omap1.c 115 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083
  1. /*
  2. * TI OMAP processors emulation.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/log.h"
  21. #include "qemu/error-report.h"
  22. #include "qemu/main-loop.h"
  23. #include "qapi/error.h"
  24. #include "cpu.h"
  25. #include "exec/address-spaces.h"
  26. #include "hw/hw.h"
  27. #include "hw/irq.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/arm/boot.h"
  30. #include "hw/arm/omap.h"
  31. #include "hw/sd/sd.h"
  32. #include "system/blockdev.h"
  33. #include "system/system.h"
  34. #include "hw/arm/soc_dma.h"
  35. #include "system/qtest.h"
  36. #include "system/reset.h"
  37. #include "system/runstate.h"
  38. #include "system/rtc.h"
  39. #include "qemu/range.h"
  40. #include "hw/sysbus.h"
  41. #include "qemu/cutils.h"
  42. #include "qemu/bcd.h"
  43. #include "target/arm/cpu-qom.h"
  44. static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
  45. {
  46. qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
  47. funcname, 8 * sz, addr);
  48. }
  49. /* Should signal the TCMI/GPMC */
  50. uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  51. {
  52. uint8_t ret;
  53. omap_log_badwidth(__func__, addr, 1);
  54. cpu_physical_memory_read(addr, &ret, 1);
  55. return ret;
  56. }
  57. void omap_badwidth_write8(void *opaque, hwaddr addr,
  58. uint32_t value)
  59. {
  60. uint8_t val8 = value;
  61. omap_log_badwidth(__func__, addr, 1);
  62. cpu_physical_memory_write(addr, &val8, 1);
  63. }
  64. uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  65. {
  66. uint16_t ret;
  67. omap_log_badwidth(__func__, addr, 2);
  68. cpu_physical_memory_read(addr, &ret, 2);
  69. return ret;
  70. }
  71. void omap_badwidth_write16(void *opaque, hwaddr addr,
  72. uint32_t value)
  73. {
  74. uint16_t val16 = value;
  75. omap_log_badwidth(__func__, addr, 2);
  76. cpu_physical_memory_write(addr, &val16, 2);
  77. }
  78. uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  79. {
  80. uint32_t ret;
  81. omap_log_badwidth(__func__, addr, 4);
  82. cpu_physical_memory_read(addr, &ret, 4);
  83. return ret;
  84. }
  85. void omap_badwidth_write32(void *opaque, hwaddr addr,
  86. uint32_t value)
  87. {
  88. omap_log_badwidth(__func__, addr, 4);
  89. cpu_physical_memory_write(addr, &value, 4);
  90. }
  91. /* MPU OS timers */
  92. struct omap_mpu_timer_s {
  93. MemoryRegion iomem;
  94. qemu_irq irq;
  95. omap_clk clk;
  96. uint32_t val;
  97. int64_t time;
  98. QEMUTimer *timer;
  99. QEMUBH *tick;
  100. int64_t rate;
  101. int it_ena;
  102. int enable;
  103. int ptv;
  104. int ar;
  105. int st;
  106. uint32_t reset_val;
  107. };
  108. static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
  109. {
  110. uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
  111. if (timer->st && timer->enable && timer->rate)
  112. return timer->val - muldiv64(distance >> (timer->ptv + 1),
  113. timer->rate, NANOSECONDS_PER_SECOND);
  114. else
  115. return timer->val;
  116. }
  117. static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
  118. {
  119. timer->val = omap_timer_read(timer);
  120. timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  121. }
  122. static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
  123. {
  124. int64_t expires;
  125. if (timer->enable && timer->st && timer->rate) {
  126. timer->val = timer->reset_val; /* Should skip this on clk enable */
  127. expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
  128. NANOSECONDS_PER_SECOND, timer->rate);
  129. /* If timer expiry would be sooner than in about 1 ms and
  130. * auto-reload isn't set, then fire immediately. This is a hack
  131. * to make systems like PalmOS run in acceptable time. PalmOS
  132. * sets the interval to a very low value and polls the status bit
  133. * in a busy loop when it wants to sleep just a couple of CPU
  134. * ticks. */
  135. if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
  136. timer_mod(timer->timer, timer->time + expires);
  137. } else {
  138. qemu_bh_schedule(timer->tick);
  139. }
  140. } else
  141. timer_del(timer->timer);
  142. }
  143. static void omap_timer_fire(void *opaque)
  144. {
  145. struct omap_mpu_timer_s *timer = opaque;
  146. if (!timer->ar) {
  147. timer->val = 0;
  148. timer->st = 0;
  149. }
  150. if (timer->it_ena)
  151. /* Edge-triggered irq */
  152. qemu_irq_pulse(timer->irq);
  153. }
  154. static void omap_timer_tick(void *opaque)
  155. {
  156. struct omap_mpu_timer_s *timer = opaque;
  157. omap_timer_sync(timer);
  158. omap_timer_fire(timer);
  159. omap_timer_update(timer);
  160. }
  161. static void omap_timer_clk_update(void *opaque, int line, int on)
  162. {
  163. struct omap_mpu_timer_s *timer = opaque;
  164. omap_timer_sync(timer);
  165. timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
  166. omap_timer_update(timer);
  167. }
  168. static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
  169. {
  170. omap_clk_adduser(timer->clk,
  171. qemu_allocate_irq(omap_timer_clk_update, timer, 0));
  172. timer->rate = omap_clk_getrate(timer->clk);
  173. }
  174. static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
  175. unsigned size)
  176. {
  177. struct omap_mpu_timer_s *s = opaque;
  178. if (size != 4) {
  179. return omap_badwidth_read32(opaque, addr);
  180. }
  181. switch (addr) {
  182. case 0x00: /* CNTL_TIMER */
  183. return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
  184. case 0x04: /* LOAD_TIM */
  185. break;
  186. case 0x08: /* READ_TIM */
  187. return omap_timer_read(s);
  188. }
  189. OMAP_BAD_REG(addr);
  190. return 0;
  191. }
  192. static void omap_mpu_timer_write(void *opaque, hwaddr addr,
  193. uint64_t value, unsigned size)
  194. {
  195. struct omap_mpu_timer_s *s = opaque;
  196. if (size != 4) {
  197. omap_badwidth_write32(opaque, addr, value);
  198. return;
  199. }
  200. switch (addr) {
  201. case 0x00: /* CNTL_TIMER */
  202. omap_timer_sync(s);
  203. s->enable = (value >> 5) & 1;
  204. s->ptv = (value >> 2) & 7;
  205. s->ar = (value >> 1) & 1;
  206. s->st = value & 1;
  207. omap_timer_update(s);
  208. return;
  209. case 0x04: /* LOAD_TIM */
  210. s->reset_val = value;
  211. return;
  212. case 0x08: /* READ_TIM */
  213. OMAP_RO_REG(addr);
  214. break;
  215. default:
  216. OMAP_BAD_REG(addr);
  217. }
  218. }
  219. static const MemoryRegionOps omap_mpu_timer_ops = {
  220. .read = omap_mpu_timer_read,
  221. .write = omap_mpu_timer_write,
  222. .endianness = DEVICE_LITTLE_ENDIAN,
  223. };
  224. static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
  225. {
  226. timer_del(s->timer);
  227. s->enable = 0;
  228. s->reset_val = 31337;
  229. s->val = 0;
  230. s->ptv = 0;
  231. s->ar = 0;
  232. s->st = 0;
  233. s->it_ena = 1;
  234. }
  235. static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
  236. hwaddr base,
  237. qemu_irq irq, omap_clk clk)
  238. {
  239. struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
  240. s->irq = irq;
  241. s->clk = clk;
  242. s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
  243. s->tick = qemu_bh_new(omap_timer_fire, s);
  244. omap_mpu_timer_reset(s);
  245. omap_timer_clk_setup(s);
  246. memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
  247. "omap-mpu-timer", 0x100);
  248. memory_region_add_subregion(system_memory, base, &s->iomem);
  249. return s;
  250. }
  251. /* Watchdog timer */
  252. struct omap_watchdog_timer_s {
  253. struct omap_mpu_timer_s timer;
  254. MemoryRegion iomem;
  255. uint8_t last_wr;
  256. int mode;
  257. int free;
  258. int reset;
  259. };
  260. static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
  261. unsigned size)
  262. {
  263. struct omap_watchdog_timer_s *s = opaque;
  264. if (size != 2) {
  265. return omap_badwidth_read16(opaque, addr);
  266. }
  267. switch (addr) {
  268. case 0x00: /* CNTL_TIMER */
  269. return (s->timer.ptv << 9) | (s->timer.ar << 8) |
  270. (s->timer.st << 7) | (s->free << 1);
  271. case 0x04: /* READ_TIMER */
  272. return omap_timer_read(&s->timer);
  273. case 0x08: /* TIMER_MODE */
  274. return s->mode << 15;
  275. }
  276. OMAP_BAD_REG(addr);
  277. return 0;
  278. }
  279. static void omap_wd_timer_write(void *opaque, hwaddr addr,
  280. uint64_t value, unsigned size)
  281. {
  282. struct omap_watchdog_timer_s *s = opaque;
  283. if (size != 2) {
  284. omap_badwidth_write16(opaque, addr, value);
  285. return;
  286. }
  287. switch (addr) {
  288. case 0x00: /* CNTL_TIMER */
  289. omap_timer_sync(&s->timer);
  290. s->timer.ptv = (value >> 9) & 7;
  291. s->timer.ar = (value >> 8) & 1;
  292. s->timer.st = (value >> 7) & 1;
  293. s->free = (value >> 1) & 1;
  294. omap_timer_update(&s->timer);
  295. break;
  296. case 0x04: /* LOAD_TIMER */
  297. s->timer.reset_val = value & 0xffff;
  298. break;
  299. case 0x08: /* TIMER_MODE */
  300. if (!s->mode && ((value >> 15) & 1))
  301. omap_clk_get(s->timer.clk);
  302. s->mode |= (value >> 15) & 1;
  303. if (s->last_wr == 0xf5) {
  304. if ((value & 0xff) == 0xa0) {
  305. if (s->mode) {
  306. s->mode = 0;
  307. omap_clk_put(s->timer.clk);
  308. }
  309. } else {
  310. /* XXX: on T|E hardware somehow this has no effect,
  311. * on Zire 71 it works as specified. */
  312. s->reset = 1;
  313. qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  314. }
  315. }
  316. s->last_wr = value & 0xff;
  317. break;
  318. default:
  319. OMAP_BAD_REG(addr);
  320. }
  321. }
  322. static const MemoryRegionOps omap_wd_timer_ops = {
  323. .read = omap_wd_timer_read,
  324. .write = omap_wd_timer_write,
  325. .endianness = DEVICE_NATIVE_ENDIAN,
  326. };
  327. static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
  328. {
  329. timer_del(s->timer.timer);
  330. if (!s->mode)
  331. omap_clk_get(s->timer.clk);
  332. s->mode = 1;
  333. s->free = 1;
  334. s->reset = 0;
  335. s->timer.enable = 1;
  336. s->timer.it_ena = 1;
  337. s->timer.reset_val = 0xffff;
  338. s->timer.val = 0;
  339. s->timer.st = 0;
  340. s->timer.ptv = 0;
  341. s->timer.ar = 0;
  342. omap_timer_update(&s->timer);
  343. }
  344. static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
  345. hwaddr base,
  346. qemu_irq irq, omap_clk clk)
  347. {
  348. struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
  349. s->timer.irq = irq;
  350. s->timer.clk = clk;
  351. s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
  352. omap_wd_timer_reset(s);
  353. omap_timer_clk_setup(&s->timer);
  354. memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
  355. "omap-wd-timer", 0x100);
  356. memory_region_add_subregion(memory, base, &s->iomem);
  357. return s;
  358. }
  359. /* 32-kHz timer */
  360. struct omap_32khz_timer_s {
  361. struct omap_mpu_timer_s timer;
  362. MemoryRegion iomem;
  363. };
  364. static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
  365. unsigned size)
  366. {
  367. struct omap_32khz_timer_s *s = opaque;
  368. int offset = addr & OMAP_MPUI_REG_MASK;
  369. if (size != 4) {
  370. return omap_badwidth_read32(opaque, addr);
  371. }
  372. switch (offset) {
  373. case 0x00: /* TVR */
  374. return s->timer.reset_val;
  375. case 0x04: /* TCR */
  376. return omap_timer_read(&s->timer);
  377. case 0x08: /* CR */
  378. return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
  379. default:
  380. break;
  381. }
  382. OMAP_BAD_REG(addr);
  383. return 0;
  384. }
  385. static void omap_os_timer_write(void *opaque, hwaddr addr,
  386. uint64_t value, unsigned size)
  387. {
  388. struct omap_32khz_timer_s *s = opaque;
  389. int offset = addr & OMAP_MPUI_REG_MASK;
  390. if (size != 4) {
  391. omap_badwidth_write32(opaque, addr, value);
  392. return;
  393. }
  394. switch (offset) {
  395. case 0x00: /* TVR */
  396. s->timer.reset_val = value & 0x00ffffff;
  397. break;
  398. case 0x04: /* TCR */
  399. OMAP_RO_REG(addr);
  400. break;
  401. case 0x08: /* CR */
  402. s->timer.ar = (value >> 3) & 1;
  403. s->timer.it_ena = (value >> 2) & 1;
  404. if (s->timer.st != (value & 1) || (value & 2)) {
  405. omap_timer_sync(&s->timer);
  406. s->timer.enable = value & 1;
  407. s->timer.st = value & 1;
  408. omap_timer_update(&s->timer);
  409. }
  410. break;
  411. default:
  412. OMAP_BAD_REG(addr);
  413. }
  414. }
  415. static const MemoryRegionOps omap_os_timer_ops = {
  416. .read = omap_os_timer_read,
  417. .write = omap_os_timer_write,
  418. .endianness = DEVICE_NATIVE_ENDIAN,
  419. };
  420. static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
  421. {
  422. timer_del(s->timer.timer);
  423. s->timer.enable = 0;
  424. s->timer.it_ena = 0;
  425. s->timer.reset_val = 0x00ffffff;
  426. s->timer.val = 0;
  427. s->timer.st = 0;
  428. s->timer.ptv = 0;
  429. s->timer.ar = 1;
  430. }
  431. static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
  432. hwaddr base,
  433. qemu_irq irq, omap_clk clk)
  434. {
  435. struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
  436. s->timer.irq = irq;
  437. s->timer.clk = clk;
  438. s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
  439. omap_os_timer_reset(s);
  440. omap_timer_clk_setup(&s->timer);
  441. memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
  442. "omap-os-timer", 0x800);
  443. memory_region_add_subregion(memory, base, &s->iomem);
  444. return s;
  445. }
  446. /* Ultra Low-Power Device Module */
  447. static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
  448. unsigned size)
  449. {
  450. struct omap_mpu_state_s *s = opaque;
  451. uint16_t ret;
  452. if (size != 2) {
  453. return omap_badwidth_read16(opaque, addr);
  454. }
  455. switch (addr) {
  456. case 0x14: /* IT_STATUS */
