net_tx_pkt.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. /*
  2. * QEMU TX packets abstractions
  3. *
  4. * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
  5. *
  6. * Developed by Daynix Computing LTD (http://www.daynix.com)
  7. *
  8. * Authors:
  9. * Dmitry Fleytman <dmitry@daynix.com>
  10. * Tamir Shomer <tamirs@daynix.com>
  11. * Yan Vugenfirer <yan@daynix.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  14. * See the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "qemu/osdep.h"
  18. #include "qemu/crc32c.h"
  19. #include "net/eth.h"
  20. #include "net/checksum.h"
  21. #include "net/tap.h"
  22. #include "net/net.h"
  23. #include "hw/pci/pci_device.h"
  24. #include "net_tx_pkt.h"
  25. enum {
  26. NET_TX_PKT_VHDR_FRAG = 0,
  27. NET_TX_PKT_L2HDR_FRAG,
  28. NET_TX_PKT_L3HDR_FRAG,
  29. NET_TX_PKT_PL_START_FRAG
  30. };
  31. /* TX packet private context */
  32. struct NetTxPkt {
  33. struct virtio_net_hdr virt_hdr;
  34. struct iovec *raw;
  35. uint32_t raw_frags;
  36. uint32_t max_raw_frags;
  37. struct iovec *vec;
  38. struct {
  39. struct eth_header eth;
  40. struct vlan_header vlan[3];
  41. } l2_hdr;
  42. union {
  43. struct ip_header ip;
  44. struct ip6_header ip6;
  45. uint8_t octets[ETH_MAX_IP_DGRAM_LEN];
  46. } l3_hdr;
  47. uint32_t payload_len;
  48. uint32_t payload_frags;
  49. uint32_t max_payload_frags;
  50. uint16_t hdr_len;
  51. eth_pkt_types_e packet_type;
  52. uint8_t l4proto;
  53. };
  54. void net_tx_pkt_init(struct NetTxPkt **pkt, uint32_t max_frags)
  55. {
  56. struct NetTxPkt *p = g_malloc0(sizeof *p);
  57. p->vec = g_new(struct iovec, max_frags + NET_TX_PKT_PL_START_FRAG);
  58. p->raw = g_new(struct iovec, max_frags);
  59. p->max_payload_frags = max_frags;
  60. p->max_raw_frags = max_frags;
  61. p->vec[NET_TX_PKT_VHDR_FRAG].iov_base = &p->virt_hdr;
  62. p->vec[NET_TX_PKT_VHDR_FRAG].iov_len = sizeof p->virt_hdr;
  63. p->vec[NET_TX_PKT_L2HDR_FRAG].iov_base = &p->l2_hdr;
  64. p->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = &p->l3_hdr;
  65. *pkt = p;
  66. }
  67. void net_tx_pkt_uninit(struct NetTxPkt *pkt)
  68. {
  69. if (pkt) {
  70. g_free(pkt->vec);
  71. g_free(pkt->raw);
  72. g_free(pkt);
  73. }
  74. }
  75. void net_tx_pkt_update_ip_hdr_checksum(struct NetTxPkt *pkt)
  76. {
  77. uint16_t csum;
  78. assert(pkt);
  79. pkt->l3_hdr.ip.ip_len = cpu_to_be16(pkt->payload_len +
  80. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
  81. pkt->l3_hdr.ip.ip_sum = 0;
  82. csum = net_raw_checksum(pkt->l3_hdr.octets,
  83. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
  84. pkt->l3_hdr.ip.ip_sum = cpu_to_be16(csum);
  85. }
  86. void net_tx_pkt_update_ip_checksums(struct NetTxPkt *pkt)
  87. {
  88. uint16_t csum;
  89. uint32_t cntr, cso;
  90. assert(pkt);
  91. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  92. void *ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
  93. if (pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len >
  94. ETH_MAX_IP_DGRAM_LEN) {
  95. return;
  96. }
  97. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  98. gso_type == VIRTIO_NET_HDR_GSO_UDP) {
  99. /* Calculate IP header checksum */
  100. net_tx_pkt_update_ip_hdr_checksum(pkt);
