s);
  1318. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1319. break;
  1320. case SCBCtrlMDI:
  1321. val = eepro100_read_mdi(s);
  1322. break;
  1323. default:
  1324. logout("addr=%s val=0x%08x\n", regname(addr), val);
  1325. missing("unknown longword read");
  1326. }
  1327. return val;
  1328. }
  1329. static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
  1330. {
  1331. /* SCBStatus is readonly. */
  1332. if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
  1333. s->mem[addr] = val;
  1334. }
  1335. switch (addr) {
  1336. case SCBStatus:
  1337. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1338. break;
  1339. case SCBAck:
  1340. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1341. eepro100_acknowledge(s);
  1342. break;
  1343. case SCBCmd:
  1344. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1345. eepro100_write_command(s, val);
  1346. break;
  1347. case SCBIntmask:
  1348. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1349. if (val & BIT(1)) {
  1350. eepro100_swi_interrupt(s);
  1351. }
  1352. eepro100_interrupt(s, 0);
  1353. break;
  1354. case SCBPointer:
  1355. case SCBPointer + 1:
  1356. case SCBPointer + 2:
  1357. case SCBPointer + 3:
  1358. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1359. break;
  1360. case SCBPort:
  1361. case SCBPort + 1:
  1362. case SCBPort + 2:
  1363. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1364. break;
  1365. case SCBPort + 3:
  1366. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1367. eepro100_write_port(s);
  1368. break;
  1369. case SCBFlow: /* does not exist on 82557 */
  1370. case SCBFlow + 1:
  1371. case SCBFlow + 2:
  1372. case SCBpmdr: /* does not exist on 82557 */
  1373. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1374. break;
  1375. case SCBeeprom:
  1376. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1377. eepro100_write_eeprom(s->eeprom, val);
  1378. break;
  1379. case SCBCtrlMDI:
  1380. case SCBCtrlMDI + 1:
  1381. case SCBCtrlMDI + 2:
  1382. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1383. break;
  1384. case SCBCtrlMDI + 3:
  1385. TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
  1386. eepro100_write_mdi(s);
  1387. break;
  1388. default:
  1389. logout("addr=%s val=0x%02x\n", regname(addr), val);
  1390. missing("unknown byte write");
  1391. }
  1392. }
  1393. static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
  1394. {
  1395. /* SCBStatus is readonly. */
  1396. if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
  1397. e100_write_reg2(s, addr, val);
  1398. }
  1399. switch (addr) {
  1400. case SCBStatus:
  1401. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1402. s->mem[SCBAck] = (val >> 8);
  1403. eepro100_acknowledge(s);
  1404. break;
  1405. case SCBCmd:
  1406. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1407. eepro100_write_command(s, val);
  1408. eepro100_write1(s, SCBIntmask, val >> 8);
  1409. break;
  1410. case SCBPointer:
  1411. case SCBPointer + 2:
  1412. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1413. break;
  1414. case SCBPort:
  1415. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1416. break;
  1417. case SCBPort + 2:
  1418. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1419. eepro100_write_port(s);
  1420. break;
  1421. case SCBeeprom:
  1422. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1423. eepro100_write_eeprom(s->eeprom, val);
  1424. break;
  1425. case SCBCtrlMDI:
  1426. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1427. break;
  1428. case SCBCtrlMDI + 2:
  1429. TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
  1430. eepro100_write_mdi(s);
  1431. break;
  1432. default:
  1433. logout("addr=%s val=0x%04x\n", regname(addr), val);