  457. ret = s->ulpd_pm_regs[addr >> 2];
  458. s->ulpd_pm_regs[addr >> 2] = 0;
  459. qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  460. return ret;
  461. case 0x18: /* Reserved */
  462. case 0x1c: /* Reserved */
  463. case 0x20: /* Reserved */
  464. case 0x28: /* Reserved */
  465. case 0x2c: /* Reserved */
  466. OMAP_BAD_REG(addr);
  467. /* fall through */
  468. case 0x00: /* COUNTER_32_LSB */
  469. case 0x04: /* COUNTER_32_MSB */
  470. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  471. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  472. case 0x10: /* GAUGING_CTRL */
  473. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  474. case 0x30: /* CLOCK_CTRL */
  475. case 0x34: /* SOFT_REQ */
  476. case 0x38: /* COUNTER_32_FIQ */
  477. case 0x3c: /* DPLL_CTRL */
  478. case 0x40: /* STATUS_REQ */
  479. /* XXX: check clk::usecount state for every clock */
  480. case 0x48: /* LOCL_TIME */
  481. case 0x4c: /* APLL_CTRL */
  482. case 0x50: /* POWER_CTRL */
  483. return s->ulpd_pm_regs[addr >> 2];
  484. }
  485. OMAP_BAD_REG(addr);
  486. return 0;
  487. }
  488. static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
  489. uint16_t diff, uint16_t value)
  490. {
  491. if (diff & (1 << 4)) /* USB_MCLK_EN */
  492. omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
  493. if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
  494. omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
  495. }
  496. static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
  497. uint16_t diff, uint16_t value)
  498. {
  499. if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
  500. omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
  501. if (diff & (1 << 1)) /* SOFT_COM_REQ */
  502. omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
  503. if (diff & (1 << 2)) /* SOFT_SDW_REQ */
  504. omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
  505. if (diff & (1 << 3)) /* SOFT_USB_REQ */
  506. omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
  507. }
  508. static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
  509. uint64_t value, unsigned size)
  510. {
  511. struct omap_mpu_state_s *s = opaque;
  512. int64_t now, ticks;
  513. int div, mult;
  514. static const int bypass_div[4] = { 1, 2, 4, 4 };
  515. uint16_t diff;
  516. if (size != 2) {
  517. omap_badwidth_write16(opaque, addr, value);
  518. return;
  519. }
  520. switch (addr) {
  521. case 0x00: /* COUNTER_32_LSB */
  522. case 0x04: /* COUNTER_32_MSB */
  523. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  524. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  525. case 0x14: /* IT_STATUS */
  526. case 0x40: /* STATUS_REQ */
  527. OMAP_RO_REG(addr);
  528. break;
  529. case 0x10: /* GAUGING_CTRL */
  530. /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
  531. if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
  532. now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  533. if (value & 1)
  534. s->ulpd_gauge_start = now;
  535. else {
  536. now -= s->ulpd_gauge_start;
  537. /* 32-kHz ticks */
  538. ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
  539. s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
  540. s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
  541. if (ticks >> 32) /* OVERFLOW_32K */
  542. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
  543. /* High frequency ticks */
  544. ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
  545. s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
  546. s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
  547. if (ticks >> 32) /* OVERFLOW_HI_FREQ */
  548. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
  549. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
  550. qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  551. }
  552. }
  553. s->ulpd_pm_regs[addr >> 2] = value;
  554. break;
  555. case 0x18: /* Reserved */
  556. case 0x1c: /* Reserved */
  557. case 0x20: /* Reserved */
  558. case 0x28: /* Reserved */
  559. case 0x2c: /* Reserved */
  560. OMAP_BAD_REG(addr);
  561. /* fall through */
  562. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  563. case 0x38: /* COUNTER_32_FIQ */
  564. case 0x48: /* LOCL_TIME */
  565. case 0x50: /* POWER_CTRL */
  566. s->ulpd_pm_regs[addr >> 2] = value;
  567. break;
  568. case 0x30: /* CLOCK_CTRL */
  569. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  570. s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
  571. omap_ulpd_clk_update(s, diff, value);
  572. break;
  573. case 0x34: /* SOFT_REQ */
  574. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  575. s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
  576. omap_ulpd_req_update(s, diff, value);
  577. break;
  578. case 0x3c: /* DPLL_CTRL */
  579. /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
  580. * omitted altogether, probably a typo. */
  581. /* This register has identical semantics with DPLL(1:3) control
  582. * registers, see omap_dpll_write() */
  583. diff = s->ulpd_pm_regs[addr >> 2] & value;
  584. s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
  585. if (diff & (0x3ff << 2)) {
  586. if (value & (1 << 4)) { /* PLL_ENABLE */
  587. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  588. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  589. } else {
  590. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  591. mult = 1;
  592. }
  593. omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
  594. }
  595. /* Enter the desired mode. */
  596. s->ulpd_pm_regs[addr >> 2] =
  597. (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
  598. ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
  599. /* Act as if the lock is restored. */
  600. s->ulpd_pm_regs[addr >> 2] |= 2;
  601. break;
  602. case 0x4c: /* APLL_CTRL */
  603. diff = s->ulpd_pm_regs[addr >> 2] & value;
  604. s->ulpd_pm_regs[addr >> 2] = value & 0xf;
  605. if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
  606. omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
  607. (value & (1 << 0)) ? "apll" : "dpll4"));
  608. break;
  609. default:
  610. OMAP_BAD_REG(addr);
  611. }
  612. }
  613. static const MemoryRegionOps omap_ulpd_pm_ops = {
  614. .read = omap_ulpd_pm_read,
  615. .write = omap_ulpd_pm_write,
  616. .endianness = DEVICE_NATIVE_ENDIAN,
  617. };
  618. static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
  619. {
  620. mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
  621. mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
  622. mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
  623. mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
  624. mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
  625. mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
  626. mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
  627. mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
  628. mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
  629. mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
  630. mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
  631. omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
  632. mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
  633. omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
  634. mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
  635. mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
  636. mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
  637. mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
  638. mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
  639. mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
  640. mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
  641. omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
  642. omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
  643. }
  644. static void omap_ulpd_pm_init(MemoryRegion *system_memory,
  645. hwaddr base,
  646. struct omap_mpu_state_s *mpu)
  647. {
  648. memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
  649. "omap-ulpd-pm", 0x800);
  650. memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
  651. omap_ulpd_pm_reset(mpu);
  652. }
  653. /* OMAP Pin Configuration */
  654. static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
  655. unsigned size)
  656. {
  657. struct omap_mpu_state_s *s = opaque;
  658. if (size != 4) {
  659. return omap_badwidth_read32(opaque, addr);
  660. }
  661. switch (addr) {
  662. case 0x00: /* FUNC_MUX_CTRL_0 */
  663. case 0x04: /* FUNC_MUX_CTRL_1 */
  664. case 0x08: /* FUNC_MUX_CTRL_2 */
  665. return s->func_mux_ctrl[addr >> 2];
  666. case 0x0c: /* COMP_MODE_CTRL_0 */
  667. return s->comp_mode_ctrl[0];
  668. case 0x10: /* FUNC_MUX_CTRL_3 */
  669. case 0x14: /* FUNC_MUX_CTRL_4 */
  670. case 0x18: /* FUNC_MUX_CTRL_5 */
  671. case 0x1c: /* FUNC_MUX_CTRL_6 */
  672. case 0x20: /* FUNC_MUX_CTRL_7 */
  673. case 0x24: /* FUNC_MUX_CTRL_8 */
  674. case 0x28: /* FUNC_MUX_CTRL_9 */
  675. case 0x2c: /* FUNC_MUX_CTRL_A */
  676. case 0x30: /* FUNC_MUX_CTRL_B */
  677. case 0x34: /* FUNC_MUX_CTRL_C */
  678. case 0x38: /* FUNC_MUX_CTRL_D */
  679. return s->func_mux_ctrl[(addr >> 2) - 1];
  680. case 0x40: /* PULL_DWN_CTRL_0 */
  681. case 0x44: /* PULL_DWN_CTRL_1 */
  682. case 0x48: /* PULL_DWN_CTRL_2 */
  683. case 0x4c: /* PULL_DWN_CTRL_3 */
  684. return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
  685. case 0x50: /* GATE_INH_CTRL_0 */
  686. return s->gate_inh_ctrl[0];
  687. case 0x60: /* VOLTAGE_CTRL_0 */
  688. return s->voltage_ctrl[0];
  689. case 0x70: /* TEST_DBG_CTRL_0 */
  690. return s->test_dbg_ctrl[0];
  691. case 0x80: /* MOD_CONF_CTRL_0 */
  692. return s->mod_conf_ctrl[0];
  693. }
  694. OMAP_BAD_REG(addr);
  695. return 0;
  696. }
  697. static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
  698. uint32_t diff, uint32_t value)
  699. {
  700. if (s->compat1509) {
  701. if (diff & (1 << 9)) /* BLUETOOTH */
  702. omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
  703. (~value >> 9) & 1);
  704. if (diff & (1 << 7)) /* USB.CLKO */
  705. omap_clk_onoff(omap_findclk(s, "usb.clko"),
  706. (value >> 7) & 1);
  707. }
  708. }
  709. static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
  710. uint32_t diff, uint32_t value)
  711. {
  712. if (s->compat1509) {
  713. if (diff & (1U << 31)) {
  714. /* MCBSP3_CLK_HIZ_DI */
  715. omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
  716. }
  717. if (diff & (1 << 1)) {
  718. /* CLK32K */
  719. omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
  720. }
  721. }
  722. }
  723. static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
  724. uint32_t diff, uint32_t value)
  725. {
  726. if (diff & (1U << 31)) {
  727. /* CONF_MOD_UART3_CLK_MODE_R */
  728. omap_clk_reparent(omap_findclk(s, "uart3_ck"),
  729. omap_findclk(s, ((value >> 31) & 1) ?
  730. "ck_48m" : "armper_ck"));
  731. }
  732. if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
  733. omap_clk_reparent(omap_findclk(s, "uart2_ck"),
  734. omap_findclk(s, ((value >> 30) & 1) ?
  735. "ck_48m" : "armper_ck"));
  736. if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
  737. omap_clk_reparent(omap_findclk(s, "uart1_ck"),
  738. omap_findclk(s, ((value >> 29) & 1) ?
  739. "ck_48m" : "armper_ck"));
  740. if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
  741. omap_clk_reparent(omap_findclk(s, "mmc_ck"),
  742. omap_findclk(s, ((value >> 23) & 1) ?
  743. "ck_48m" : "armper_ck"));
  744. if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
  745. omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
  746. omap_findclk(s, ((value >> 12) & 1) ?
  747. "ck_48m" : "armper_ck"));
  748. if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
  749. omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
  750. }
  751. static void omap_pin_cfg_write(void *opaque, hwaddr addr,
  752. uint64_t value, unsigned size)
  753. {
  754. struct omap_mpu_state_s *s = opaque;
  755. uint32_t diff;
  756. if (size != 4) {
  757. omap_badwidth_write32(opaque, addr, value);
  758. return;
  759. }
  760. switch (addr) {
  761. case 0x00: /* FUNC_MUX_CTRL_0 */
  762. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  763. s->func_mux_ctrl[addr >> 2] = value;
  764. omap_pin_funcmux0_update(s, diff, value);
  765. return;
  766. case 0x04: /* FUNC_MUX_CTRL_1 */
  767. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  768. s->func_mux_ctrl[addr >> 2] = value;
  769. omap_pin_funcmux1_update(s, diff, value);
  770. return;
  771. case 0x08: /* FUNC_MUX_CTRL_2 */
  772. s->func_mux_ctrl[addr >> 2] = value;
  773. return;
  774. case 0x0c: /* COMP_MODE_CTRL_0 */
  775. s->comp_mode_ctrl[0] = value;
  776. s->compat1509 = (value != 0x0000eaef);
  777. omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
  778. omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
  779. return;
  780. case 0x10: /* FUNC_MUX_CTRL_3 */
  781. case 0x14: /* FUNC_MUX_CTRL_4 */
  782. case 0x18: /* FUNC_MUX_CTRL_5 */
  783. case 0x1c: /* FUNC_MUX_CTRL_6 */
  784. case 0x20: /* FUNC_MUX_CTRL_7 */
  785. case 0x24: /* FUNC_MUX_CTRL_8 */
  786. case 0x28: /* FUNC_MUX_CTRL_9 */
  787. case 0x2c: /* FUNC_MUX_CTRL_A */
  788. case 0x30: /* FUNC_MUX_CTRL_B */
  789. case 0x34: /* FUNC_MUX_CTRL_C */
  790. case 0x38: /* FUNC_MUX_CTRL_D */
  791. s->func_mux_ctrl[(addr >> 2) - 1] = value;
  792. return;
  793. case 0x40: /* PULL_DWN_CTRL_0 */
  794. case 0x44: /* PULL_DWN_CTRL_1 */
  795. case 0x48: /* PULL_DWN_CTRL_2 */
  796. case 0x4c: /* PULL_DWN_CTRL_3 */
  797. s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
  798. return;
  799. case 0x50: /* GATE_INH_CTRL_0 */