  101. /* Calculate IP pseudo header checksum */
  102. cntr = eth_calc_ip4_pseudo_hdr_csum(ip_hdr, pkt->payload_len, &cso);
  103. csum = cpu_to_be16(~net_checksum_finish(cntr));
  104. } else if (gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  105. /* Calculate IP pseudo header checksum */
  106. cntr = eth_calc_ip6_pseudo_hdr_csum(ip_hdr, pkt->payload_len,
  107. IP_PROTO_TCP, &cso);
  108. csum = cpu_to_be16(~net_checksum_finish(cntr));
  109. } else {
  110. return;
  111. }
  112. iov_from_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
  113. pkt->virt_hdr.csum_offset, &csum, sizeof(csum));
  114. }
  115. bool net_tx_pkt_update_sctp_checksum(struct NetTxPkt *pkt)
  116. {
  117. uint32_t csum = 0;
  118. struct iovec *pl_start_frag = pkt->vec + NET_TX_PKT_PL_START_FRAG;
  119. if (iov_size(pl_start_frag, pkt->payload_frags) < 8 + sizeof(csum)) {
  120. return false;
  121. }
  122. if (iov_from_buf(pl_start_frag, pkt->payload_frags, 8, &csum, sizeof(csum)) < sizeof(csum)) {
  123. return false;
  124. }
  125. csum = cpu_to_le32(iov_crc32c(0xffffffff, pl_start_frag, pkt->payload_frags));
  126. if (iov_from_buf(pl_start_frag, pkt->payload_frags, 8, &csum, sizeof(csum)) < sizeof(csum)) {
  127. return false;
  128. }
  129. return true;
  130. }
  131. static void net_tx_pkt_calculate_hdr_len(struct NetTxPkt *pkt)
  132. {
  133. pkt->hdr_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +
  134. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
  135. }
  136. static bool net_tx_pkt_parse_headers(struct NetTxPkt *pkt)
  137. {
  138. struct iovec *l2_hdr, *l3_hdr;
  139. size_t bytes_read;
  140. size_t full_ip6hdr_len;
  141. uint16_t l3_proto;
  142. assert(pkt);
  143. l2_hdr = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  144. l3_hdr = &pkt->vec[NET_TX_PKT_L3HDR_FRAG];
  145. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, 0, l2_hdr->iov_base,
  146. ETH_MAX_L2_HDR_LEN);
  147. if (bytes_read < sizeof(struct eth_header)) {
  148. l2_hdr->iov_len = 0;
  149. return false;
  150. }
  151. l2_hdr->iov_len = sizeof(struct eth_header);
  152. switch (be16_to_cpu(PKT_GET_ETH_HDR(l2_hdr->iov_base)->h_proto)) {
  153. case ETH_P_VLAN:
  154. l2_hdr->iov_len += sizeof(struct vlan_header);
  155. break;
  156. case ETH_P_DVLAN:
  157. l2_hdr->iov_len += 2 * sizeof(struct vlan_header);
  158. break;
  159. }
  160. if (bytes_read < l2_hdr->iov_len) {
  161. l2_hdr->iov_len = 0;
  162. l3_hdr->iov_len = 0;
  163. pkt->packet_type = ETH_PKT_UCAST;
  164. return false;
  165. } else {
  166. l2_hdr->iov_len = ETH_MAX_L2_HDR_LEN;
  167. l2_hdr->iov_len = eth_get_l2_hdr_length(l2_hdr->iov_base);
  168. pkt->packet_type = get_eth_packet_type(l2_hdr->iov_base);
  169. }
  170. l3_proto = eth_get_l3_proto(l2_hdr, 1, l2_hdr->iov_len);
  171. switch (l3_proto) {
  172. case ETH_P_IP:
  173. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  174. l3_hdr->iov_base, sizeof(struct ip_header));
  175. if (bytes_read < sizeof(struct ip_header)) {
  176. l3_hdr->iov_len = 0;
  177. return false;
  178. }
  179. l3_hdr->iov_len = IP_HDR_GET_LEN(l3_hdr->iov_base);
  180. if (l3_hdr->iov_len < sizeof(struct ip_header)) {
  181. l3_hdr->iov_len = 0;
  182. return false;
  183. }
  184. pkt->l4proto = IP_HDR_GET_P(l3_hdr->iov_base);