  1434. missing("unknown word write");
  1435. }
  1436. }
  1437. static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
  1438. {
  1439. if (addr <= sizeof(s->mem) - sizeof(val)) {
  1440. e100_write_reg4(s, addr, val);
  1441. }
  1442. switch (addr) {
  1443. case SCBPointer:
  1444. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1445. break;
  1446. case SCBPort:
  1447. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1448. eepro100_write_port(s);
  1449. break;
  1450. case SCBflash:
  1451. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1452. val = val >> 16;
  1453. eepro100_write_eeprom(s->eeprom, val);
  1454. break;
  1455. case SCBCtrlMDI:
  1456. TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
  1457. eepro100_write_mdi(s);
  1458. break;
  1459. default:
  1460. logout("addr=%s val=0x%08x\n", regname(addr), val);
  1461. missing("unknown longword write");
  1462. }
  1463. }
  1464. static uint64_t eepro100_read(void *opaque, target_phys_addr_t addr,
  1465. unsigned size)
  1466. {
  1467. EEPRO100State *s = opaque;
  1468. switch (size) {
  1469. case 1: return eepro100_read1(s, addr);
  1470. case 2: return eepro100_read2(s, addr);
  1471. case 4: return eepro100_read4(s, addr);
  1472. default: abort();
  1473. }
  1474. }
  1475. static void eepro100_write(void *opaque, target_phys_addr_t addr,
  1476. uint64_t data, unsigned size)
  1477. {
  1478. EEPRO100State *s = opaque;
  1479. switch (size) {
  1480. case 1: return eepro100_write1(s, addr, data);
  1481. case 2: return eepro100_write2(s, addr, data);
  1482. case 4: return eepro100_write4(s, addr, data);
  1483. default: abort();
  1484. }
  1485. }
  1486. static const MemoryRegionOps eepro100_ops = {
  1487. .read = eepro100_read,
  1488. .write = eepro100_write,
  1489. .endianness = DEVICE_LITTLE_ENDIAN,
  1490. };
  1491. static int nic_can_receive(VLANClientState *nc)
  1492. {
  1493. EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  1494. TRACE(RXTX, logout("%p\n", s));
  1495. return get_ru_state(s) == ru_ready;
  1496. #if 0
  1497. return !eepro100_buffer_full(s);
  1498. #endif
  1499. }
  1500. static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size)
  1501. {
  1502. /* TODO:
  1503. * - Magic packets should set bit 30 in power management driver register.
  1504. * - Interesting packets should set bit 29 in power management driver register.
  1505. */
  1506. EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  1507. uint16_t rfd_status = 0xa000;
  1508. #if defined(CONFIG_PAD_RECEIVED_FRAMES)
  1509. uint8_t min_buf[60];
  1510. #endif
  1511. static const uint8_t broadcast_macaddr[6] =
  1512. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  1513. #if defined(CONFIG_PAD_RECEIVED_FRAMES)
  1514. /* Pad to minimum Ethernet frame length */
  1515. if (size < sizeof(min_buf)) {
  1516. memcpy(min_buf, buf, size);
  1517. memset(&min_buf[size], 0, sizeof(min_buf) - size);
  1518. buf = min_buf;
  1519. size = sizeof(min_buf);
  1520. }
  1521. #endif
  1522. if (s->configuration[8] & 0x80) {
  1523. /* CSMA is disabled. */
  1524. logout("%p received while CSMA is disabled\n", s);
  1525. return -1;
  1526. #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
  1527. } else if (size < 64 && (s->configuration[7] & BIT(0))) {
  1528. /* Short frame and configuration byte 7/0 (discard short receive) set:
  1529. * Short frame is discarded */
  1530. logout("%p received short frame (%zu byte)\n", s, size);
  1531. s->statistics.rx_short_frame_errors++;
  1532. return -1;
  1533. #endif
  1534. } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
  1535. /* Long frame and configuration byte 18/3 (long receive ok) not set:
  1536. * Long frames are discarded. */