  800. s->gate_inh_ctrl[0] = value;
  801. return;
  802. case 0x60: /* VOLTAGE_CTRL_0 */
  803. s->voltage_ctrl[0] = value;
  804. return;
  805. case 0x70: /* TEST_DBG_CTRL_0 */
  806. s->test_dbg_ctrl[0] = value;
  807. return;
  808. case 0x80: /* MOD_CONF_CTRL_0 */
  809. diff = s->mod_conf_ctrl[0] ^ value;
  810. s->mod_conf_ctrl[0] = value;
  811. omap_pin_modconf1_update(s, diff, value);
  812. return;
  813. default:
  814. OMAP_BAD_REG(addr);
  815. }
  816. }
  817. static const MemoryRegionOps omap_pin_cfg_ops = {
  818. .read = omap_pin_cfg_read,
  819. .write = omap_pin_cfg_write,
  820. .endianness = DEVICE_NATIVE_ENDIAN,
  821. };
  822. static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
  823. {
  824. /* Start in Compatibility Mode. */
  825. mpu->compat1509 = 1;
  826. omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
  827. omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
  828. omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
  829. memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
  830. memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
  831. memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
  832. memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
  833. memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
  834. memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
  835. memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
  836. }
  837. static void omap_pin_cfg_init(MemoryRegion *system_memory,
  838. hwaddr base,
  839. struct omap_mpu_state_s *mpu)
  840. {
  841. memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
  842. "omap-pin-cfg", 0x800);
  843. memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
  844. omap_pin_cfg_reset(mpu);
  845. }
  846. /* Device Identification, Die Identification */
  847. static uint64_t omap_id_read(void *opaque, hwaddr addr,
  848. unsigned size)
  849. {
  850. struct omap_mpu_state_s *s = opaque;
  851. if (size != 4) {
  852. return omap_badwidth_read32(opaque, addr);
  853. }
  854. switch (addr) {
  855. case 0xfffe1800: /* DIE_ID_LSB */
  856. return 0xc9581f0e;
  857. case 0xfffe1804: /* DIE_ID_MSB */
  858. return 0xa8858bfa;
  859. case 0xfffe2000: /* PRODUCT_ID_LSB */
  860. return 0x00aaaafc;
  861. case 0xfffe2004: /* PRODUCT_ID_MSB */
  862. return 0xcafeb574;
  863. case 0xfffed400: /* JTAG_ID_LSB */
  864. switch (s->mpu_model) {
  865. case omap310:
  866. return 0x03310315;
  867. case omap1510:
  868. return 0x03310115;
  869. default:
  870. hw_error("%s: bad mpu model\n", __func__);
  871. }
  872. break;
  873. case 0xfffed404: /* JTAG_ID_MSB */
  874. switch (s->mpu_model) {
  875. case omap310:
  876. return 0xfb57402f;
  877. case omap1510:
  878. return 0xfb47002f;
  879. default:
  880. hw_error("%s: bad mpu model\n", __func__);
  881. }
  882. break;
  883. }
  884. OMAP_BAD_REG(addr);
  885. return 0;
  886. }
  887. static void omap_id_write(void *opaque, hwaddr addr,
  888. uint64_t value, unsigned size)
  889. {
  890. if (size != 4) {
  891. omap_badwidth_write32(opaque, addr, value);
  892. return;
  893. }
  894. OMAP_BAD_REG(addr);
  895. }
  896. static const MemoryRegionOps omap_id_ops = {
  897. .read = omap_id_read,
  898. .write = omap_id_write,
  899. .endianness = DEVICE_NATIVE_ENDIAN,
  900. };
  901. static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
  902. {
  903. memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
  904. "omap-id", 0x100000000ULL);
  905. memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
  906. 0xfffe1800, 0x800);
  907. memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
  908. memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
  909. 0xfffed400, 0x100);
  910. memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
  911. if (!cpu_is_omap15xx(mpu)) {
  912. memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
  913. &mpu->id_iomem, 0xfffe2000, 0x800);
  914. memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
  915. }
  916. }
  917. /* MPUI Control (Dummy) */
  918. static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
  919. unsigned size)
  920. {
  921. struct omap_mpu_state_s *s = opaque;
  922. if (size != 4) {
  923. return omap_badwidth_read32(opaque, addr);
  924. }
  925. switch (addr) {
  926. case 0x00: /* CTRL */
  927. return s->mpui_ctrl;
  928. case 0x04: /* DEBUG_ADDR */
  929. return 0x01ffffff;
  930. case 0x08: /* DEBUG_DATA */
  931. return 0xffffffff;
  932. case 0x0c: /* DEBUG_FLAG */
  933. return 0x00000800;
  934. case 0x10: /* STATUS */
  935. return 0x00000000;
  936. /* Not in OMAP310 */
  937. case 0x14: /* DSP_STATUS */
  938. case 0x18: /* DSP_BOOT_CONFIG */
  939. return 0x00000000;
  940. case 0x1c: /* DSP_MPUI_CONFIG */
  941. return 0x0000ffff;
  942. }
  943. OMAP_BAD_REG(addr);
  944. return 0;
  945. }
  946. static void omap_mpui_write(void *opaque, hwaddr addr,
  947. uint64_t value, unsigned size)
  948. {
  949. struct omap_mpu_state_s *s = opaque;
  950. if (size != 4) {
  951. omap_badwidth_write32(opaque, addr, value);
  952. return;
  953. }
  954. switch (addr) {
  955. case 0x00: /* CTRL */
  956. s->mpui_ctrl = value & 0x007fffff;
  957. break;
  958. case 0x04: /* DEBUG_ADDR */
  959. case 0x08: /* DEBUG_DATA */
  960. case 0x0c: /* DEBUG_FLAG */
  961. case 0x10: /* STATUS */
  962. /* Not in OMAP310 */
  963. case 0x14: /* DSP_STATUS */
  964. OMAP_RO_REG(addr);
  965. break;
  966. case 0x18: /* DSP_BOOT_CONFIG */
  967. case 0x1c: /* DSP_MPUI_CONFIG */
  968. break;
  969. default:
  970. OMAP_BAD_REG(addr);
  971. }
  972. }
  973. static const MemoryRegionOps omap_mpui_ops = {
  974. .read = omap_mpui_read,
  975. .write = omap_mpui_write,
  976. .endianness = DEVICE_NATIVE_ENDIAN,
  977. };
  978. static void omap_mpui_reset(struct omap_mpu_state_s *s)
  979. {
  980. s->mpui_ctrl = 0x0003ff1b;
  981. }
  982. static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
  983. struct omap_mpu_state_s *mpu)
  984. {
  985. memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
  986. "omap-mpui", 0x100);
  987. memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
  988. omap_mpui_reset(mpu);
  989. }
  990. /* TIPB Bridges */
  991. struct omap_tipb_bridge_s {
  992. qemu_irq abort;
  993. MemoryRegion iomem;
  994. int width_intr;
  995. uint16_t control;
  996. uint16_t alloc;
  997. uint16_t buffer;
  998. uint16_t enh_control;
  999. };
  1000. static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
  1001. unsigned size)
  1002. {
  1003. struct omap_tipb_bridge_s *s = opaque;
  1004. if (size < 2) {
  1005. return omap_badwidth_read16(opaque, addr);
  1006. }
  1007. switch (addr) {
  1008. case 0x00: /* TIPB_CNTL */
  1009. return s->control;
  1010. case 0x04: /* TIPB_BUS_ALLOC */
  1011. return s->alloc;
  1012. case 0x08: /* MPU_TIPB_CNTL */
  1013. return s->buffer;
  1014. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1015. return s->enh_control;
  1016. case 0x10: /* ADDRESS_DBG */
  1017. case 0x14: /* DATA_DEBUG_LOW */
  1018. case 0x18: /* DATA_DEBUG_HIGH */
  1019. return 0xffff;
  1020. case 0x1c: /* DEBUG_CNTR_SIG */
  1021. return 0x00f8;
  1022. }
  1023. OMAP_BAD_REG(addr);
  1024. return 0;
  1025. }
  1026. static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
  1027. uint64_t value, unsigned size)
  1028. {
  1029. struct omap_tipb_bridge_s *s = opaque;
  1030. if (size < 2) {
  1031. omap_badwidth_write16(opaque, addr, value);
  1032. return;
  1033. }
  1034. switch (addr) {
  1035. case 0x00: /* TIPB_CNTL */
  1036. s->control = value & 0xffff;
  1037. break;
  1038. case 0x04: /* TIPB_BUS_ALLOC */
  1039. s->alloc = value & 0x003f;
  1040. break;
  1041. case 0x08: /* MPU_TIPB_CNTL */
  1042. s->buffer = value & 0x0003;
  1043. break;
  1044. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1045. s->width_intr = !(value & 2);
  1046. s->enh_control = value & 0x000f;
  1047. break;
  1048. case 0x10: /* ADDRESS_DBG */
  1049. case 0x14: /* DATA_DEBUG_LOW */
  1050. case 0x18: /* DATA_DEBUG_HIGH */
  1051. case 0x1c: /* DEBUG_CNTR_SIG */
  1052. OMAP_RO_REG(addr);
  1053. break;
  1054. default:
  1055. OMAP_BAD_REG(addr);
  1056. }
  1057. }
  1058. static const MemoryRegionOps omap_tipb_bridge_ops = {
  1059. .read = omap_tipb_bridge_read,
  1060. .write = omap_tipb_bridge_write,
  1061. .endianness = DEVICE_NATIVE_ENDIAN,
  1062. };
  1063. static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
  1064. {
  1065. s->control = 0xffff;
  1066. s->alloc = 0x0009;
  1067. s->buffer = 0x0000;
  1068. s->enh_control = 0x000f;
  1069. }
  1070. static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
  1071. MemoryRegion *memory, hwaddr base,
  1072. qemu_irq abort_irq, omap_clk clk)
  1073. {
  1074. struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
  1075. s->abort = abort_irq;
  1076. omap_tipb_bridge_reset(s);
  1077. memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
  1078. "omap-tipb-bridge", 0x100);
  1079. memory_region_add_subregion(memory, base, &s->iomem);
  1080. return s;
  1081. }
  1082. /* Dummy Traffic Controller's Memory Interface */
  1083. static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
  1084. unsigned size)
  1085. {
  1086. struct omap_mpu_state_s *s = opaque;
  1087. uint32_t ret;
  1088. if (size != 4) {
  1089. return omap_badwidth_read32(opaque, addr);
  1090. }
  1091. switch (addr) {
  1092. case 0x00: /* IMIF_PRIO */
  1093. case 0x04: /* EMIFS_PRIO */
  1094. case 0x08: /* EMIFF_PRIO */
  1095. case 0x0c: /* EMIFS_CONFIG */
  1096. case 0x10: /* EMIFS_CS0_CONFIG */
  1097. case 0x14: /* EMIFS_CS1_CONFIG */
  1098. case 0x18: /* EMIFS_CS2_CONFIG */
  1099. case 0x1c: /* EMIFS_CS3_CONFIG */
  1100. case 0x24: /* EMIFF_MRS */
  1101. case 0x28: /* TIMEOUT1 */
  1102. case 0x2c: /* TIMEOUT2 */
  1103. case 0x30: /* TIMEOUT3 */
  1104. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1105. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1106. return s->tcmi_regs[addr >> 2];
  1107. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1108. ret = s->tcmi_regs[addr >> 2];
  1109. s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
  1110. /* XXX: We can try using the VGA_DIRTY flag for this */
  1111. return ret;
  1112. }
  1113. OMAP_BAD_REG(addr);
  1114. return 0;
  1115. }
  1116. static void omap_tcmi_write(void *opaque, hwaddr addr,
  1117. uint64_t value, unsigned size)
  1118. {
  1119. struct omap_mpu_state_s *s = opaque;
  1120. if (size != 4) {
  1121. omap_badwidth_write32(opaque, addr, value);
  1122. return;
  1123. }
  1124. switch (addr) {
  1125. case 0x00: /* IMIF_PRIO */
  1126. case 0x04: /* EMIFS_PRIO */
  1127. case 0x08: /* EMIFF_PRIO */
  1128. case 0x10: /* EMIFS_CS0_CONFIG */
  1129. case 0x14: /* EMIFS_CS1_CONFIG */
  1130. case 0x18: /* EMIFS_CS2_CONFIG */
  1131. case 0x1c: /* EMIFS_CS3_CONFIG */
  1132. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1133. case 0x24: /* EMIFF_MRS */
  1134. case 0x28: /* TIMEOUT1 */
  1135. case 0x2c: /* TIMEOUT2 */
  1136. case 0x30: /* TIMEOUT3 */
  1137. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1138. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1139. s->tcmi_regs[addr >> 2] = value;
  1140. break;
  1141. case 0x0c: /* EMIFS_CONFIG */
  1142. s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
  1143. break;
  1144. default:
  1145. OMAP_BAD_REG(addr);
  1146. }
  1147. }
  1148. static const MemoryRegionOps omap_tcmi_ops = {
  1149. .read = omap_tcmi_read,
  1150. .write = omap_tcmi_write,
  1151. .endianness = DEVICE_NATIVE_ENDIAN,
  1152. };
  1153. static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
  1154. {
  1155. mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
  1156. mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
  1157. mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
  1158. mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
  1159. mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
  1160. mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
  1161. mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
  1162. mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
  1163. mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
  1164. mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
  1165. mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
  1166. mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
  1167. mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
  1168. mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
  1169. mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
  1170. }
  1171. static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
  1172. struct omap_mpu_state_s *mpu)
  1173. {
  1174. memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
  1175. "omap-tcmi", 0x100);
  1176. memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
  1177. omap_tcmi_reset(mpu);
  1178. }
  1179. /* Digital phase-locked loops control */
  1180. struct dpll_ctl_s {
  1181. MemoryRegion iomem;
  1182. uint16_t mode;
  1183. omap_clk dpll;
  1184. };
  1185. static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
  1186. unsigned size)
  1187. {
  1188. struct dpll_ctl_s *s = opaque;
  1189. if (size != 2) {
  1190. return omap_badwidth_read16(opaque, addr);
  1191. }
  1192. if (addr == 0x00) /* CTL_REG */
  1193. return s->mode;
  1194. OMAP_BAD_REG(addr);
  1195. return 0;
  1196. }
  1197. static void omap_dpll_write(void *opaque, hwaddr addr,
  1198. uint64_t value, unsigned size)
  1199. {
  1200. struct dpll_ctl_s *s = opaque;
  1201. uint16_t diff;
  1202. static const int bypass_div[4] = { 1, 2, 4, 4 };
  1203. int div, mult;
  1204. if (size != 2) {