  185. if (IP_HDR_GET_LEN(l3_hdr->iov_base) != sizeof(struct ip_header)) {
  186. /* copy optional IPv4 header data if any*/
  187. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags,
  188. l2_hdr->iov_len + sizeof(struct ip_header),
  189. l3_hdr->iov_base + sizeof(struct ip_header),
  190. l3_hdr->iov_len - sizeof(struct ip_header));
  191. if (bytes_read < l3_hdr->iov_len - sizeof(struct ip_header)) {
  192. l3_hdr->iov_len = 0;
  193. return false;
  194. }
  195. }
  196. break;
  197. case ETH_P_IPV6:
  198. {
  199. eth_ip6_hdr_info hdrinfo;
  200. if (!eth_parse_ipv6_hdr(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  201. &hdrinfo)) {
  202. l3_hdr->iov_len = 0;
  203. return false;
  204. }
  205. pkt->l4proto = hdrinfo.l4proto;
  206. full_ip6hdr_len = hdrinfo.full_hdr_len;
  207. if (full_ip6hdr_len > ETH_MAX_IP_DGRAM_LEN) {
  208. l3_hdr->iov_len = 0;
  209. return false;
  210. }
  211. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  212. l3_hdr->iov_base, full_ip6hdr_len);
  213. if (bytes_read < full_ip6hdr_len) {
  214. l3_hdr->iov_len = 0;
  215. return false;
  216. } else {
  217. l3_hdr->iov_len = full_ip6hdr_len;
  218. }
  219. break;
  220. }
  221. default:
  222. l3_hdr->iov_len = 0;
  223. break;
  224. }
  225. net_tx_pkt_calculate_hdr_len(pkt);
  226. return true;
  227. }
  228. static void net_tx_pkt_rebuild_payload(struct NetTxPkt *pkt)
  229. {
  230. pkt->payload_len = iov_size(pkt->raw, pkt->raw_frags) - pkt->hdr_len;
  231. pkt->payload_frags = iov_copy(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
  232. pkt->max_payload_frags,
  233. pkt->raw, pkt->raw_frags,
  234. pkt->hdr_len, pkt->payload_len);
  235. }
  236. bool net_tx_pkt_parse(struct NetTxPkt *pkt)
  237. {
  238. if (net_tx_pkt_parse_headers(pkt)) {
  239. net_tx_pkt_rebuild_payload(pkt);
  240. return true;
  241. } else {
  242. return false;
  243. }
  244. }
  245. struct virtio_net_hdr *net_tx_pkt_get_vhdr(struct NetTxPkt *pkt)
  246. {
  247. assert(pkt);
  248. return &pkt->virt_hdr;
  249. }
  250. static uint8_t net_tx_pkt_get_gso_type(struct NetTxPkt *pkt,
  251. bool tso_enable)
  252. {
  253. uint8_t rc = VIRTIO_NET_HDR_GSO_NONE;
  254. uint16_t l3_proto;
  255. l3_proto = eth_get_l3_proto(&pkt->vec[NET_TX_PKT_L2HDR_FRAG], 1,
  256. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len);
  257. if (!tso_enable) {
  258. goto func_exit;
  259. }
  260. rc = eth_get_gso_type(l3_proto, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  261. pkt->l4proto);
  262. func_exit:
  263. return rc;
  264. }
  265. bool net_tx_pkt_build_vheader(struct NetTxPkt *pkt, bool tso_enable,
  266. bool csum_enable, uint32_t gso_size)
  267. {
  268. struct tcp_hdr l4hdr;
  269. size_t bytes_read;
  270. assert(pkt);
  271. /* csum has to be enabled if tso is. */
  272. assert(csum_enable || !tso_enable);
  273. pkt->virt_hdr.gso_type = net_tx_pkt_get_gso_type(pkt, tso_enable);
  274. switch (pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
  275. case VIRTIO_NET_HDR_GSO_NONE:
  276. pkt->virt_hdr.hdr_len = 0;
  277. pkt->virt_hdr.gso_size = 0;
  278. break;
  279. case VIRTIO_NET_HDR_GSO_UDP:
  280. pkt->virt_hdr.gso_size = gso_size;