  1537. logout("%p received long frame (%zu byte), ignored\n", s, size);
  1538. return -1;
  1539. } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
  1540. /* Frame matches individual address. */
  1541. /* TODO: check configuration byte 15/4 (ignore U/L). */
  1542. TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
  1543. } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
  1544. /* Broadcast frame. */
  1545. TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
  1546. rfd_status |= 0x0002;
  1547. } else if (buf[0] & 0x01) {
  1548. /* Multicast frame. */
  1549. TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
  1550. if (s->configuration[21] & BIT(3)) {
  1551. /* Multicast all bit is set, receive all multicast frames. */
  1552. } else {
  1553. unsigned mcast_idx = compute_mcast_idx(buf);
  1554. assert(mcast_idx < 64);
  1555. if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
  1556. /* Multicast frame is allowed in hash table. */
  1557. } else if (s->configuration[15] & BIT(0)) {
  1558. /* Promiscuous: receive all. */
  1559. rfd_status |= 0x0004;
  1560. } else {
  1561. TRACE(RXTX, logout("%p multicast ignored\n", s));
  1562. return -1;
  1563. }
  1564. }
  1565. /* TODO: Next not for promiscuous mode? */
  1566. rfd_status |= 0x0002;
  1567. } else if (s->configuration[15] & BIT(0)) {
  1568. /* Promiscuous: receive all. */
  1569. TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
  1570. rfd_status |= 0x0004;
  1571. } else if (s->configuration[20] & BIT(6)) {
  1572. /* Multiple IA bit set. */
  1573. unsigned mcast_idx = compute_mcast_idx(buf);
  1574. assert(mcast_idx < 64);
  1575. if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
  1576. TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
  1577. } else {
  1578. TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
  1579. return -1;
  1580. }
  1581. } else {
  1582. TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
  1583. nic_dump(buf, size)));
  1584. return size;
  1585. }
  1586. if (get_ru_state(s) != ru_ready) {
  1587. /* No resources available. */
  1588. logout("no resources, state=%u\n", get_ru_state(s));
  1589. /* TODO: RNR interrupt only at first failed frame? */
  1590. eepro100_rnr_interrupt(s);
  1591. s->statistics.rx_resource_errors++;
  1592. #if 0
  1593. assert(!"no resources");
  1594. #endif
  1595. return -1;
  1596. }
  1597. /* !!! */
  1598. eepro100_rx_t rx;
  1599. cpu_physical_memory_read(s->ru_base + s->ru_offset, &rx,
  1600. sizeof(eepro100_rx_t));
  1601. uint16_t rfd_command = le16_to_cpu(rx.command);
  1602. uint16_t rfd_size = le16_to_cpu(rx.size);
  1603. if (size > rfd_size) {
  1604. logout("Receive buffer (%" PRId16 " bytes) too small for data "
  1605. "(%zu bytes); data truncated\n", rfd_size, size);
  1606. size = rfd_size;
  1607. }
  1608. #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
  1609. if (size < 64) {
  1610. rfd_status |= 0x0080;
  1611. }
  1612. #endif
  1613. TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
  1614. rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
  1615. e100_stw_le_phys(s->ru_base + s->ru_offset +
  1616. offsetof(eepro100_rx_t, status), rfd_status);
  1617. e100_stw_le_phys(s->ru_base + s->ru_offset +
  1618. offsetof(eepro100_rx_t, count), size);
  1619. /* Early receive interrupt not supported. */
  1620. #if 0
  1621. eepro100_er_interrupt(s);
  1622. #endif
  1623. /* Receive CRC Transfer not supported. */
  1624. if (s->configuration[18] & BIT(2)) {
  1625. missing("Receive CRC Transfer");
  1626. return -1;
  1627. }
  1628. /* TODO: check stripping enable bit. */
  1629. #if 0
  1630. assert(!(s->configuration[17] & BIT(0)));
  1631. #endif