  1205. omap_badwidth_write16(opaque, addr, value);
  1206. return;
  1207. }
  1208. if (addr == 0x00) { /* CTL_REG */
  1209. /* See omap_ulpd_pm_write() too */
  1210. diff = s->mode & value;
  1211. s->mode = value & 0x2fff;
  1212. if (diff & (0x3ff << 2)) {
  1213. if (value & (1 << 4)) { /* PLL_ENABLE */
  1214. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1215. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1216. } else {
  1217. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1218. mult = 1;
  1219. }
  1220. omap_clk_setrate(s->dpll, div, mult);
  1221. }
  1222. /* Enter the desired mode. */
  1223. s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
  1224. /* Act as if the lock is restored. */
  1225. s->mode |= 2;
  1226. } else {
  1227. OMAP_BAD_REG(addr);
  1228. }
  1229. }
  1230. static const MemoryRegionOps omap_dpll_ops = {
  1231. .read = omap_dpll_read,
  1232. .write = omap_dpll_write,
  1233. .endianness = DEVICE_NATIVE_ENDIAN,
  1234. };
  1235. static void omap_dpll_reset(struct dpll_ctl_s *s)
  1236. {
  1237. s->mode = 0x2002;
  1238. omap_clk_setrate(s->dpll, 1, 1);
  1239. }
  1240. static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
  1241. hwaddr base, omap_clk clk)
  1242. {
  1243. struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
  1244. memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
  1245. s->dpll = clk;
  1246. omap_dpll_reset(s);
  1247. memory_region_add_subregion(memory, base, &s->iomem);
  1248. return s;
  1249. }
  1250. /* MPU Clock/Reset/Power Mode Control */
  1251. static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
  1252. unsigned size)
  1253. {
  1254. struct omap_mpu_state_s *s = opaque;
  1255. if (size != 2) {
  1256. return omap_badwidth_read16(opaque, addr);
  1257. }
  1258. switch (addr) {
  1259. case 0x00: /* ARM_CKCTL */
  1260. return s->clkm.arm_ckctl;
  1261. case 0x04: /* ARM_IDLECT1 */
  1262. return s->clkm.arm_idlect1;
  1263. case 0x08: /* ARM_IDLECT2 */
  1264. return s->clkm.arm_idlect2;
  1265. case 0x0c: /* ARM_EWUPCT */
  1266. return s->clkm.arm_ewupct;
  1267. case 0x10: /* ARM_RSTCT1 */
  1268. return s->clkm.arm_rstct1;
  1269. case 0x14: /* ARM_RSTCT2 */
  1270. return s->clkm.arm_rstct2;
  1271. case 0x18: /* ARM_SYSST */
  1272. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
  1273. case 0x1c: /* ARM_CKOUT1 */
  1274. return s->clkm.arm_ckout1;
  1275. case 0x20: /* ARM_CKOUT2 */
  1276. break;
  1277. }
  1278. OMAP_BAD_REG(addr);
  1279. return 0;
  1280. }
  1281. static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
  1282. uint16_t diff, uint16_t value)
  1283. {
  1284. omap_clk clk;
  1285. if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
  1286. if (value & (1 << 14))
  1287. /* Reserved */;
  1288. else {
  1289. clk = omap_findclk(s, "arminth_ck");
  1290. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1291. }
  1292. }
  1293. if (diff & (1 << 12)) { /* ARM_TIMXO */
  1294. clk = omap_findclk(s, "armtim_ck");
  1295. if (value & (1 << 12))
  1296. omap_clk_reparent(clk, omap_findclk(s, "clkin"));
  1297. else
  1298. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1299. }
  1300. /* XXX: en_dspck */
  1301. if (diff & (3 << 10)) { /* DSPMMUDIV */
  1302. clk = omap_findclk(s, "dspmmu_ck");
  1303. omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
  1304. }
  1305. if (diff & (3 << 8)) { /* TCDIV */
  1306. clk = omap_findclk(s, "tc_ck");
  1307. omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
  1308. }
  1309. if (diff & (3 << 6)) { /* DSPDIV */
  1310. clk = omap_findclk(s, "dsp_ck");
  1311. omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
  1312. }
  1313. if (diff & (3 << 4)) { /* ARMDIV */
  1314. clk = omap_findclk(s, "arm_ck");
  1315. omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
  1316. }
  1317. if (diff & (3 << 2)) { /* LCDDIV */
  1318. clk = omap_findclk(s, "lcd_ck");
  1319. omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
  1320. }
  1321. if (diff & (3 << 0)) { /* PERDIV */
  1322. clk = omap_findclk(s, "armper_ck");
  1323. omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
  1324. }
  1325. }
  1326. static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
  1327. uint16_t diff, uint16_t value)
  1328. {
  1329. omap_clk clk;
  1330. if (value & (1 << 11)) { /* SETARM_IDLE */
  1331. cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
  1332. }
  1333. if (!(value & (1 << 10))) { /* WKUP_MODE */
  1334. /* XXX: disable wakeup from IRQ */
  1335. qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
  1336. }
  1337. #define SET_CANIDLE(clock, bit) \
  1338. if (diff & (1 << bit)) { \
  1339. clk = omap_findclk(s, clock); \
  1340. omap_clk_canidle(clk, (value >> bit) & 1); \
  1341. }
  1342. SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
  1343. SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
  1344. SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
  1345. SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
  1346. SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
  1347. SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
  1348. SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
  1349. SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
  1350. SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
  1351. SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
  1352. SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
  1353. SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
  1354. SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
  1355. SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
  1356. }
  1357. static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
  1358. uint16_t diff, uint16_t value)
  1359. {
  1360. omap_clk clk;
  1361. #define SET_ONOFF(clock, bit) \
  1362. if (diff & (1 << bit)) { \
  1363. clk = omap_findclk(s, clock); \
  1364. omap_clk_onoff(clk, (value >> bit) & 1); \
  1365. }
  1366. SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
  1367. SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
  1368. SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
  1369. SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
  1370. SET_ONOFF("lb_ck", 4) /* EN_LBCK */
  1371. SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
  1372. SET_ONOFF("mpui_ck", 6) /* EN_APICK */
  1373. SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
  1374. SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
  1375. SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
  1376. SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
  1377. }
  1378. static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
  1379. uint16_t diff, uint16_t value)
  1380. {
  1381. omap_clk clk;
  1382. if (diff & (3 << 4)) { /* TCLKOUT */
  1383. clk = omap_findclk(s, "tclk_out");
  1384. switch ((value >> 4) & 3) {
  1385. case 1:
  1386. omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
  1387. omap_clk_onoff(clk, 1);
  1388. break;
  1389. case 2:
  1390. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1391. omap_clk_onoff(clk, 1);
  1392. break;
  1393. default:
  1394. omap_clk_onoff(clk, 0);
  1395. }
  1396. }
  1397. if (diff & (3 << 2)) { /* DCLKOUT */
  1398. clk = omap_findclk(s, "dclk_out");
  1399. switch ((value >> 2) & 3) {
  1400. case 0:
  1401. omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
  1402. break;
  1403. case 1:
  1404. omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
  1405. break;
  1406. case 2:
  1407. omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
  1408. break;
  1409. case 3:
  1410. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1411. break;
  1412. }
  1413. }
  1414. if (diff & (3 << 0)) { /* ACLKOUT */
  1415. clk = omap_findclk(s, "aclk_out");
  1416. switch ((value >> 0) & 3) {
  1417. case 1:
  1418. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1419. omap_clk_onoff(clk, 1);
  1420. break;
  1421. case 2:
  1422. omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
  1423. omap_clk_onoff(clk, 1);
  1424. break;
  1425. case 3:
  1426. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1427. omap_clk_onoff(clk, 1);
  1428. break;
  1429. default:
  1430. omap_clk_onoff(clk, 0);
  1431. }
  1432. }
  1433. }
  1434. static void omap_clkm_write(void *opaque, hwaddr addr,
  1435. uint64_t value, unsigned size)
  1436. {
  1437. struct omap_mpu_state_s *s = opaque;
  1438. uint16_t diff;
  1439. omap_clk clk;
  1440. static const char *clkschemename[8] = {
  1441. "fully synchronous", "fully asynchronous", "synchronous scalable",
  1442. "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
  1443. };
  1444. if (size != 2) {
  1445. omap_badwidth_write16(opaque, addr, value);
  1446. return;
  1447. }
  1448. switch (addr) {
  1449. case 0x00: /* ARM_CKCTL */
  1450. diff = s->clkm.arm_ckctl ^ value;
  1451. s->clkm.arm_ckctl = value & 0x7fff;
  1452. omap_clkm_ckctl_update(s, diff, value);
  1453. return;
  1454. case 0x04: /* ARM_IDLECT1 */
  1455. diff = s->clkm.arm_idlect1 ^ value;
  1456. s->clkm.arm_idlect1 = value & 0x0fff;
  1457. omap_clkm_idlect1_update(s, diff, value);
  1458. return;
  1459. case 0x08: /* ARM_IDLECT2 */
  1460. diff = s->clkm.arm_idlect2 ^ value;
  1461. s->clkm.arm_idlect2 = value & 0x07ff;
  1462. omap_clkm_idlect2_update(s, diff, value);
  1463. return;
  1464. case 0x0c: /* ARM_EWUPCT */
  1465. s->clkm.arm_ewupct = value & 0x003f;
  1466. return;
  1467. case 0x10: /* ARM_RSTCT1 */
  1468. diff = s->clkm.arm_rstct1 ^ value;
  1469. s->clkm.arm_rstct1 = value & 0x0007;
  1470. if (value & 9) {
  1471. qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  1472. s->clkm.cold_start = 0xa;
  1473. }
  1474. if (diff & ~value & 4) { /* DSP_RST */
  1475. omap_mpui_reset(s);
  1476. omap_tipb_bridge_reset(s->private_tipb);
  1477. omap_tipb_bridge_reset(s->public_tipb);
  1478. }
  1479. if (diff & 2) { /* DSP_EN */
  1480. clk = omap_findclk(s, "dsp_ck");
  1481. omap_clk_canidle(clk, (~value >> 1) & 1);
  1482. }
  1483. return;
  1484. case 0x14: /* ARM_RSTCT2 */
  1485. s->clkm.arm_rstct2 = value & 0x0001;
  1486. return;
  1487. case 0x18: /* ARM_SYSST */
  1488. if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
  1489. s->clkm.clocking_scheme = (value >> 11) & 7;
  1490. printf("%s: clocking scheme set to %s\n", __func__,
  1491. clkschemename[s->clkm.clocking_scheme]);
  1492. }
  1493. s->clkm.cold_start &= value & 0x3f;
  1494. return;
  1495. case 0x1c: /* ARM_CKOUT1 */
  1496. diff = s->clkm.arm_ckout1 ^ value;
  1497. s->clkm.arm_ckout1 = value & 0x003f;
  1498. omap_clkm_ckout1_update(s, diff, value);
  1499. return;
  1500. case 0x20: /* ARM_CKOUT2 */
  1501. default:
  1502. OMAP_BAD_REG(addr);
  1503. }
  1504. }
  1505. static const MemoryRegionOps omap_clkm_ops = {
  1506. .read = omap_clkm_read,
  1507. .write = omap_clkm_write,
  1508. .endianness = DEVICE_NATIVE_ENDIAN,
  1509. };
  1510. static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
  1511. unsigned size)
  1512. {
  1513. struct omap_mpu_state_s *s = opaque;
  1514. CPUState *cpu = CPU(s->cpu);
  1515. if (size != 2) {
  1516. return omap_badwidth_read16(opaque, addr);
  1517. }
  1518. switch (addr) {
  1519. case 0x04: /* DSP_IDLECT1 */
  1520. return s->clkm.dsp_idlect1;
  1521. case 0x08: /* DSP_IDLECT2 */
  1522. return s->clkm.dsp_idlect2;
  1523. case 0x14: /* DSP_RSTCT2 */
  1524. return s->clkm.dsp_rstct2;
  1525. case 0x18: /* DSP_SYSST */
  1526. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
  1527. (cpu->halted << 6); /* Quite useless... */
  1528. }
  1529. OMAP_BAD_REG(addr);
  1530. return 0;
  1531. }
  1532. static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
  1533. uint16_t diff, uint16_t value)
  1534. {
  1535. omap_clk clk;
  1536. SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
  1537. }
  1538. static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
  1539. uint16_t diff, uint16_t value)
  1540. {
  1541. omap_clk clk;
  1542. SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
  1543. }
  1544. static void omap_clkdsp_write(void *opaque, hwaddr addr,
  1545. uint64_t value, unsigned size)
  1546. {
  1547. struct omap_mpu_state_s *s = opaque;
  1548. uint16_t diff;
  1549. if (size != 2) {
  1550. omap_badwidth_write16(opaque, addr, value);
  1551. return;
  1552. }
  1553. switch (addr) {
  1554. case 0x04: /* DSP_IDLECT1 */
  1555. diff = s->clkm.dsp_idlect1 ^ value;
  1556. s->clkm.dsp_idlect1 = value & 0x01f7;
  1557. omap_clkdsp_idlect1_update(s, diff, value);
  1558. break;
  1559. case 0x08: /* DSP_IDLECT2 */
  1560. s->clkm.dsp_idlect2 = value & 0x0037;
  1561. diff = s->clkm.dsp_idlect1 ^ value;
  1562. omap_clkdsp_idlect2_update(s, diff, value);
  1563. break;
  1564. case 0x14: /* DSP_RSTCT2 */
  1565. s->clkm.dsp_rstct2 = value & 0x0001;
  1566. break;
  1567. case 0x18: /* DSP_SYSST */
  1568. s->clkm.cold_start &= value & 0x3f;
  1569. break;
  1570. default:
  1571. OMAP_BAD_REG(addr);
  1572. }
  1573. }
  1574. static const MemoryRegionOps omap_clkdsp_ops = {
  1575. .read = omap_clkdsp_read,
  1576. .write = omap_clkdsp_write,
  1577. .endianness = DEVICE_NATIVE_ENDIAN,
  1578. };
  1579. static void omap_clkm_reset(struct omap_mpu_state_s *s)
  1580. {
  1581. if (s->wdt && s->wdt->reset)
  1582. s->clkm.cold_start = 0x6;
  1583. s->clkm.clocking_scheme = 0;
  1584. omap_clkm_ckctl_update(s, ~0, 0x3000);
  1585. s->clkm.arm_ckctl = 0x3000;
  1586. omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
  1587. s->clkm.arm_idlect1 = 0x0400;
  1588. omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
  1589. s->clkm.arm_idlect2 = 0x0100;
  1590. s->clkm.arm_ewupct = 0x003f;