  281. pkt->virt_hdr.hdr_len = pkt->hdr_len + sizeof(struct udp_header);
  282. break;
  283. case VIRTIO_NET_HDR_GSO_TCPV4:
  284. case VIRTIO_NET_HDR_GSO_TCPV6:
  285. bytes_read = iov_to_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
  286. pkt->payload_frags, 0, &l4hdr, sizeof(l4hdr));
  287. if (bytes_read < sizeof(l4hdr) ||
  288. l4hdr.th_off * sizeof(uint32_t) < sizeof(l4hdr)) {
  289. return false;
  290. }
  291. pkt->virt_hdr.hdr_len = pkt->hdr_len + l4hdr.th_off * sizeof(uint32_t);
  292. pkt->virt_hdr.gso_size = gso_size;
  293. break;
  294. default:
  295. g_assert_not_reached();
  296. }
  297. if (csum_enable) {
  298. switch (pkt->l4proto) {
  299. case IP_PROTO_TCP:
  300. if (pkt->payload_len < sizeof(struct tcp_hdr)) {
  301. return false;
  302. }
  303. pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
  304. pkt->virt_hdr.csum_start = pkt->hdr_len;
  305. pkt->virt_hdr.csum_offset = offsetof(struct tcp_hdr, th_sum);
  306. break;
  307. case IP_PROTO_UDP:
  308. if (pkt->payload_len < sizeof(struct udp_hdr)) {
  309. return false;
  310. }
  311. pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
  312. pkt->virt_hdr.csum_start = pkt->hdr_len;
  313. pkt->virt_hdr.csum_offset = offsetof(struct udp_hdr, uh_sum);
  314. break;
  315. default:
  316. break;
  317. }
  318. }
  319. return true;
  320. }
  321. void net_tx_pkt_setup_vlan_header_ex(struct NetTxPkt *pkt,
  322. uint16_t vlan, uint16_t vlan_ethtype)
  323. {
  324. assert(pkt);
  325. eth_setup_vlan_headers(pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base,
  326. &pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
  327. vlan, vlan_ethtype);
  328. pkt->hdr_len += sizeof(struct vlan_header);
  329. }
  330. bool net_tx_pkt_add_raw_fragment(struct NetTxPkt *pkt, void *base, size_t len)
  331. {
  332. struct iovec *ventry;
  333. assert(pkt);
  334. if (pkt->raw_frags >= pkt->max_raw_frags) {
  335. return false;
  336. }
  337. ventry = &pkt->raw[pkt->raw_frags];
  338. ventry->iov_base = base;
  339. ventry->iov_len = len;
  340. pkt->raw_frags++;
  341. return true;
  342. }
  343. bool net_tx_pkt_has_fragments(struct NetTxPkt *pkt)
  344. {
  345. return pkt->raw_frags > 0;
  346. }
  347. eth_pkt_types_e net_tx_pkt_get_packet_type(struct NetTxPkt *pkt)
  348. {
  349. assert(pkt);
  350. return pkt->packet_type;
  351. }
  352. size_t net_tx_pkt_get_total_len(struct NetTxPkt *pkt)
  353. {
  354. assert(pkt);
  355. return pkt->hdr_len + pkt->payload_len;
  356. }
  357. void net_tx_pkt_dump(struct NetTxPkt *pkt)
  358. {
  359. #ifdef NET_TX_PKT_DEBUG
  360. assert(pkt);
  361. printf("TX PKT: hdr_len: %d, pkt_type: 0x%X, l2hdr_len: %lu, "
  362. "l3hdr_len: %lu, payload_len: %u\n", pkt->hdr_len, pkt->packet_type,
  363. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
  364. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len, pkt->payload_len);
  365. #endif
  366. }
  367. void net_tx_pkt_reset(struct NetTxPkt *pkt,
  368. NetTxPktFreeFrag callback, void *context)
  369. {
  370. int i;
  371. /* no assert, as reset can be called before tx_pkt_init */
  372. if (!pkt) {
  373. return;
  374. }
  375. memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr));
  376. assert(pkt->vec);
  377. pkt->payload_len = 0;