  1632. cpu_physical_memory_write(s->ru_base + s->ru_offset +
  1633. sizeof(eepro100_rx_t), buf, size);
  1634. s->statistics.rx_good_frames++;
  1635. eepro100_fr_interrupt(s);
  1636. s->ru_offset = le32_to_cpu(rx.link);
  1637. if (rfd_command & COMMAND_EL) {
  1638. /* EL bit is set, so this was the last frame. */
  1639. logout("receive: Running out of frames\n");
  1640. set_ru_state(s, ru_suspended);
  1641. }
  1642. if (rfd_command & COMMAND_S) {
  1643. /* S bit is set. */
  1644. set_ru_state(s, ru_suspended);
  1645. }
  1646. return size;
  1647. }
  1648. static const VMStateDescription vmstate_eepro100 = {
  1649. .version_id = 3,
  1650. .minimum_version_id = 2,
  1651. .minimum_version_id_old = 2,
  1652. .fields = (VMStateField []) {
  1653. VMSTATE_PCI_DEVICE(dev, EEPRO100State),
  1654. VMSTATE_UNUSED(32),
  1655. VMSTATE_BUFFER(mult, EEPRO100State),
  1656. VMSTATE_BUFFER(mem, EEPRO100State),
  1657. /* Save all members of struct between scb_stat and mem. */
  1658. VMSTATE_UINT8(scb_stat, EEPRO100State),
  1659. VMSTATE_UINT8(int_stat, EEPRO100State),
  1660. VMSTATE_UNUSED(3*4),
  1661. VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
  1662. VMSTATE_UNUSED(19*4),
  1663. VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
  1664. /* The eeprom should be saved and restored by its own routines. */
  1665. VMSTATE_UINT32(device, EEPRO100State),
  1666. /* TODO check device. */
  1667. VMSTATE_UINT32(cu_base, EEPRO100State),
  1668. VMSTATE_UINT32(cu_offset, EEPRO100State),
  1669. VMSTATE_UINT32(ru_base, EEPRO100State),
  1670. VMSTATE_UINT32(ru_offset, EEPRO100State),
  1671. VMSTATE_UINT32(statsaddr, EEPRO100State),
  1672. /* Save eepro100_stats_t statistics. */
  1673. VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
  1674. VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
  1675. VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
  1676. VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
  1677. VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
  1678. VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
  1679. VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
  1680. VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
  1681. VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
  1682. VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
  1683. VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
  1684. VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
  1685. VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
  1686. VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
  1687. VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
  1688. VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
  1689. VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
  1690. VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
  1691. VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
  1692. VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
  1693. VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
  1694. /* Configuration bytes. */
  1695. VMSTATE_BUFFER(configuration, EEPRO100State),
  1696. VMSTATE_END_OF_LIST()
  1697. }
  1698. };
  1699. static void nic_cleanup(VLANClientState *nc)
  1700. {
  1701. EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
  1702. s->nic = NULL;
  1703. }
  1704. static int pci_nic_uninit(PCIDevice *pci_dev)
  1705. {
  1706. EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
  1707. memory_region_destroy(&s->mmio_bar);
  1708. memory_region_destroy(&s->io_bar);
  1709. memory_region_destroy(&s->flash_bar);
  1710. vmstate_unregister(&pci_dev->qdev, s->vmstate, s);
  1711. eeprom93xx_free(&pci_dev->qdev, s->eeprom);
  1712. qemu_del_vlan_client(&s->nic->nc);
  1713. return 0;
  1714. }