  1591. s->clkm.arm_rstct1 = 0x0000;
  1592. s->clkm.arm_rstct2 = 0x0000;
  1593. s->clkm.arm_ckout1 = 0x0015;
  1594. s->clkm.dpll1_mode = 0x2002;
  1595. omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
  1596. s->clkm.dsp_idlect1 = 0x0040;
  1597. omap_clkdsp_idlect2_update(s, ~0, 0x0000);
  1598. s->clkm.dsp_idlect2 = 0x0000;
  1599. s->clkm.dsp_rstct2 = 0x0000;
  1600. }
  1601. static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
  1602. hwaddr dsp_base, struct omap_mpu_state_s *s)
  1603. {
  1604. memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
  1605. "omap-clkm", 0x100);
  1606. memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
  1607. "omap-clkdsp", 0x1000);
  1608. s->clkm.arm_idlect1 = 0x03ff;
  1609. s->clkm.arm_idlect2 = 0x0100;
  1610. s->clkm.dsp_idlect1 = 0x0002;
  1611. omap_clkm_reset(s);
  1612. s->clkm.cold_start = 0x3a;
  1613. memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
  1614. memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
  1615. }
  1616. /* MPU I/O */
  1617. struct omap_mpuio_s {
  1618. qemu_irq irq;
  1619. qemu_irq kbd_irq;
  1620. qemu_irq *in;
  1621. qemu_irq handler[16];
  1622. qemu_irq wakeup;
  1623. MemoryRegion iomem;
  1624. uint16_t inputs;
  1625. uint16_t outputs;
  1626. uint16_t dir;
  1627. uint16_t edge;
  1628. uint16_t mask;
  1629. uint16_t ints;
  1630. uint16_t debounce;
  1631. uint16_t latch;
  1632. uint8_t event;
  1633. uint8_t buttons[5];
  1634. uint8_t row_latch;
  1635. uint8_t cols;
  1636. int kbd_mask;
  1637. int clk;
  1638. };
  1639. static void omap_mpuio_set(void *opaque, int line, int level)
  1640. {
  1641. struct omap_mpuio_s *s = opaque;
  1642. uint16_t prev = s->inputs;
  1643. if (level)
  1644. s->inputs |= 1 << line;
  1645. else
  1646. s->inputs &= ~(1 << line);
  1647. if (((1 << line) & s->dir & ~s->mask) && s->clk) {
  1648. if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
  1649. s->ints |= 1 << line;
  1650. qemu_irq_raise(s->irq);
  1651. /* TODO: wakeup */
  1652. }
  1653. if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
  1654. (s->event >> 1) == line) /* PIN_SELECT */
  1655. s->latch = s->inputs;
  1656. }
  1657. }
  1658. static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
  1659. {
  1660. int i;
  1661. uint8_t *row, rows = 0, cols = ~s->cols;
  1662. for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
  1663. if (*row & cols)
  1664. rows |= i;
  1665. qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
  1666. s->row_latch = ~rows;
  1667. }
  1668. static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
  1669. unsigned size)
  1670. {
  1671. struct omap_mpuio_s *s = opaque;
  1672. int offset = addr & OMAP_MPUI_REG_MASK;
  1673. uint16_t ret;
  1674. if (size != 2) {
  1675. return omap_badwidth_read16(opaque, addr);
  1676. }
  1677. switch (offset) {
  1678. case 0x00: /* INPUT_LATCH */
  1679. return s->inputs;
  1680. case 0x04: /* OUTPUT_REG */
  1681. return s->outputs;
  1682. case 0x08: /* IO_CNTL */
  1683. return s->dir;
  1684. case 0x10: /* KBR_LATCH */
  1685. return s->row_latch;
  1686. case 0x14: /* KBC_REG */
  1687. return s->cols;
  1688. case 0x18: /* GPIO_EVENT_MODE_REG */
  1689. return s->event;
  1690. case 0x1c: /* GPIO_INT_EDGE_REG */
  1691. return s->edge;
  1692. case 0x20: /* KBD_INT */
  1693. return (~s->row_latch & 0x1f) && !s->kbd_mask;
  1694. case 0x24: /* GPIO_INT */
  1695. ret = s->ints;
  1696. s->ints &= s->mask;
  1697. if (ret)
  1698. qemu_irq_lower(s->irq);
  1699. return ret;
  1700. case 0x28: /* KBD_MASKIT */
  1701. return s->kbd_mask;
  1702. case 0x2c: /* GPIO_MASKIT */
  1703. return s->mask;
  1704. case 0x30: /* GPIO_DEBOUNCING_REG */
  1705. return s->debounce;
  1706. case 0x34: /* GPIO_LATCH_REG */
  1707. return s->latch;
  1708. }
  1709. OMAP_BAD_REG(addr);
  1710. return 0;
  1711. }
  1712. static void omap_mpuio_write(void *opaque, hwaddr addr,
  1713. uint64_t value, unsigned size)
  1714. {
  1715. struct omap_mpuio_s *s = opaque;
  1716. int offset = addr & OMAP_MPUI_REG_MASK;
  1717. uint16_t diff;
  1718. int ln;
  1719. if (size != 2) {
  1720. omap_badwidth_write16(opaque, addr, value);
  1721. return;
  1722. }
  1723. switch (offset) {
  1724. case 0x04: /* OUTPUT_REG */
  1725. diff = (s->outputs ^ value) & ~s->dir;
  1726. s->outputs = value;
  1727. while ((ln = ctz32(diff)) != 32) {
  1728. if (s->handler[ln])
  1729. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1730. diff &= ~(1 << ln);
  1731. }
  1732. break;
  1733. case 0x08: /* IO_CNTL */
  1734. diff = s->outputs & (s->dir ^ value);
  1735. s->dir = value;
  1736. value = s->outputs & ~s->dir;
  1737. while ((ln = ctz32(diff)) != 32) {
  1738. if (s->handler[ln])
  1739. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1740. diff &= ~(1 << ln);
  1741. }
  1742. break;
  1743. case 0x14: /* KBC_REG */
  1744. s->cols = value;
  1745. omap_mpuio_kbd_update(s);
  1746. break;
  1747. case 0x18: /* GPIO_EVENT_MODE_REG */
  1748. s->event = value & 0x1f;
  1749. break;
  1750. case 0x1c: /* GPIO_INT_EDGE_REG */
  1751. s->edge = value;
  1752. break;
  1753. case 0x28: /* KBD_MASKIT */
  1754. s->kbd_mask = value & 1;
  1755. omap_mpuio_kbd_update(s);
  1756. break;
  1757. case 0x2c: /* GPIO_MASKIT */
  1758. s->mask = value;
  1759. break;
  1760. case 0x30: /* GPIO_DEBOUNCING_REG */
  1761. s->debounce = value & 0x1ff;
  1762. break;
  1763. case 0x00: /* INPUT_LATCH */
  1764. case 0x10: /* KBR_LATCH */
  1765. case 0x20: /* KBD_INT */
  1766. case 0x24: /* GPIO_INT */
  1767. case 0x34: /* GPIO_LATCH_REG */
  1768. OMAP_RO_REG(addr);
  1769. return;
  1770. default:
  1771. OMAP_BAD_REG(addr);
  1772. return;
  1773. }
  1774. }
  1775. static const MemoryRegionOps omap_mpuio_ops = {
  1776. .read = omap_mpuio_read,
  1777. .write = omap_mpuio_write,
  1778. .endianness = DEVICE_NATIVE_ENDIAN,
  1779. };
  1780. static void omap_mpuio_reset(struct omap_mpuio_s *s)
  1781. {
  1782. s->inputs = 0;
  1783. s->outputs = 0;
  1784. s->dir = ~0;
  1785. s->event = 0;
  1786. s->edge = 0;
  1787. s->kbd_mask = 0;
  1788. s->mask = 0;
  1789. s->debounce = 0;
  1790. s->latch = 0;
  1791. s->ints = 0;
  1792. s->row_latch = 0x1f;
  1793. s->clk = 1;
  1794. }
  1795. static void omap_mpuio_onoff(void *opaque, int line, int on)
  1796. {
  1797. struct omap_mpuio_s *s = opaque;
  1798. s->clk = on;
  1799. if (on)
  1800. omap_mpuio_kbd_update(s);
  1801. }
  1802. static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
  1803. hwaddr base,
  1804. qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
  1805. omap_clk clk)
  1806. {
  1807. struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
  1808. s->irq = gpio_int;
  1809. s->kbd_irq = kbd_int;
  1810. s->wakeup = wakeup;
  1811. s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
  1812. omap_mpuio_reset(s);
  1813. memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
  1814. "omap-mpuio", 0x800);
  1815. memory_region_add_subregion(memory, base, &s->iomem);
  1816. omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
  1817. return s;
  1818. }
  1819. qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
  1820. {
  1821. return s->in;
  1822. }
  1823. void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
  1824. {
  1825. if (line >= 16 || line < 0)
  1826. hw_error("%s: No GPIO line %i\n", __func__, line);
  1827. s->handler[line] = handler;
  1828. }
  1829. void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
  1830. {
  1831. if (row >= 5 || row < 0)
  1832. hw_error("%s: No key %i-%i\n", __func__, col, row);
  1833. if (down)
  1834. s->buttons[row] |= 1 << col;
  1835. else
  1836. s->buttons[row] &= ~(1 << col);
  1837. omap_mpuio_kbd_update(s);
  1838. }
  1839. /* MicroWire Interface */
  1840. struct omap_uwire_s {
  1841. MemoryRegion iomem;
  1842. qemu_irq txirq;
  1843. qemu_irq rxirq;
  1844. qemu_irq txdrq;
  1845. uint16_t txbuf;
  1846. uint16_t rxbuf;
  1847. uint16_t control;
  1848. uint16_t setup[5];
  1849. };
  1850. static void omap_uwire_transfer_start(struct omap_uwire_s *s)
  1851. {
  1852. int chipselect = (s->control >> 10) & 3; /* INDEX */
  1853. if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
  1854. if (s->control & (1 << 12)) { /* CS_CMD */
  1855. qemu_log_mask(LOG_UNIMP, "uWireSlave TX CS:%d data:0x%04x\n",
  1856. chipselect,
  1857. s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
  1858. }
  1859. s->control &= ~(1 << 14); /* CSRB */
  1860. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1861. * a DRQ. When is the level IRQ supposed to be reset? */
  1862. }
  1863. if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
  1864. if (s->control & (1 << 12)) { /* CS_CMD */
  1865. qemu_log_mask(LOG_UNIMP, "uWireSlave RX CS:%d\n", chipselect);
  1866. }
  1867. s->control |= 1 << 15; /* RDRB */
  1868. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1869. * a DRQ. When is the level IRQ supposed to be reset? */
  1870. }
  1871. }
  1872. static uint64_t omap_uwire_read(void *opaque, hwaddr addr, unsigned size)
  1873. {
  1874. struct omap_uwire_s *s = opaque;
  1875. int offset = addr & OMAP_MPUI_REG_MASK;
  1876. if (size != 2) {
  1877. return omap_badwidth_read16(opaque, addr);
  1878. }
  1879. switch (offset) {
  1880. case 0x00: /* RDR */
  1881. s->control &= ~(1 << 15); /* RDRB */
  1882. return s->rxbuf;
  1883. case 0x04: /* CSR */
  1884. return s->control;
  1885. case 0x08: /* SR1 */
  1886. return s->setup[0];
  1887. case 0x0c: /* SR2 */
  1888. return s->setup[1];
  1889. case 0x10: /* SR3 */
  1890. return s->setup[2];
  1891. case 0x14: /* SR4 */
  1892. return s->setup[3];
  1893. case 0x18: /* SR5 */
  1894. return s->setup[4];
  1895. }
  1896. OMAP_BAD_REG(addr);
  1897. return 0;
  1898. }
  1899. static void omap_uwire_write(void *opaque, hwaddr addr,
  1900. uint64_t value, unsigned size)
  1901. {
  1902. struct omap_uwire_s *s = opaque;
  1903. int offset = addr & OMAP_MPUI_REG_MASK;
  1904. if (size != 2) {
  1905. omap_badwidth_write16(opaque, addr, value);
  1906. return;
  1907. }
  1908. switch (offset) {
  1909. case 0x00: /* TDR */
  1910. s->txbuf = value; /* TD */
  1911. if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
  1912. ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
  1913. (s->control & (1 << 12)))) { /* CS_CMD */
  1914. s->control |= 1 << 14; /* CSRB */
  1915. omap_uwire_transfer_start(s);
  1916. }
  1917. break;
  1918. case 0x04: /* CSR */
  1919. s->control = value & 0x1fff;
  1920. if (value & (1 << 13)) /* START */
  1921. omap_uwire_transfer_start(s);
  1922. break;
  1923. case 0x08: /* SR1 */
  1924. s->setup[0] = value & 0x003f;
  1925. break;
  1926. case 0x0c: /* SR2 */
  1927. s->setup[1] = value & 0x0fc0;
  1928. break;
  1929. case 0x10: /* SR3 */
  1930. s->setup[2] = value & 0x0003;
  1931. break;
  1932. case 0x14: /* SR4 */
  1933. s->setup[3] = value & 0x0001;
  1934. break;
  1935. case 0x18: /* SR5 */
  1936. s->setup[4] = value & 0x000f;
  1937. break;
  1938. default:
  1939. OMAP_BAD_REG(addr);
  1940. return;
  1941. }
  1942. }
  1943. static const MemoryRegionOps omap_uwire_ops = {
  1944. .read = omap_uwire_read,
  1945. .write = omap_uwire_write,
  1946. .endianness = DEVICE_NATIVE_ENDIAN,
  1947. };
  1948. static void omap_uwire_reset(struct omap_uwire_s *s)
  1949. {
  1950. s->control = 0;
  1951. s->setup[0] = 0;
  1952. s->setup[1] = 0;
  1953. s->setup[2] = 0;
  1954. s->setup[3] = 0;
  1955. s->setup[4] = 0;
  1956. }
  1957. static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
  1958. hwaddr base,
  1959. qemu_irq txirq, qemu_irq rxirq,
  1960. qemu_irq dma,
  1961. omap_clk clk)
  1962. {
  1963. struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
  1964. s->txirq = txirq;
  1965. s->rxirq = rxirq;
  1966. s->txdrq = dma;
  1967. omap_uwire_reset(s);
  1968. memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
  1969. memory_region_add_subregion(system_memory, base, &s->iomem);
  1970. return s;
  1971. }
  1972. /* Pseudonoise Pulse-Width Light Modulator */
  1973. struct omap_pwl_s {
  1974. MemoryRegion iomem;
  1975. uint8_t output;
  1976. uint8_t level;
  1977. uint8_t enable;
  1978. int clk;
  1979. };
  1980. static void omap_pwl_update(struct omap_pwl_s *s)
  1981. {
  1982. int output = (s->clk && s->enable) ? s->level : 0;
  1983. if (output != s->output) {
  1984. s->output = output;
  1985. printf("%s: Backlight now at %i/256\n", __func__, output);
  1986. }
  1987. }
  1988. static uint64_t omap_pwl_read(void *opaque, hwaddr addr, unsigned size)
  1989. {
  1990. struct omap_pwl_s *s = opaque;
  1991. int offset = addr & OMAP_MPUI_REG_MASK;
  1992. if (size != 1) {
  1993. return omap_badwidth_read8(opaque, addr);
  1994. }
  1995. switch (offset) {
  1996. case 0x00: /* PWL_LEVEL */
  1997. return s->level;
  1998. case 0x04: /* PWL_CTRL */
  1999. return s->enable;
  2000. }
  2001. OMAP_BAD_REG(addr);
  2002. return 0;
  2003. }
  2004. static void omap_pwl_write(void *opaque, hwaddr addr,
  2005. uint64_t value, unsigned size)
  2006. {
  2007. struct omap_pwl_s *s = opaque;
  2008. int offset = addr & OMAP_MPUI_REG_MASK;
  2009. if (size != 1) {
  2010. omap_badwidth_write8(opaque, addr, value);
  2011. return;
  2012. }
  2013. switch (offset) {
  2014. case 0x00: /* PWL_LEVEL */
  2015. s->level = value;
  2016. omap_pwl_update(s);
  2017. break;
  2018. case 0x04: /* PWL_CTRL */
  2019. s->enable = value & 1;
  2020. omap_pwl_update(s);
  2021. break;
  2022. default:
  2023. OMAP_BAD_REG(addr);
  2024. return;
  2025. }
  2026. }
  2027. static const MemoryRegionOps omap_pwl_ops = {
  2028. .read = omap_pwl_read,
  2029. .write = omap_pwl_write,