  378. pkt->payload_frags = 0;
  379. if (pkt->max_raw_frags > 0) {
  380. assert(pkt->raw);
  381. for (i = 0; i < pkt->raw_frags; i++) {
  382. assert(pkt->raw[i].iov_base);
  383. callback(context, pkt->raw[i].iov_base, pkt->raw[i].iov_len);
  384. }
  385. }
  386. pkt->raw_frags = 0;
  387. pkt->hdr_len = 0;
  388. pkt->l4proto = 0;
  389. }
  390. void net_tx_pkt_unmap_frag_pci(void *context, void *base, size_t len)
  391. {
  392. pci_dma_unmap(context, base, len, DMA_DIRECTION_TO_DEVICE, 0);
  393. }
  394. bool net_tx_pkt_add_raw_fragment_pci(struct NetTxPkt *pkt, PCIDevice *pci_dev,
  395. dma_addr_t pa, size_t len)
  396. {
  397. dma_addr_t mapped_len = len;
  398. void *base = pci_dma_map(pci_dev, pa, &mapped_len, DMA_DIRECTION_TO_DEVICE);
  399. if (!base) {
  400. return false;
  401. }
  402. if (mapped_len != len || !net_tx_pkt_add_raw_fragment(pkt, base, len)) {
  403. net_tx_pkt_unmap_frag_pci(pci_dev, base, mapped_len);
  404. return false;
  405. }
  406. return true;
  407. }
  408. static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt,
  409. struct iovec *iov, uint32_t iov_len,
  410. uint16_t csl)
  411. {
  412. uint32_t csum_cntr;
  413. uint16_t csum = 0;
  414. uint32_t cso;
  415. /* num of iovec without vhdr */
  416. size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset;
  417. uint16_t l3_proto = eth_get_l3_proto(iov, 1, iov->iov_len);
  418. /* Put zero to checksum field */
  419. iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
  420. /* Calculate L4 TCP/UDP checksum */
  421. csum_cntr = 0;
  422. cso = 0;
  423. /* add pseudo header to csum */
  424. if (l3_proto == ETH_P_IP) {
  425. csum_cntr = eth_calc_ip4_pseudo_hdr_csum(
  426. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  427. csl, &cso);
  428. } else if (l3_proto == ETH_P_IPV6) {
  429. csum_cntr = eth_calc_ip6_pseudo_hdr_csum(
  430. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  431. csl, pkt->l4proto, &cso);
  432. }
  433. /* data checksum */
  434. csum_cntr +=
  435. net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso);
  436. /* Put the checksum obtained into the packet */
  437. csum = cpu_to_be16(net_checksum_finish_nozero(csum_cntr));
  438. iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
  439. }
  440. #define NET_MAX_FRAG_SG_LIST (64)
  441. static size_t net_tx_pkt_fetch_fragment(struct NetTxPkt *pkt,
  442. int *src_idx, size_t *src_offset, size_t src_len,
  443. struct iovec *dst, int *dst_idx)
  444. {
  445. size_t fetched = 0;
  446. struct iovec *src = pkt->vec;
  447. while (fetched < src_len) {
  448. /* no more place in fragment iov */
  449. if (*dst_idx == NET_MAX_FRAG_SG_LIST) {
  450. break;
  451. }
  452. /* no more data in iovec */
  453. if (*src_idx == (pkt->payload_frags + NET_TX_PKT_PL_START_FRAG)) {
  454. break;
  455. }
  456. dst[*dst_idx].iov_base = src[*src_idx].iov_base + *src_offset;
  457. dst[*dst_idx].iov_len = MIN(src[*src_idx].iov_len - *src_offset,
  458. src_len - fetched);
  459. *src_offset += dst[*dst_idx].iov_len;
  460. fetched += dst[*dst_idx].iov_len;
  461. if (*src_offset == src[*src_idx].iov_len) {
  462. *src_offset = 0;
  463. (*src_idx)++;
  464. }
  465. (*dst_idx)++;
  466. }
  467. return fetched;
  468. }