  1715. static NetClientInfo net_eepro100_info = {
  1716. .type = NET_CLIENT_TYPE_NIC,
  1717. .size = sizeof(NICState),
  1718. .can_receive = nic_can_receive,
  1719. .receive = nic_receive,
  1720. .cleanup = nic_cleanup,
  1721. };
  1722. static int e100_nic_init(PCIDevice *pci_dev)
  1723. {
  1724. EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
  1725. E100PCIDeviceInfo *e100_device = DO_UPCAST(E100PCIDeviceInfo, pci.qdev,
  1726. pci_dev->qdev.info);
  1727. TRACE(OTHER, logout("\n"));
  1728. s->device = e100_device->device;
  1729. e100_pci_reset(s, e100_device);
  1730. /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
  1731. * i82559 and later support 64 or 256 word EEPROM. */
  1732. s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
  1733. /* Handler for memory-mapped I/O */
  1734. memory_region_init_io(&s->mmio_bar, &eepro100_ops, s, "eepro100-mmio",
  1735. PCI_MEM_SIZE);
  1736. pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar);
  1737. memory_region_init_io(&s->io_bar, &eepro100_ops, s, "eepro100-io",
  1738. PCI_IO_SIZE);
  1739. pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar);
  1740. /* FIXME: flash aliases to mmio?! */
  1741. memory_region_init_io(&s->flash_bar, &eepro100_ops, s, "eepro100-flash",
  1742. PCI_FLASH_SIZE);
  1743. pci_register_bar(&s->dev, 2, 0, &s->flash_bar);
  1744. qemu_macaddr_default_if_unset(&s->conf.macaddr);
  1745. logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
  1746. nic_reset(s);
  1747. s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
  1748. pci_dev->qdev.info->name, pci_dev->qdev.id, s);
  1749. qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
  1750. TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
  1751. qemu_register_reset(nic_reset, s);
  1752. s->vmstate = g_malloc(sizeof(vmstate_eepro100));
  1753. memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
  1754. s->vmstate->name = s->nic->nc.model;
  1755. vmstate_register(&pci_dev->qdev, -1, s->vmstate, s);
  1756. add_boot_device_path(s->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
  1757. return 0;
  1758. }
  1759. static E100PCIDeviceInfo e100_devices[] = {
  1760. {
  1761. .pci.qdev.name = "i82550",
  1762. .pci.qdev.desc = "Intel i82550 Ethernet",
  1763. .device = i82550,
  1764. /* TODO: check device id. */
  1765. .pci.device_id = PCI_DEVICE_ID_INTEL_82551IT,
  1766. /* Revision ID: 0x0c, 0x0d, 0x0e. */
  1767. .pci.revision = 0x0e,
  1768. /* TODO: check size of statistical counters. */
  1769. .stats_size = 80,
  1770. /* TODO: check extended tcb support. */
  1771. .has_extended_tcb_support = true,
  1772. .power_management = true,
  1773. },{
  1774. .pci.qdev.name = "i82551",
  1775. .pci.qdev.desc = "Intel i82551 Ethernet",
  1776. .device = i82551,
  1777. .pci.device_id = PCI_DEVICE_ID_INTEL_82551IT,
  1778. /* Revision ID: 0x0f, 0x10. */
  1779. .pci.revision = 0x0f,
  1780. /* TODO: check size of statistical counters. */
  1781. .stats_size = 80,
  1782. .has_extended_tcb_support = true,
  1783. .power_management = true,
  1784. },{
  1785. .pci.qdev.name = "i82557a",
  1786. .pci.qdev.desc = "Intel i82557A Ethernet",
  1787. .device = i82557A,
  1788. .pci.device_id = PCI_DEVICE_ID_INTEL_82557,
  1789. .pci.revision = 0x01,
  1790. .power_management = false,
  1791. },{
  1792. .pci.qdev.name = "i82557b",
  1793. .pci.qdev.desc = "Intel i82557B Ethernet",
  1794. .device = i82557B,
  1795. .pci.device_id = PCI_DEVICE_ID_INTEL_82557,
  1796. .pci.revision = 0x02,
  1797. .power_management = false,
  1798. },{
  1799. .pci.qdev.name = "i82557c",
  1800. .pci.qdev.desc = "Intel i82557C Ethernet",
  1801. .device = i82557C,
  1802. .pci.device_id = PCI_DEVICE_ID_INTEL_82557,
  1803. .pci.revision = 0x03,