  2030. .endianness = DEVICE_NATIVE_ENDIAN,
  2031. };
  2032. static void omap_pwl_reset(struct omap_pwl_s *s)
  2033. {
  2034. s->output = 0;
  2035. s->level = 0;
  2036. s->enable = 0;
  2037. s->clk = 1;
  2038. omap_pwl_update(s);
  2039. }
  2040. static void omap_pwl_clk_update(void *opaque, int line, int on)
  2041. {
  2042. struct omap_pwl_s *s = opaque;
  2043. s->clk = on;
  2044. omap_pwl_update(s);
  2045. }
  2046. static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
  2047. hwaddr base,
  2048. omap_clk clk)
  2049. {
  2050. struct omap_pwl_s *s = g_malloc0(sizeof(*s));
  2051. omap_pwl_reset(s);
  2052. memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
  2053. "omap-pwl", 0x800);
  2054. memory_region_add_subregion(system_memory, base, &s->iomem);
  2055. omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
  2056. return s;
  2057. }
  2058. /* Pulse-Width Tone module */
  2059. struct omap_pwt_s {
  2060. MemoryRegion iomem;
  2061. uint8_t frc;
  2062. uint8_t vrc;
  2063. uint8_t gcr;
  2064. omap_clk clk;
  2065. };
  2066. static uint64_t omap_pwt_read(void *opaque, hwaddr addr, unsigned size)
  2067. {
  2068. struct omap_pwt_s *s = opaque;
  2069. int offset = addr & OMAP_MPUI_REG_MASK;
  2070. if (size != 1) {
  2071. return omap_badwidth_read8(opaque, addr);
  2072. }
  2073. switch (offset) {
  2074. case 0x00: /* FRC */
  2075. return s->frc;
  2076. case 0x04: /* VCR */
  2077. return s->vrc;
  2078. case 0x08: /* GCR */
  2079. return s->gcr;
  2080. }
  2081. OMAP_BAD_REG(addr);
  2082. return 0;
  2083. }
  2084. static void omap_pwt_write(void *opaque, hwaddr addr,
  2085. uint64_t value, unsigned size)
  2086. {
  2087. struct omap_pwt_s *s = opaque;
  2088. int offset = addr & OMAP_MPUI_REG_MASK;
  2089. if (size != 1) {
  2090. omap_badwidth_write8(opaque, addr, value);
  2091. return;
  2092. }
  2093. switch (offset) {
  2094. case 0x00: /* FRC */
  2095. s->frc = value & 0x3f;
  2096. break;
  2097. case 0x04: /* VRC */
  2098. if ((value ^ s->vrc) & 1) {
  2099. if (value & 1)
  2100. printf("%s: %iHz buzz on\n", __func__, (int)
  2101. /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
  2102. ((omap_clk_getrate(s->clk) >> 3) /
  2103. /* Pre-multiplexer divider */
  2104. ((s->gcr & 2) ? 1 : 154) /
  2105. /* Octave multiplexer */
  2106. (2 << (value & 3)) *
  2107. /* 101/107 divider */
  2108. ((value & (1 << 2)) ? 101 : 107) *
  2109. /* 49/55 divider */
  2110. ((value & (1 << 3)) ? 49 : 55) *
  2111. /* 50/63 divider */
  2112. ((value & (1 << 4)) ? 50 : 63) *
  2113. /* 80/127 divider */
  2114. ((value & (1 << 5)) ? 80 : 127) /
  2115. (107 * 55 * 63 * 127)));
  2116. else
  2117. printf("%s: silence!\n", __func__);
  2118. }
  2119. s->vrc = value & 0x7f;
  2120. break;
  2121. case 0x08: /* GCR */
  2122. s->gcr = value & 3;
  2123. break;
  2124. default:
  2125. OMAP_BAD_REG(addr);
  2126. return;
  2127. }
  2128. }
  2129. static const MemoryRegionOps omap_pwt_ops = {
  2130. .read =omap_pwt_read,
  2131. .write = omap_pwt_write,
  2132. .endianness = DEVICE_NATIVE_ENDIAN,
  2133. };
  2134. static void omap_pwt_reset(struct omap_pwt_s *s)
  2135. {
  2136. s->frc = 0;
  2137. s->vrc = 0;
  2138. s->gcr = 0;
  2139. }
  2140. static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
  2141. hwaddr base,
  2142. omap_clk clk)
  2143. {
  2144. struct omap_pwt_s *s = g_malloc0(sizeof(*s));
  2145. s->clk = clk;
  2146. omap_pwt_reset(s);
  2147. memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
  2148. "omap-pwt", 0x800);
  2149. memory_region_add_subregion(system_memory, base, &s->iomem);
  2150. return s;
  2151. }
  2152. /* Real-time Clock module */
  2153. struct omap_rtc_s {
  2154. MemoryRegion iomem;
  2155. qemu_irq irq;
  2156. qemu_irq alarm;
  2157. QEMUTimer *clk;
  2158. uint8_t interrupts;
  2159. uint8_t status;
  2160. int16_t comp_reg;
  2161. int running;
  2162. int pm_am;
  2163. int auto_comp;
  2164. int round;
  2165. struct tm alarm_tm;
  2166. time_t alarm_ti;
  2167. struct tm current_tm;
  2168. time_t ti;
  2169. uint64_t tick;
  2170. };
  2171. static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
  2172. {
  2173. /* s->alarm is level-triggered */
  2174. qemu_set_irq(s->alarm, (s->status >> 6) & 1);
  2175. }
  2176. static void omap_rtc_alarm_update(struct omap_rtc_s *s)
  2177. {
  2178. s->alarm_ti = mktimegm(&s->alarm_tm);
  2179. if (s->alarm_ti == -1)
  2180. printf("%s: conversion failed\n", __func__);
  2181. }
  2182. static uint64_t omap_rtc_read(void *opaque, hwaddr addr, unsigned size)
  2183. {
  2184. struct omap_rtc_s *s = opaque;
  2185. int offset = addr & OMAP_MPUI_REG_MASK;
  2186. uint8_t i;
  2187. if (size != 1) {
  2188. return omap_badwidth_read8(opaque, addr);
  2189. }
  2190. switch (offset) {
  2191. case 0x00: /* SECONDS_REG */
  2192. return to_bcd(s->current_tm.tm_sec);
  2193. case 0x04: /* MINUTES_REG */
  2194. return to_bcd(s->current_tm.tm_min);
  2195. case 0x08: /* HOURS_REG */
  2196. if (s->pm_am)
  2197. return ((s->current_tm.tm_hour > 11) << 7) |
  2198. to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
  2199. else
  2200. return to_bcd(s->current_tm.tm_hour);
  2201. case 0x0c: /* DAYS_REG */
  2202. return to_bcd(s->current_tm.tm_mday);
  2203. case 0x10: /* MONTHS_REG */
  2204. return to_bcd(s->current_tm.tm_mon + 1);
  2205. case 0x14: /* YEARS_REG */
  2206. return to_bcd(s->current_tm.tm_year % 100);
  2207. case 0x18: /* WEEK_REG */
  2208. return s->current_tm.tm_wday;
  2209. case 0x20: /* ALARM_SECONDS_REG */
  2210. return to_bcd(s->alarm_tm.tm_sec);
  2211. case 0x24: /* ALARM_MINUTES_REG */
  2212. return to_bcd(s->alarm_tm.tm_min);
  2213. case 0x28: /* ALARM_HOURS_REG */
  2214. if (s->pm_am)
  2215. return ((s->alarm_tm.tm_hour > 11) << 7) |
  2216. to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
  2217. else
  2218. return to_bcd(s->alarm_tm.tm_hour);
  2219. case 0x2c: /* ALARM_DAYS_REG */
  2220. return to_bcd(s->alarm_tm.tm_mday);
  2221. case 0x30: /* ALARM_MONTHS_REG */
  2222. return to_bcd(s->alarm_tm.tm_mon + 1);
  2223. case 0x34: /* ALARM_YEARS_REG */
  2224. return to_bcd(s->alarm_tm.tm_year % 100);
  2225. case 0x40: /* RTC_CTRL_REG */
  2226. return (s->pm_am << 3) | (s->auto_comp << 2) |
  2227. (s->round << 1) | s->running;
  2228. case 0x44: /* RTC_STATUS_REG */
  2229. i = s->status;
  2230. s->status &= ~0x3d;
  2231. return i;
  2232. case 0x48: /* RTC_INTERRUPTS_REG */
  2233. return s->interrupts;
  2234. case 0x4c: /* RTC_COMP_LSB_REG */
  2235. return ((uint16_t) s->comp_reg) & 0xff;
  2236. case 0x50: /* RTC_COMP_MSB_REG */
  2237. return ((uint16_t) s->comp_reg) >> 8;
  2238. }
  2239. OMAP_BAD_REG(addr);
  2240. return 0;
  2241. }
  2242. static void omap_rtc_write(void *opaque, hwaddr addr,
  2243. uint64_t value, unsigned size)
  2244. {
  2245. struct omap_rtc_s *s = opaque;
  2246. int offset = addr & OMAP_MPUI_REG_MASK;
  2247. struct tm new_tm;
  2248. time_t ti[2];
  2249. if (size != 1) {
  2250. omap_badwidth_write8(opaque, addr, value);
  2251. return;
  2252. }
  2253. switch (offset) {
  2254. case 0x00: /* SECONDS_REG */
  2255. #ifdef ALMDEBUG
  2256. printf("RTC SEC_REG <-- %02x\n", value);
  2257. #endif
  2258. s->ti -= s->current_tm.tm_sec;
  2259. s->ti += from_bcd(value);
  2260. return;
  2261. case 0x04: /* MINUTES_REG */
  2262. #ifdef ALMDEBUG
  2263. printf("RTC MIN_REG <-- %02x\n", value);
  2264. #endif
  2265. s->ti -= s->current_tm.tm_min * 60;
  2266. s->ti += from_bcd(value) * 60;
  2267. return;
  2268. case 0x08: /* HOURS_REG */
  2269. #ifdef ALMDEBUG
  2270. printf("RTC HRS_REG <-- %02x\n", value);
  2271. #endif
  2272. s->ti -= s->current_tm.tm_hour * 3600;
  2273. if (s->pm_am) {
  2274. s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
  2275. s->ti += ((value >> 7) & 1) * 43200;
  2276. } else
  2277. s->ti += from_bcd(value & 0x3f) * 3600;
  2278. return;
  2279. case 0x0c: /* DAYS_REG */
  2280. #ifdef ALMDEBUG
  2281. printf("RTC DAY_REG <-- %02x\n", value);
  2282. #endif
  2283. s->ti -= s->current_tm.tm_mday * 86400;
  2284. s->ti += from_bcd(value) * 86400;
  2285. return;
  2286. case 0x10: /* MONTHS_REG */
  2287. #ifdef ALMDEBUG
  2288. printf("RTC MTH_REG <-- %02x\n", value);
  2289. #endif
  2290. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2291. new_tm.tm_mon = from_bcd(value);
  2292. ti[0] = mktimegm(&s->current_tm);
  2293. ti[1] = mktimegm(&new_tm);
  2294. if (ti[0] != -1 && ti[1] != -1) {
  2295. s->ti -= ti[0];
  2296. s->ti += ti[1];
  2297. } else {
  2298. /* A less accurate version */
  2299. s->ti -= s->current_tm.tm_mon * 2592000;
  2300. s->ti += from_bcd(value) * 2592000;
  2301. }
  2302. return;
  2303. case 0x14: /* YEARS_REG */
  2304. #ifdef ALMDEBUG
  2305. printf("RTC YRS_REG <-- %02x\n", value);
  2306. #endif
  2307. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2308. new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
  2309. ti[0] = mktimegm(&s->current_tm);
  2310. ti[1] = mktimegm(&new_tm);
  2311. if (ti[0] != -1 && ti[1] != -1) {
  2312. s->ti -= ti[0];
  2313. s->ti += ti[1];
  2314. } else {
  2315. /* A less accurate version */
  2316. s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
  2317. s->ti += (time_t)from_bcd(value) * 31536000;
  2318. }
  2319. return;
  2320. case 0x18: /* WEEK_REG */
  2321. return; /* Ignored */
  2322. case 0x20: /* ALARM_SECONDS_REG */
  2323. #ifdef ALMDEBUG
  2324. printf("ALM SEC_REG <-- %02x\n", value);
  2325. #endif
  2326. s->alarm_tm.tm_sec = from_bcd(value);
  2327. omap_rtc_alarm_update(s);
  2328. return;
  2329. case 0x24: /* ALARM_MINUTES_REG */
  2330. #ifdef ALMDEBUG
  2331. printf("ALM MIN_REG <-- %02x\n", value);
  2332. #endif
  2333. s->alarm_tm.tm_min = from_bcd(value);
  2334. omap_rtc_alarm_update(s);
  2335. return;
  2336. case 0x28: /* ALARM_HOURS_REG */
  2337. #ifdef ALMDEBUG
  2338. printf("ALM HRS_REG <-- %02x\n", value);
  2339. #endif
  2340. if (s->pm_am)
  2341. s->alarm_tm.tm_hour =
  2342. ((from_bcd(value & 0x3f)) % 12) +
  2343. ((value >> 7) & 1) * 12;
  2344. else
  2345. s->alarm_tm.tm_hour = from_bcd(value);
  2346. omap_rtc_alarm_update(s);
  2347. return;
  2348. case 0x2c: /* ALARM_DAYS_REG */
  2349. #ifdef ALMDEBUG
  2350. printf("ALM DAY_REG <-- %02x\n", value);
  2351. #endif
  2352. s->alarm_tm.tm_mday = from_bcd(value);
  2353. omap_rtc_alarm_update(s);
  2354. return;
  2355. case 0x30: /* ALARM_MONTHS_REG */
  2356. #ifdef ALMDEBUG
  2357. printf("ALM MON_REG <-- %02x\n", value);
  2358. #endif
  2359. s->alarm_tm.tm_mon = from_bcd(value);
  2360. omap_rtc_alarm_update(s);
  2361. return;
  2362. case 0x34: /* ALARM_YEARS_REG */
  2363. #ifdef ALMDEBUG
  2364. printf("ALM YRS_REG <-- %02x\n", value);
  2365. #endif
  2366. s->alarm_tm.tm_year = from_bcd(value);
  2367. omap_rtc_alarm_update(s);
  2368. return;
  2369. case 0x40: /* RTC_CTRL_REG */
  2370. #ifdef ALMDEBUG
  2371. printf("RTC CONTROL <-- %02x\n", value);
  2372. #endif
  2373. s->pm_am = (value >> 3) & 1;
  2374. s->auto_comp = (value >> 2) & 1;
  2375. s->round = (value >> 1) & 1;
  2376. s->running = value & 1;
  2377. s->status &= 0xfd;
  2378. s->status |= s->running << 1;
  2379. return;
  2380. case 0x44: /* RTC_STATUS_REG */
  2381. #ifdef ALMDEBUG
  2382. printf("RTC STATUSL <-- %02x\n", value);
  2383. #endif
  2384. s->status &= ~((value & 0xc0) ^ 0x80);
  2385. omap_rtc_interrupts_update(s);
  2386. return;
  2387. case 0x48: /* RTC_INTERRUPTS_REG */
  2388. #ifdef ALMDEBUG
  2389. printf("RTC INTRS <-- %02x\n", value);
  2390. #endif
  2391. s->interrupts = value;
  2392. return;
  2393. case 0x4c: /* RTC_COMP_LSB_REG */
  2394. #ifdef ALMDEBUG
  2395. printf("RTC COMPLSB <-- %02x\n", value);
  2396. #endif
  2397. s->comp_reg &= 0xff00;
  2398. s->comp_reg |= 0x00ff & value;
  2399. return;
  2400. case 0x50: /* RTC_COMP_MSB_REG */
  2401. #ifdef ALMDEBUG
  2402. printf("RTC COMPMSB <-- %02x\n", value);
  2403. #endif
  2404. s->comp_reg &= 0x00ff;
  2405. s->comp_reg |= 0xff00 & (value << 8);
  2406. return;
  2407. default:
  2408. OMAP_BAD_REG(addr);
  2409. return;
  2410. }
  2411. }
  2412. static const MemoryRegionOps omap_rtc_ops = {
  2413. .read = omap_rtc_read,
  2414. .write = omap_rtc_write,
  2415. .endianness = DEVICE_NATIVE_ENDIAN,
  2416. };
  2417. static void omap_rtc_tick(void *opaque)
  2418. {
  2419. struct omap_rtc_s *s = opaque;
  2420. if (s->round) {
  2421. /* Round to nearest full minute. */
  2422. if (s->current_tm.tm_sec < 30)
  2423. s->ti -= s->current_tm.tm_sec;
  2424. else
  2425. s->ti += 60 - s->current_tm.tm_sec;
  2426. s->round = 0;
  2427. }
  2428. localtime_r(&s->ti, &s->current_tm);
  2429. if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
  2430. s->status |= 0x40;
  2431. omap_rtc_interrupts_update(s);
  2432. }
  2433. if (s->interrupts & 0x04)
  2434. switch (s->interrupts & 3) {
  2435. case 0:
  2436. s->status |= 0x04;
  2437. qemu_irq_pulse(s->irq);
  2438. break;
  2439. case 1:
  2440. if (s->current_tm.tm_sec)
  2441. break;
  2442. s->status |= 0x08;
  2443. qemu_irq_pulse(s->irq);
  2444. break;
  2445. case 2:
  2446. if (s->current_tm.tm_sec || s->current_tm.tm_min)
  2447. break;
  2448. s->status |= 0x10;
  2449. qemu_irq_pulse(s->irq);
  2450. break;
  2451. case 3:
  2452. if (s->current_tm.tm_sec ||
  2453. s->current_tm.tm_min || s->current_tm.tm_hour)
  2454. break;
  2455. s->status |= 0x20;
  2456. qemu_irq_pulse(s->irq);
  2457. break;
  2458. }
  2459. /* Move on */
  2460. if (s->running)
  2461. s->ti ++;
  2462. s->tick += 1000;
  2463. /*
  2464. * Every full hour add a rough approximation of the compensation
  2465. * register to the 32kHz Timer (which drives the RTC) value.