  469. static void net_tx_pkt_sendv(
  470. void *opaque, const struct iovec *iov, int iov_cnt,
  471. const struct iovec *virt_iov, int virt_iov_cnt)
  472. {
  473. NetClientState *nc = opaque;
  474. if (qemu_get_vnet_hdr_len(nc->peer)) {
  475. qemu_sendv_packet(nc, virt_iov, virt_iov_cnt);
  476. } else {
  477. qemu_sendv_packet(nc, iov, iov_cnt);
  478. }
  479. }
  480. static bool net_tx_pkt_tcp_fragment_init(struct NetTxPkt *pkt,
  481. struct iovec *fragment,
  482. int *pl_idx,
  483. size_t *l4hdr_len,
  484. int *src_idx,
  485. size_t *src_offset,
  486. size_t *src_len)
  487. {
  488. struct iovec *l4 = fragment + NET_TX_PKT_PL_START_FRAG;
  489. size_t bytes_read = 0;
  490. struct tcp_hdr *th;
  491. if (!pkt->payload_frags) {
  492. return false;
  493. }
  494. l4->iov_len = pkt->virt_hdr.hdr_len - pkt->hdr_len;
  495. l4->iov_base = g_malloc(l4->iov_len);
  496. *src_idx = NET_TX_PKT_PL_START_FRAG;
  497. while (pkt->vec[*src_idx].iov_len < l4->iov_len - bytes_read) {
  498. memcpy((char *)l4->iov_base + bytes_read, pkt->vec[*src_idx].iov_base,
  499. pkt->vec[*src_idx].iov_len);
  500. bytes_read += pkt->vec[*src_idx].iov_len;
  501. (*src_idx)++;
  502. if (*src_idx >= pkt->payload_frags + NET_TX_PKT_PL_START_FRAG) {
  503. g_free(l4->iov_base);
  504. return false;
  505. }
  506. }
  507. *src_offset = l4->iov_len - bytes_read;
  508. memcpy((char *)l4->iov_base + bytes_read, pkt->vec[*src_idx].iov_base,
  509. *src_offset);
  510. th = l4->iov_base;
  511. th->th_flags &= ~(TH_FIN | TH_PUSH);
  512. *pl_idx = NET_TX_PKT_PL_START_FRAG + 1;
  513. *l4hdr_len = l4->iov_len;
  514. *src_len = pkt->virt_hdr.gso_size;
  515. return true;
  516. }
  517. static void net_tx_pkt_tcp_fragment_deinit(struct iovec *fragment)
  518. {
  519. g_free(fragment[NET_TX_PKT_PL_START_FRAG].iov_base);
  520. }
  521. static void net_tx_pkt_tcp_fragment_fix(struct NetTxPkt *pkt,
  522. struct iovec *fragment,
  523. size_t fragment_len,
  524. uint8_t gso_type)
  525. {
  526. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  527. struct iovec *l4hdr = fragment + NET_TX_PKT_PL_START_FRAG;
  528. struct ip_header *ip = l3hdr->iov_base;
  529. struct ip6_header *ip6 = l3hdr->iov_base;
  530. size_t len = l3hdr->iov_len + l4hdr->iov_len + fragment_len;
  531. switch (gso_type) {
  532. case VIRTIO_NET_HDR_GSO_TCPV4:
  533. ip->ip_len = cpu_to_be16(len);
  534. eth_fix_ip4_checksum(l3hdr->iov_base, l3hdr->iov_len);
  535. break;
  536. case VIRTIO_NET_HDR_GSO_TCPV6:
  537. len -= sizeof(struct ip6_header);
  538. ip6->ip6_ctlun.ip6_un1.ip6_un1_plen = cpu_to_be16(len);
  539. break;
  540. }
  541. }
  542. static void net_tx_pkt_tcp_fragment_advance(struct NetTxPkt *pkt,
  543. struct iovec *fragment,
  544. size_t fragment_len,
  545. uint8_t gso_type)
  546. {
  547. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  548. struct iovec *l4hdr = fragment + NET_TX_PKT_PL_START_FRAG;
  549. struct ip_header *ip = l3hdr->iov_base;
  550. struct tcp_hdr *th = l4hdr->iov_base;
  551. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4) {
  552. ip->ip_id = cpu_to_be16(be16_to_cpu(ip->ip_id) + 1);
  553. }
  554. th->th_seq = cpu_to_be32(be32_to_cpu(th->th_seq) + fragment_len);
  555. th->th_flags &= ~TH_CWR;
  556. }