  1804. .power_management = false,
  1805. },{
  1806. .pci.qdev.name = "i82558a",
  1807. .pci.qdev.desc = "Intel i82558A Ethernet",
  1808. .device = i82558A,
  1809. .pci.device_id = PCI_DEVICE_ID_INTEL_82557,
  1810. .pci.revision = 0x04,
  1811. .stats_size = 76,
  1812. .has_extended_tcb_support = true,
  1813. .power_management = true,
  1814. },{
  1815. .pci.qdev.name = "i82558b",
  1816. .pci.qdev.desc = "Intel i82558B Ethernet",
  1817. .device = i82558B,
  1818. .pci.device_id = PCI_DEVICE_ID_INTEL_82557,
  1819. .pci.revision = 0x05,
  1820. .stats_size = 76,
  1821. .has_extended_tcb_support = true,
  1822. .power_management = true,
  1823. },{
  1824. .pci.qdev.name = "i82559a",
  1825. .pci.qdev.desc = "Intel i82559A Ethernet",
  1826. .device = i82559A,
  1827. .pci.device_id = PCI_DEVICE_ID_INTEL_82557,
  1828. .pci.revision = 0x06,
  1829. .stats_size = 80,
  1830. .has_extended_tcb_support = true,
  1831. .power_management = true,
  1832. },{
  1833. .pci.qdev.name = "i82559b",
  1834. .pci.qdev.desc = "Intel i82559B Ethernet",
  1835. .device = i82559B,
  1836. .pci.device_id = PCI_DEVICE_ID_INTEL_82557,
  1837. .pci.revision = 0x07,
  1838. .stats_size = 80,
  1839. .has_extended_tcb_support = true,
  1840. .power_management = true,
  1841. },{
  1842. .pci.qdev.name = "i82559c",
  1843. .pci.qdev.desc = "Intel i82559C Ethernet",
  1844. .device = i82559C,
  1845. .pci.device_id = PCI_DEVICE_ID_INTEL_82557,
  1846. #if 0
  1847. .pci.revision = 0x08,
  1848. #endif
  1849. /* TODO: Windows wants revision id 0x0c. */
  1850. .pci.revision = 0x0c,
  1851. #if EEPROM_SIZE > 0
  1852. .pci.subsystem_vendor_id = PCI_VENDOR_ID_INTEL,
  1853. .pci.subsystem_id = 0x0040,
  1854. #endif
  1855. .stats_size = 80,
  1856. .has_extended_tcb_support = true,
  1857. .power_management = true,
  1858. },{
  1859. .pci.qdev.name = "i82559er",
  1860. .pci.qdev.desc = "Intel i82559ER Ethernet",
  1861. .device = i82559ER,
  1862. .pci.device_id = PCI_DEVICE_ID_INTEL_82551IT,
  1863. .pci.revision = 0x09,
  1864. .stats_size = 80,
  1865. .has_extended_tcb_support = true,
  1866. .power_management = true,
  1867. },{
  1868. .pci.qdev.name = "i82562",
  1869. .pci.qdev.desc = "Intel i82562 Ethernet",
  1870. .device = i82562,
  1871. /* TODO: check device id. */
  1872. .pci.device_id = PCI_DEVICE_ID_INTEL_82551IT,
  1873. /* TODO: wrong revision id. */
  1874. .pci.revision = 0x0e,
  1875. .stats_size = 80,
  1876. .has_extended_tcb_support = true,
  1877. .power_management = true,
  1878. },{
  1879. /* Toshiba Tecra 8200. */
  1880. .pci.qdev.name = "i82801",
  1881. .pci.qdev.desc = "Intel i82801 Ethernet",
  1882. .device = i82801,
  1883. .pci.device_id = 0x2449,
  1884. .pci.revision = 0x03,
  1885. .stats_size = 80,
  1886. .has_extended_tcb_support = true,
  1887. .power_management = true,
  1888. }
  1889. };
  1890. static Property e100_properties[] = {
  1891. DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
  1892. DEFINE_PROP_END_OF_LIST(),
  1893. };
  1894. static void eepro100_register_devices(void)
  1895. {
  1896. size_t i;
  1897. for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
  1898. PCIDeviceInfo *pci_dev = &e100_devices[i].pci;
  1899. /* We use the same rom file for all device ids.
  1900. QEMU fixes the device id during rom load. */
  1901. pci_dev->vendor_id = PCI_VENDOR_ID_INTEL;
  1902. pci_dev->class_id = PCI_CLASS_NETWORK_ETHERNET;
  1903. pci_dev->romfile = "pxe-eepro100.rom";
  1904. pci_dev->init = e100_nic_init;
  1905. pci_dev->exit = pci_nic_uninit;
  1906. pci_dev->qdev.props = e100_properties;
  1907. pci_dev->qdev.size = sizeof(EEPRO100State);
  1908. pci_qdev_register(pci_dev);
  1909. }
  1910. }
  1911. device_init(eepro100_register_devices)