  2466. */
  2467. if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
  2468. s->tick += s->comp_reg * 1000 / 32768;
  2469. timer_mod(s->clk, s->tick);
  2470. }
  2471. static void omap_rtc_reset(struct omap_rtc_s *s)
  2472. {
  2473. struct tm tm;
  2474. s->interrupts = 0;
  2475. s->comp_reg = 0;
  2476. s->running = 0;
  2477. s->pm_am = 0;
  2478. s->auto_comp = 0;
  2479. s->round = 0;
  2480. s->tick = qemu_clock_get_ms(rtc_clock);
  2481. memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
  2482. s->alarm_tm.tm_mday = 0x01;
  2483. s->status = 1 << 7;
  2484. qemu_get_timedate(&tm, 0);
  2485. s->ti = mktimegm(&tm);
  2486. omap_rtc_alarm_update(s);
  2487. omap_rtc_tick(s);
  2488. }
  2489. static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
  2490. hwaddr base,
  2491. qemu_irq timerirq, qemu_irq alarmirq,
  2492. omap_clk clk)
  2493. {
  2494. struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
  2495. s->irq = timerirq;
  2496. s->alarm = alarmirq;
  2497. s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
  2498. omap_rtc_reset(s);
  2499. memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
  2500. "omap-rtc", 0x800);
  2501. memory_region_add_subregion(system_memory, base, &s->iomem);
  2502. return s;
  2503. }
  2504. /* Multi-channel Buffered Serial Port interfaces */
  2505. struct omap_mcbsp_s {
  2506. MemoryRegion iomem;
  2507. qemu_irq txirq;
  2508. qemu_irq rxirq;
  2509. qemu_irq txdrq;
  2510. qemu_irq rxdrq;
  2511. uint16_t spcr[2];
  2512. uint16_t rcr[2];
  2513. uint16_t xcr[2];
  2514. uint16_t srgr[2];
  2515. uint16_t mcr[2];
  2516. uint16_t pcr;
  2517. uint16_t rcer[8];
  2518. uint16_t xcer[8];
  2519. int tx_rate;
  2520. int rx_rate;
  2521. int tx_req;
  2522. int rx_req;
  2523. I2SCodec *codec;
  2524. QEMUTimer *source_timer;
  2525. QEMUTimer *sink_timer;
  2526. };
  2527. static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
  2528. {
  2529. int irq;
  2530. switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
  2531. case 0:
  2532. irq = (s->spcr[0] >> 1) & 1; /* RRDY */
  2533. break;
  2534. case 3:
  2535. irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
  2536. break;
  2537. default:
  2538. irq = 0;
  2539. break;
  2540. }
  2541. if (irq)
  2542. qemu_irq_pulse(s->rxirq);
  2543. switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
  2544. case 0:
  2545. irq = (s->spcr[1] >> 1) & 1; /* XRDY */
  2546. break;
  2547. case 3:
  2548. irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
  2549. break;
  2550. default:
  2551. irq = 0;
  2552. break;
  2553. }
  2554. if (irq)
  2555. qemu_irq_pulse(s->txirq);
  2556. }
  2557. static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
  2558. {
  2559. if ((s->spcr[0] >> 1) & 1) /* RRDY */
  2560. s->spcr[0] |= 1 << 2; /* RFULL */
  2561. s->spcr[0] |= 1 << 1; /* RRDY */
  2562. qemu_irq_raise(s->rxdrq);
  2563. omap_mcbsp_intr_update(s);
  2564. }
  2565. static void omap_mcbsp_source_tick(void *opaque)
  2566. {
  2567. struct omap_mcbsp_s *s = opaque;
  2568. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2569. if (!s->rx_rate)
  2570. return;
  2571. if (s->rx_req)
  2572. printf("%s: Rx FIFO overrun\n", __func__);
  2573. s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
  2574. omap_mcbsp_rx_newdata(s);
  2575. timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  2576. NANOSECONDS_PER_SECOND);
  2577. }
  2578. static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
  2579. {
  2580. if (!s->codec || !s->codec->rts)
  2581. omap_mcbsp_source_tick(s);
  2582. else if (s->codec->in.len) {
  2583. s->rx_req = s->codec->in.len;
  2584. omap_mcbsp_rx_newdata(s);
  2585. }
  2586. }
  2587. static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
  2588. {
  2589. timer_del(s->source_timer);
  2590. }
  2591. static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
  2592. {
  2593. s->spcr[0] &= ~(1 << 1); /* RRDY */
  2594. qemu_irq_lower(s->rxdrq);
  2595. omap_mcbsp_intr_update(s);
  2596. }
  2597. static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
  2598. {
  2599. s->spcr[1] |= 1 << 1; /* XRDY */
  2600. qemu_irq_raise(s->txdrq);
  2601. omap_mcbsp_intr_update(s);
  2602. }
  2603. static void omap_mcbsp_sink_tick(void *opaque)
  2604. {
  2605. struct omap_mcbsp_s *s = opaque;
  2606. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2607. if (!s->tx_rate)
  2608. return;
  2609. if (s->tx_req)
  2610. printf("%s: Tx FIFO underrun\n", __func__);
  2611. s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
  2612. omap_mcbsp_tx_newdata(s);
  2613. timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  2614. NANOSECONDS_PER_SECOND);
  2615. }
  2616. static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
  2617. {
  2618. if (!s->codec || !s->codec->cts)
  2619. omap_mcbsp_sink_tick(s);
  2620. else if (s->codec->out.size) {
  2621. s->tx_req = s->codec->out.size;
  2622. omap_mcbsp_tx_newdata(s);
  2623. }
  2624. }
  2625. static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
  2626. {
  2627. s->spcr[1] &= ~(1 << 1); /* XRDY */
  2628. qemu_irq_lower(s->txdrq);
  2629. omap_mcbsp_intr_update(s);
  2630. if (s->codec && s->codec->cts)
  2631. s->codec->tx_swallow(s->codec->opaque);
  2632. }
  2633. static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
  2634. {
  2635. s->tx_req = 0;
  2636. omap_mcbsp_tx_done(s);
  2637. timer_del(s->sink_timer);
  2638. }
  2639. static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
  2640. {
  2641. int prev_rx_rate, prev_tx_rate;
  2642. int rx_rate = 0, tx_rate = 0;
  2643. int cpu_rate = 1500000; /* XXX */
  2644. /* TODO: check CLKSTP bit */
  2645. if (s->spcr[1] & (1 << 6)) { /* GRST */
  2646. if (s->spcr[0] & (1 << 0)) { /* RRST */
  2647. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2648. (s->pcr & (1 << 8))) { /* CLKRM */
  2649. if (~s->pcr & (1 << 7)) /* SCLKME */
  2650. rx_rate = cpu_rate /
  2651. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2652. } else
  2653. if (s->codec)
  2654. rx_rate = s->codec->rx_rate;
  2655. }
  2656. if (s->spcr[1] & (1 << 0)) { /* XRST */
  2657. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2658. (s->pcr & (1 << 9))) { /* CLKXM */
  2659. if (~s->pcr & (1 << 7)) /* SCLKME */
  2660. tx_rate = cpu_rate /
  2661. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2662. } else
  2663. if (s->codec)
  2664. tx_rate = s->codec->tx_rate;
  2665. }
  2666. }
  2667. prev_tx_rate = s->tx_rate;
  2668. prev_rx_rate = s->rx_rate;
  2669. s->tx_rate = tx_rate;
  2670. s->rx_rate = rx_rate;
  2671. if (s->codec)
  2672. s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
  2673. if (!prev_tx_rate && tx_rate)
  2674. omap_mcbsp_tx_start(s);
  2675. else if (s->tx_rate && !tx_rate)
  2676. omap_mcbsp_tx_stop(s);
  2677. if (!prev_rx_rate && rx_rate)
  2678. omap_mcbsp_rx_start(s);
  2679. else if (prev_tx_rate && !tx_rate)
  2680. omap_mcbsp_rx_stop(s);
  2681. }
  2682. static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
  2683. unsigned size)
  2684. {
  2685. struct omap_mcbsp_s *s = opaque;
  2686. int offset = addr & OMAP_MPUI_REG_MASK;
  2687. uint16_t ret;
  2688. if (size != 2) {
  2689. return omap_badwidth_read16(opaque, addr);
  2690. }
  2691. switch (offset) {
  2692. case 0x00: /* DRR2 */
  2693. if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
  2694. return 0x0000;
  2695. /* Fall through. */
  2696. case 0x02: /* DRR1 */
  2697. if (s->rx_req < 2) {
  2698. printf("%s: Rx FIFO underrun\n", __func__);
  2699. omap_mcbsp_rx_done(s);
  2700. } else {
  2701. s->tx_req -= 2;
  2702. if (s->codec && s->codec->in.len >= 2) {
  2703. ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
  2704. ret |= s->codec->in.fifo[s->codec->in.start ++];
  2705. s->codec->in.len -= 2;
  2706. } else
  2707. ret = 0x0000;
  2708. if (!s->tx_req)
  2709. omap_mcbsp_rx_done(s);
  2710. return ret;
  2711. }
  2712. return 0x0000;
  2713. case 0x04: /* DXR2 */
  2714. case 0x06: /* DXR1 */
  2715. return 0x0000;
  2716. case 0x08: /* SPCR2 */
  2717. return s->spcr[1];
  2718. case 0x0a: /* SPCR1 */
  2719. return s->spcr[0];
  2720. case 0x0c: /* RCR2 */
  2721. return s->rcr[1];
  2722. case 0x0e: /* RCR1 */
  2723. return s->rcr[0];
  2724. case 0x10: /* XCR2 */
  2725. return s->xcr[1];
  2726. case 0x12: /* XCR1 */
  2727. return s->xcr[0];
  2728. case 0x14: /* SRGR2 */
  2729. return s->srgr[1];
  2730. case 0x16: /* SRGR1 */
  2731. return s->srgr[0];
  2732. case 0x18: /* MCR2 */
  2733. return s->mcr[1];
  2734. case 0x1a: /* MCR1 */
  2735. return s->mcr[0];
  2736. case 0x1c: /* RCERA */
  2737. return s->rcer[0];
  2738. case 0x1e: /* RCERB */
  2739. return s->rcer[1];
  2740. case 0x20: /* XCERA */
  2741. return s->xcer[0];
  2742. case 0x22: /* XCERB */
  2743. return s->xcer[1];
  2744. case 0x24: /* PCR0 */
  2745. return s->pcr;
  2746. case 0x26: /* RCERC */
  2747. return s->rcer[2];
  2748. case 0x28: /* RCERD */
  2749. return s->rcer[3];
  2750. case 0x2a: /* XCERC */
  2751. return s->xcer[2];
  2752. case 0x2c: /* XCERD */
  2753. return s->xcer[3];
  2754. case 0x2e: /* RCERE */
  2755. return s->rcer[4];
  2756. case 0x30: /* RCERF */
  2757. return s->rcer[5];
  2758. case 0x32: /* XCERE */
  2759. return s->xcer[4];
  2760. case 0x34: /* XCERF */
  2761. return s->xcer[5];
  2762. case 0x36: /* RCERG */
  2763. return s->rcer[6];
  2764. case 0x38: /* RCERH */
  2765. return s->rcer[7];
  2766. case 0x3a: /* XCERG */
  2767. return s->xcer[6];
  2768. case 0x3c: /* XCERH */
  2769. return s->xcer[7];
  2770. }
  2771. OMAP_BAD_REG(addr);
  2772. return 0;
  2773. }
  2774. static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
  2775. uint32_t value)
  2776. {
  2777. struct omap_mcbsp_s *s = opaque;
  2778. int offset = addr & OMAP_MPUI_REG_MASK;
  2779. switch (offset) {
  2780. case 0x00: /* DRR2 */
  2781. case 0x02: /* DRR1 */
  2782. OMAP_RO_REG(addr);
  2783. return;
  2784. case 0x04: /* DXR2 */
  2785. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2786. return;
  2787. /* Fall through. */
  2788. case 0x06: /* DXR1 */
  2789. if (s->tx_req > 1) {
  2790. s->tx_req -= 2;
  2791. if (s->codec && s->codec->cts) {
  2792. s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
  2793. s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
  2794. }
  2795. if (s->tx_req < 2)
  2796. omap_mcbsp_tx_done(s);
  2797. } else
  2798. printf("%s: Tx FIFO overrun\n", __func__);
  2799. return;
  2800. case 0x08: /* SPCR2 */
  2801. s->spcr[1] &= 0x0002;
  2802. s->spcr[1] |= 0x03f9 & value;
  2803. s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
  2804. if (~value & 1) /* XRST */
  2805. s->spcr[1] &= ~6;
  2806. omap_mcbsp_req_update(s);
  2807. return;
  2808. case 0x0a: /* SPCR1 */
  2809. s->spcr[0] &= 0x0006;
  2810. s->spcr[0] |= 0xf8f9 & value;
  2811. if (value & (1 << 15)) /* DLB */
  2812. printf("%s: Digital Loopback mode enable attempt\n", __func__);
  2813. if (~value & 1) { /* RRST */
  2814. s->spcr[0] &= ~6;
  2815. s->rx_req = 0;
  2816. omap_mcbsp_rx_done(s);
  2817. }
  2818. omap_mcbsp_req_update(s);
  2819. return;
  2820. case 0x0c: /* RCR2 */
  2821. s->rcr[1] = value & 0xffff;
  2822. return;
  2823. case 0x0e: /* RCR1 */
  2824. s->rcr[0] = value & 0x7fe0;
  2825. return;
  2826. case 0x10: /* XCR2 */
  2827. s->xcr[1] = value & 0xffff;
  2828. return;
  2829. case 0x12: /* XCR1 */
  2830. s->xcr[0] = value & 0x7fe0;
  2831. return;
  2832. case 0x14: /* SRGR2 */
  2833. s->srgr[1] = value & 0xffff;
  2834. omap_mcbsp_req_update(s);
  2835. return;
  2836. case 0x16: /* SRGR1 */
  2837. s->srgr[0] = value & 0xffff;
  2838. omap_mcbsp_req_update(s);
  2839. return;
  2840. case 0x18: /* MCR2 */
  2841. s->mcr[1] = value & 0x03e3;
  2842. if (value & 3) /* XMCM */
  2843. printf("%s: Tx channel selection mode enable attempt\n", __func__);
  2844. return;
  2845. case 0x1a: /* MCR1 */
  2846. s->mcr[0] = value & 0x03e1;
  2847. if (value & 1) /* RMCM */
  2848. printf("%s: Rx channel selection mode enable attempt\n", __func__);
  2849. return;
  2850. case 0x1c: /* RCERA */
  2851. s->rcer[0] = value & 0xffff;
  2852. return;
  2853. case 0x1e: /* RCERB */
  2854. s->rcer[1] = value & 0xffff;
  2855. return;
  2856. case 0x20: /* XCERA */
  2857. s->xcer[0] = value & 0xffff;
  2858. return;
  2859. case 0x22: /* XCERB */
  2860. s->xcer[1] = value & 0xffff;
  2861. return;
  2862. case 0x24: /* PCR0 */
  2863. s->pcr = value & 0x7faf;
  2864. return;
  2865. case 0x26: /* RCERC */
  2866. s->rcer[2] = value & 0xffff;
  2867. return;
  2868. case 0x28: /* RCERD */
  2869. s->rcer[3] = value & 0xffff;
  2870. return;
  2871. case 0x2a: /* XCERC */
  2872. s->xcer[2] = value & 0xffff;
  2873. return;
  2874. case 0x2c: /* XCERD */
  2875. s->xcer[3] = value & 0xffff;
  2876. return;
  2877. case 0x2e: /* RCERE */
  2878. s->rcer[4] = value & 0xffff;
  2879. return;
  2880. case 0x30: /* RCERF */
  2881. s->rcer[5] = value & 0xffff;
  2882. return;
  2883. case 0x32: /* XCERE */
  2884. s->xcer[4] = value & 0xffff;
  2885. return;
  2886. case 0x34: /* XCERF */
  2887. s->xcer[5] = value & 0xffff;
  2888. return;
  2889. case 0x36: /* RCERG */
  2890. s->rcer[6] = value & 0xffff;
  2891. return;
  2892. case 0x38: /* RCERH */
  2893. s->rcer[7] = value & 0xffff;
  2894. return;
  2895. case 0x3a: /* XCERG */
  2896. s->xcer[6] = value & 0xffff;
  2897. return;
  2898. case 0x3c: /* XCERH */
  2899. s->xcer[7] = value & 0xffff;
  2900. return;
  2901. }
  2902. OMAP_BAD_REG(addr);
  2903. }
  2904. static void omap_mcbsp_writew(void *opaque, hwaddr addr,
  2905. uint32_t value)
  2906. {
  2907. struct omap_mcbsp_s *s = opaque;
  2908. int offset = addr & OMAP_MPUI_REG_MASK;
  2909. if (offset == 0x04) { /* DXR */
  2910. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2911. return;
  2912. if (s->tx_req > 3) {
  2913. s->tx_req -= 4;
  2914. if (s->codec && s->codec->cts) {
  2915. s->codec->out.fifo[s->codec->out.len ++] =
  2916. (value >> 24) & 0xff;
  2917. s->codec->out.fifo[s->codec->out.len ++] =
  2918. (value >> 16) & 0xff;
  2919. s->codec->out.fifo[s->codec->out.len ++] =
  2920. (value >> 8) & 0xff;
  2921. s->codec->out.fifo[s->codec->out.len ++] =
  2922. (value >> 0) & 0xff;
  2923. }
  2924. if (s->tx_req < 4)
  2925. omap_mcbsp_tx_done(s);
  2926. } else
  2927. printf("%s: Tx FIFO overrun\n", __func__);
  2928. return;
  2929. }
  2930. omap_badwidth_write16(opaque, addr, value);
  2931. }
  2932. static void omap_mcbsp_write(void *opaque, hwaddr addr,
  2933. uint64_t value, unsigned size)
  2934. {
  2935. switch (size) {
  2936. case 2:
  2937. omap_mcbsp_writeh(opaque, addr, value);
  2938. break;
  2939. case 4:
  2940. omap_mcbsp_writew(opaque, addr, value);
  2941. break;
  2942. default:
  2943. omap_badwidth_write16(opaque, addr, value);
  2944. }
  2945. }
  2946. static const MemoryRegionOps omap_mcbsp_ops = {
  2947. .read = omap_mcbsp_read,
  2948. .write = omap_mcbsp_write,
  2949. .endianness = DEVICE_NATIVE_ENDIAN,
  2950. };
  2951. static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
  2952. {
  2953. memset(&s->spcr, 0, sizeof(s->spcr));
  2954. memset(&s->rcr, 0, sizeof(s->rcr));
  2955. memset(&s->xcr, 0, sizeof(s->xcr));
  2956. s->srgr[0] = 0x0001;
  2957. s->srgr[1] = 0x2000;
  2958. memset(&s->mcr, 0, sizeof(s->mcr));
  2959. memset(&s->pcr, 0, sizeof(s->pcr));
  2960. memset(&s->rcer, 0, sizeof(s->rcer));
  2961. memset(&s->xcer, 0, sizeof(s->xcer));
  2962. s->tx_req = 0;
  2963. s->rx_req = 0;
  2964. s->tx_rate = 0;
  2965. s->rx_rate = 0;
  2966. timer_del(s->source_timer);
  2967. timer_del(s->sink_timer);
  2968. }
  2969. static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
  2970. hwaddr base,
  2971. qemu_irq txirq, qemu_irq rxirq,
  2972. qemu_irq *dma, omap_clk clk)
  2973. {
  2974. struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
  2975. s->txirq = txirq;
  2976. s->rxirq = rxirq;
  2977. s->txdrq = dma[0];
  2978. s->rxdrq = dma[1];
  2979. s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
  2980. s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
  2981. omap_mcbsp_reset(s);
  2982. memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
  2983. memory_region_add_subregion(system_memory, base, &s->iomem);
  2984. return s;
  2985. }
  2986. static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
  2987. {
  2988. struct omap_mcbsp_s *s = opaque;
  2989. if (s->rx_rate) {
  2990. s->rx_req = s->codec->in.len;
  2991. omap_mcbsp_rx_newdata(s);
  2992. }