  557. static void net_tx_pkt_udp_fragment_init(struct NetTxPkt *pkt,
  558. int *pl_idx,
  559. size_t *l4hdr_len,
  560. int *src_idx, size_t *src_offset,
  561. size_t *src_len)
  562. {
  563. *pl_idx = NET_TX_PKT_PL_START_FRAG;
  564. *l4hdr_len = 0;
  565. *src_idx = NET_TX_PKT_PL_START_FRAG;
  566. *src_offset = 0;
  567. *src_len = IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size);
  568. }
  569. static void net_tx_pkt_udp_fragment_fix(struct NetTxPkt *pkt,
  570. struct iovec *fragment,
  571. size_t fragment_offset,
  572. size_t fragment_len)
  573. {
  574. bool more_frags = fragment_offset + fragment_len < pkt->payload_len;
  575. uint16_t orig_flags;
  576. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  577. struct ip_header *ip = l3hdr->iov_base;
  578. uint16_t frag_off_units = fragment_offset / IP_FRAG_UNIT_SIZE;
  579. uint16_t new_ip_off;
  580. assert(fragment_offset % IP_FRAG_UNIT_SIZE == 0);
  581. assert((frag_off_units & ~IP_OFFMASK) == 0);
  582. orig_flags = be16_to_cpu(ip->ip_off) & ~(IP_OFFMASK | IP_MF);
  583. new_ip_off = frag_off_units | orig_flags | (more_frags ? IP_MF : 0);
  584. ip->ip_off = cpu_to_be16(new_ip_off);
  585. ip->ip_len = cpu_to_be16(l3hdr->iov_len + fragment_len);
  586. eth_fix_ip4_checksum(l3hdr->iov_base, l3hdr->iov_len);
  587. }
  588. static bool net_tx_pkt_do_sw_fragmentation(struct NetTxPkt *pkt,
  589. NetTxPktSend callback,
  590. void *context)
  591. {
  592. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  593. struct iovec fragment[NET_MAX_FRAG_SG_LIST];
  594. size_t fragment_len;
  595. size_t l4hdr_len;
  596. size_t src_len;
  597. int src_idx, dst_idx, pl_idx;
  598. size_t src_offset;
  599. size_t fragment_offset = 0;
  600. struct virtio_net_hdr virt_hdr = {
  601. .flags = pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM ?
  602. VIRTIO_NET_HDR_F_DATA_VALID : 0
  603. };
  604. /* Copy headers */
  605. fragment[NET_TX_PKT_VHDR_FRAG].iov_base = &virt_hdr;
  606. fragment[NET_TX_PKT_VHDR_FRAG].iov_len = sizeof(virt_hdr);
  607. fragment[NET_TX_PKT_L2HDR_FRAG] = pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  608. fragment[NET_TX_PKT_L3HDR_FRAG] = pkt->vec[NET_TX_PKT_L3HDR_FRAG];
  609. switch (gso_type) {
  610. case VIRTIO_NET_HDR_GSO_TCPV4:
  611. case VIRTIO_NET_HDR_GSO_TCPV6:
  612. if (!net_tx_pkt_tcp_fragment_init(pkt, fragment, &pl_idx, &l4hdr_len,
  613. &src_idx, &src_offset, &src_len)) {
  614. return false;
  615. }
  616. break;
  617. case VIRTIO_NET_HDR_GSO_UDP:
  618. net_tx_pkt_do_sw_csum(pkt, &pkt->vec[NET_TX_PKT_L2HDR_FRAG],
  619. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1,
  620. pkt->payload_len);
  621. net_tx_pkt_udp_fragment_init(pkt, &pl_idx, &l4hdr_len,
  622. &src_idx, &src_offset, &src_len);
  623. break;
  624. default:
  625. abort();
  626. }
  627. /* Put as much data as possible and send */
  628. while (true) {
  629. dst_idx = pl_idx;
  630. fragment_len = net_tx_pkt_fetch_fragment(pkt,
  631. &src_idx, &src_offset, src_len, fragment, &dst_idx);
  632. if (!fragment_len) {
  633. break;
  634. }
  635. switch (gso_type) {
  636. case VIRTIO_NET_HDR_GSO_TCPV4:
  637. case VIRTIO_NET_HDR_GSO_TCPV6:
  638. net_tx_pkt_tcp_fragment_fix(pkt, fragment, fragment_len, gso_type);
  639. net_tx_pkt_do_sw_csum(pkt, fragment + NET_TX_PKT_L2HDR_FRAG,
  640. dst_idx - NET_TX_PKT_L2HDR_FRAG,
  641. l4hdr_len + fragment_len);
  642. break;
  643. case VIRTIO_NET_HDR_GSO_UDP:
  644. net_tx_pkt_udp_fragment_fix(pkt, fragment, fragment_offset,
  645. fragment_len);
  646. break;
  647. }
  648. callback(context,
  649. fragment + NET_TX_PKT_L2HDR_FRAG, dst_idx - NET_TX_PKT_L2HDR_FRAG,
  650. fragment + NET_TX_PKT_VHDR_FRAG, dst_idx - NET_TX_PKT_VHDR_FRAG);
  651. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  652. gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  653. net_tx_pkt_tcp_fragment_advance(pkt, fragment, fragment_len,
  654. gso_type);
  655. }
  656. fragment_offset += fragment_len;
  657. }
  658. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  659. gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  660. net_tx_pkt_tcp_fragment_deinit(fragment);
  661. }
  662. return true;
  663. }
  664. bool net_tx_pkt_send(struct NetTxPkt *pkt, NetClientState *nc)
  665. {
  666. bool offload = qemu_get_vnet_hdr_len(nc->peer);
  667. return net_tx_pkt_send_custom(pkt, offload, net_tx_pkt_sendv, nc);
  668. }
  669. bool net_tx_pkt_send_custom(struct NetTxPkt *pkt, bool offload,
  670. NetTxPktSend callback, void *context)
  671. {
  672. assert(pkt);
  673. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  674. /*
  675. * Since underlying infrastructure does not support IP datagrams longer
  676. * than 64K we should drop such packets and don't even try to send
  677. */
  678. if (VIRTIO_NET_HDR_GSO_NONE != gso_type) {
  679. if (pkt->payload_len >
  680. ETH_MAX_IP_DGRAM_LEN -
  681. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len) {
  682. return false;
  683. }
  684. }
  685. if (offload || gso_type == VIRTIO_NET_HDR_GSO_NONE) {
  686. if (!offload && pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
  687. pkt->virt_hdr.flags &= ~VIRTIO_NET_HDR_F_NEEDS_CSUM;
  688. net_tx_pkt_do_sw_csum(pkt, &pkt->vec[NET_TX_PKT_L2HDR_FRAG],
  689. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1,
  690. pkt->payload_len);
  691. }
  692. net_tx_pkt_fix_ip6_payload_len(pkt);
  693. callback(context, pkt->vec + NET_TX_PKT_L2HDR_FRAG,
  694. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - NET_TX_PKT_L2HDR_FRAG,
  695. pkt->vec + NET_TX_PKT_VHDR_FRAG,
  696. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - NET_TX_PKT_VHDR_FRAG);
  697. return true;
  698. }
  699. return net_tx_pkt_do_sw_fragmentation(pkt, callback, context);
  700. }
  701. void net_tx_pkt_fix_ip6_payload_len(struct NetTxPkt *pkt)
  702. {
  703. struct iovec *l2 = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  704. if (eth_get_l3_proto(l2, 1, l2->iov_len) == ETH_P_IPV6) {
  705. /*
  706. * TODO: if qemu would support >64K packets - add jumbo option check
  707. * something like that:
  708. * 'if (ip6->ip6_plen == 0 && !has_jumbo_option(ip6)) {'
  709. */
  710. if (pkt->l3_hdr.ip6.ip6_plen == 0) {
  711. if (pkt->payload_len <= ETH_MAX_IP_DGRAM_LEN) {
  712. pkt->l3_hdr.ip6.ip6_plen = htons(pkt->payload_len);
  713. }
  714. /*
  715. * TODO: if qemu would support >64K packets
  716. * add jumbo option for packets greater then 65,535 bytes
  717. */
  718. }
  719. }
  720. }