  2993. }
  2994. static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
  2995. {
  2996. struct omap_mcbsp_s *s = opaque;
  2997. if (s->tx_rate) {
  2998. s->tx_req = s->codec->out.size;
  2999. omap_mcbsp_tx_newdata(s);
  3000. }
  3001. }
  3002. void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
  3003. {
  3004. s->codec = slave;
  3005. slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
  3006. slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
  3007. }
  3008. /* LED Pulse Generators */
  3009. struct omap_lpg_s {
  3010. MemoryRegion iomem;
  3011. QEMUTimer *tm;
  3012. uint8_t control;
  3013. uint8_t power;
  3014. int64_t on;
  3015. int64_t period;
  3016. int clk;
  3017. int cycle;
  3018. };
  3019. static void omap_lpg_tick(void *opaque)
  3020. {
  3021. struct omap_lpg_s *s = opaque;
  3022. if (s->cycle)
  3023. timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
  3024. else
  3025. timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
  3026. s->cycle = !s->cycle;
  3027. printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
  3028. }
  3029. static void omap_lpg_update(struct omap_lpg_s *s)
  3030. {
  3031. int64_t on, period = 1, ticks = 1000;
  3032. static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
  3033. if (~s->control & (1 << 6)) /* LPGRES */
  3034. on = 0;
  3035. else if (s->control & (1 << 7)) /* PERM_ON */
  3036. on = period;
  3037. else {
  3038. period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
  3039. 256 / 32);
  3040. on = (s->clk && s->power) ? muldiv64(ticks,
  3041. per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
  3042. }
  3043. timer_del(s->tm);
  3044. if (on == period && s->on < s->period)
  3045. printf("%s: LED is on\n", __func__);
  3046. else if (on == 0 && s->on)
  3047. printf("%s: LED is off\n", __func__);
  3048. else if (on && (on != s->on || period != s->period)) {
  3049. s->cycle = 0;
  3050. s->on = on;
  3051. s->period = period;
  3052. omap_lpg_tick(s);
  3053. return;
  3054. }
  3055. s->on = on;
  3056. s->period = period;
  3057. }
  3058. static void omap_lpg_reset(struct omap_lpg_s *s)
  3059. {
  3060. s->control = 0x00;
  3061. s->power = 0x00;
  3062. s->clk = 1;
  3063. omap_lpg_update(s);
  3064. }
  3065. static uint64_t omap_lpg_read(void *opaque, hwaddr addr, unsigned size)
  3066. {
  3067. struct omap_lpg_s *s = opaque;
  3068. int offset = addr & OMAP_MPUI_REG_MASK;
  3069. if (size != 1) {
  3070. return omap_badwidth_read8(opaque, addr);
  3071. }
  3072. switch (offset) {
  3073. case 0x00: /* LCR */
  3074. return s->control;
  3075. case 0x04: /* PMR */
  3076. return s->power;
  3077. }
  3078. OMAP_BAD_REG(addr);
  3079. return 0;
  3080. }
  3081. static void omap_lpg_write(void *opaque, hwaddr addr,
  3082. uint64_t value, unsigned size)
  3083. {
  3084. struct omap_lpg_s *s = opaque;
  3085. int offset = addr & OMAP_MPUI_REG_MASK;
  3086. if (size != 1) {
  3087. omap_badwidth_write8(opaque, addr, value);
  3088. return;
  3089. }
  3090. switch (offset) {
  3091. case 0x00: /* LCR */
  3092. if (~value & (1 << 6)) /* LPGRES */
  3093. omap_lpg_reset(s);
  3094. s->control = value & 0xff;
  3095. omap_lpg_update(s);
  3096. return;
  3097. case 0x04: /* PMR */
  3098. s->power = value & 0x01;
  3099. omap_lpg_update(s);
  3100. return;
  3101. default:
  3102. OMAP_BAD_REG(addr);
  3103. return;
  3104. }
  3105. }
  3106. static const MemoryRegionOps omap_lpg_ops = {
  3107. .read = omap_lpg_read,
  3108. .write = omap_lpg_write,
  3109. .endianness = DEVICE_NATIVE_ENDIAN,
  3110. };
  3111. static void omap_lpg_clk_update(void *opaque, int line, int on)
  3112. {
  3113. struct omap_lpg_s *s = opaque;
  3114. s->clk = on;
  3115. omap_lpg_update(s);
  3116. }
  3117. static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
  3118. hwaddr base, omap_clk clk)
  3119. {
  3120. struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
  3121. s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
  3122. omap_lpg_reset(s);
  3123. memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
  3124. memory_region_add_subregion(system_memory, base, &s->iomem);
  3125. omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
  3126. return s;
  3127. }
  3128. /* MPUI Peripheral Bridge configuration */
  3129. static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
  3130. unsigned size)
  3131. {
  3132. if (size != 2) {
  3133. return omap_badwidth_read16(opaque, addr);
  3134. }
  3135. if (addr == OMAP_MPUI_BASE) /* CMR */
  3136. return 0xfe4d;
  3137. OMAP_BAD_REG(addr);
  3138. return 0;
  3139. }
  3140. static void omap_mpui_io_write(void *opaque, hwaddr addr,
  3141. uint64_t value, unsigned size)
  3142. {
  3143. /* FIXME: infinite loop */
  3144. omap_badwidth_write16(opaque, addr, value);
  3145. }
  3146. static const MemoryRegionOps omap_mpui_io_ops = {
  3147. .read = omap_mpui_io_read,
  3148. .write = omap_mpui_io_write,
  3149. .endianness = DEVICE_NATIVE_ENDIAN,
  3150. };
  3151. static void omap_setup_mpui_io(MemoryRegion *system_memory,
  3152. struct omap_mpu_state_s *mpu)
  3153. {
  3154. memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
  3155. "omap-mpui-io", 0x7fff);
  3156. memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
  3157. &mpu->mpui_io_iomem);
  3158. }
  3159. /* General chip reset */
  3160. static void omap1_mpu_reset(void *opaque)
  3161. {
  3162. struct omap_mpu_state_s *mpu = opaque;
  3163. omap_dma_reset(mpu->dma);
  3164. omap_mpu_timer_reset(mpu->timer[0]);
  3165. omap_mpu_timer_reset(mpu->timer[1]);
  3166. omap_mpu_timer_reset(mpu->timer[2]);
  3167. omap_wd_timer_reset(mpu->wdt);
  3168. omap_os_timer_reset(mpu->os_timer);
  3169. omap_lcdc_reset(mpu->lcd);
  3170. omap_ulpd_pm_reset(mpu);
  3171. omap_pin_cfg_reset(mpu);
  3172. omap_mpui_reset(mpu);
  3173. omap_tipb_bridge_reset(mpu->private_tipb);
  3174. omap_tipb_bridge_reset(mpu->public_tipb);
  3175. omap_dpll_reset(mpu->dpll[0]);
  3176. omap_dpll_reset(mpu->dpll[1]);
  3177. omap_dpll_reset(mpu->dpll[2]);
  3178. omap_uart_reset(mpu->uart[0]);
  3179. omap_uart_reset(mpu->uart[1]);
  3180. omap_uart_reset(mpu->uart[2]);
  3181. omap_mpuio_reset(mpu->mpuio);
  3182. omap_uwire_reset(mpu->microwire);
  3183. omap_pwl_reset(mpu->pwl);
  3184. omap_pwt_reset(mpu->pwt);
  3185. omap_rtc_reset(mpu->rtc);
  3186. omap_mcbsp_reset(mpu->mcbsp1);
  3187. omap_mcbsp_reset(mpu->mcbsp2);
  3188. omap_mcbsp_reset(mpu->mcbsp3);
  3189. omap_lpg_reset(mpu->led[0]);
  3190. omap_lpg_reset(mpu->led[1]);
  3191. omap_clkm_reset(mpu);
  3192. cpu_reset(CPU(mpu->cpu));
  3193. }
  3194. static const struct omap_map_s {
  3195. hwaddr phys_dsp;
  3196. hwaddr phys_mpu;
  3197. uint32_t size;
  3198. const char *name;
  3199. } omap15xx_dsp_mm[] = {
  3200. /* Strobe 0 */
  3201. { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
  3202. { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
  3203. { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
  3204. { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
  3205. { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
  3206. { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
  3207. { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
  3208. { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
  3209. { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
  3210. { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
  3211. { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
  3212. { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
  3213. { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
  3214. { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
  3215. { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
  3216. { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
  3217. { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
  3218. /* Strobe 1 */
  3219. { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
  3220. { 0 }
  3221. };
  3222. static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
  3223. const struct omap_map_s *map)
  3224. {
  3225. MemoryRegion *io;
  3226. for (; map->phys_dsp; map ++) {
  3227. io = g_new(MemoryRegion, 1);
  3228. memory_region_init_alias(io, NULL, map->name,
  3229. system_memory, map->phys_mpu, map->size);
  3230. memory_region_add_subregion(system_memory, map->phys_dsp, io);
  3231. }
  3232. }
  3233. void omap_mpu_wakeup(void *opaque, int irq, int req)
  3234. {
  3235. struct omap_mpu_state_s *mpu = opaque;
  3236. CPUState *cpu = CPU(mpu->cpu);
  3237. if (cpu->halted) {
  3238. cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
  3239. }
  3240. }
  3241. static const struct dma_irq_map omap1_dma_irq_map[] = {
  3242. { 0, OMAP_INT_DMA_CH0_6 },
  3243. { 0, OMAP_INT_DMA_CH1_7 },
  3244. { 0, OMAP_INT_DMA_CH2_8 },
  3245. { 0, OMAP_INT_DMA_CH3 },
  3246. { 0, OMAP_INT_DMA_CH4 },
  3247. { 0, OMAP_INT_DMA_CH5 },
  3248. { 1, OMAP_INT_1610_DMA_CH6 },
  3249. { 1, OMAP_INT_1610_DMA_CH7 },
  3250. { 1, OMAP_INT_1610_DMA_CH8 },
  3251. { 1, OMAP_INT_1610_DMA_CH9 },
  3252. { 1, OMAP_INT_1610_DMA_CH10 },
  3253. { 1, OMAP_INT_1610_DMA_CH11 },
  3254. { 1, OMAP_INT_1610_DMA_CH12 },
  3255. { 1, OMAP_INT_1610_DMA_CH13 },
  3256. { 1, OMAP_INT_1610_DMA_CH14 },
  3257. { 1, OMAP_INT_1610_DMA_CH15 }
  3258. };
  3259. /* DMA ports for OMAP1 */
  3260. static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
  3261. hwaddr addr)
  3262. {
  3263. return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
  3264. }
  3265. static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
  3266. hwaddr addr)
  3267. {
  3268. return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
  3269. addr);
  3270. }
  3271. static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
  3272. hwaddr addr)
  3273. {
  3274. return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
  3275. }
  3276. static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
  3277. hwaddr addr)
  3278. {
  3279. return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
  3280. }
  3281. static int omap_validate_local_addr(struct omap_mpu_state_s *s,
  3282. hwaddr addr)
  3283. {
  3284. return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
  3285. }
  3286. static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
  3287. hwaddr addr)
  3288. {
  3289. return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
  3290. }
  3291. struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
  3292. const char *cpu_type)
  3293. {
  3294. int i;
  3295. struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
  3296. qemu_irq dma_irqs[6];
  3297. DriveInfo *dinfo;
  3298. SysBusDevice *busdev;
  3299. MemoryRegion *system_memory = get_system_memory();
  3300. /* Core */
  3301. s->mpu_model = omap310;
  3302. s->cpu = ARM_CPU(cpu_create(cpu_type));
  3303. s->sdram_size = memory_region_size(dram);
  3304. s->sram_size = OMAP15XX_SRAM_SIZE;
  3305. s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
  3306. /* Clocks */
  3307. omap_clk_init(s);
  3308. /* Memory-mapped stuff */
  3309. memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
  3310. &error_fatal);
  3311. memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
  3312. omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
  3313. s->ih[0] = qdev_new("omap-intc");
  3314. qdev_prop_set_uint32(s->ih[0], "size", 0x100);
  3315. omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
  3316. busdev = SYS_BUS_DEVICE(s->ih[0]);
  3317. sysbus_realize_and_unref(busdev, &error_fatal);
  3318. sysbus_connect_irq(busdev, 0,
  3319. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
  3320. sysbus_connect_irq(busdev, 1,
  3321. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
  3322. sysbus_mmio_map(busdev, 0, 0xfffecb00);
  3323. s->ih[1] = qdev_new("omap-intc");
  3324. qdev_prop_set_uint32(s->ih[1], "size", 0x800);
  3325. omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
  3326. busdev = SYS_BUS_DEVICE(s->ih[1]);
  3327. sysbus_realize_and_unref(busdev, &error_fatal);
  3328. sysbus_connect_irq(busdev, 0,
  3329. qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
  3330. /* The second interrupt controller's FIQ output is not wired up */
  3331. sysbus_mmio_map(busdev, 0, 0xfffe0000);
  3332. for (i = 0; i < 6; i++) {
  3333. dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
  3334. omap1_dma_irq_map[i].intr);
  3335. }
  3336. s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
  3337. qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
  3338. s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
  3339. s->port[emiff ].addr_valid = omap_validate_emiff_addr;
  3340. s->port[emifs ].addr_valid = omap_validate_emifs_addr;
  3341. s->port[imif ].addr_valid = omap_validate_imif_addr;
  3342. s->port[tipb ].addr_valid = omap_validate_tipb_addr;
  3343. s->port[local ].addr_valid = omap_validate_local_addr;
  3344. s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
  3345. /* Register SDRAM and SRAM DMA ports for fast transfers. */
  3346. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
  3347. OMAP_EMIFF_BASE, s->sdram_size);
  3348. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
  3349. OMAP_IMIF_BASE, s->sram_size);
  3350. s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
  3351. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
  3352. omap_findclk(s, "mputim_ck"));
  3353. s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
  3354. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
  3355. omap_findclk(s, "mputim_ck"));
  3356. s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
  3357. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
  3358. omap_findclk(s, "mputim_ck"));
  3359. s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
  3360. qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
  3361. omap_findclk(s, "armwdt_ck"));
  3362. s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
  3363. qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
  3364. omap_findclk(s, "clk32-kHz"));
  3365. s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
  3366. qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
  3367. omap_dma_get_lcdch(s->dma),
  3368. omap_findclk(s, "lcd_ck"));
  3369. omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
  3370. omap_pin_cfg_init(system_memory, 0xfffe1000, s);
  3371. omap_id_init(system_memory, s);
  3372. omap_mpui_init(system_memory, 0xfffec900, s);
  3373. s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
  3374. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
  3375. omap_findclk(s, "tipb_ck"));
  3376. s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
  3377. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
  3378. omap_findclk(s, "tipb_ck"));
  3379. omap_tcmi_init(system_memory, 0xfffecc00, s);
  3380. s->uart[0] = omap_uart_init(0xfffb0000,
  3381. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
  3382. omap_findclk(s, "uart1_ck"),
  3383. omap_findclk(s, "uart1_ck"),
  3384. s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
  3385. "uart1",
  3386. serial_hd(0));
  3387. s->uart[1] = omap_uart_init(0xfffb0800,
  3388. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
  3389. omap_findclk(s, "uart2_ck"),
  3390. omap_findclk(s, "uart2_ck"),
  3391. s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
  3392. "uart2",
  3393. serial_hd(0) ? serial_hd(1) : NULL);
  3394. s->uart[2] = omap_uart_init(0xfffb9800,
  3395. qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
  3396. omap_findclk(s, "uart3_ck"),
  3397. omap_findclk(s, "uart3_ck"),
  3398. s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
  3399. "uart3",
  3400. serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
  3401. s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
  3402. omap_findclk(s, "dpll1"));
  3403. s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
  3404. omap_findclk(s, "dpll2"));
  3405. s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
  3406. omap_findclk(s, "dpll3"));
  3407. dinfo = drive_get(IF_SD, 0, 0);
  3408. if (!dinfo && !qtest_enabled()) {
  3409. warn_report("missing SecureDigital device");
  3410. }
  3411. s->mmc = qdev_new(TYPE_OMAP_MMC);
  3412. sysbus_realize_and_unref(SYS_BUS_DEVICE(s->mmc), &error_fatal);
  3413. omap_mmc_set_clk(s->mmc, omap_findclk(s, "mmc_ck"));
  3414. memory_region_add_subregion(system_memory, 0xfffb7800,
  3415. sysbus_mmio_get_region(SYS_BUS_DEVICE(s->mmc), 0));
  3416. qdev_connect_gpio_out_named(s->mmc, "dma-tx", 0, s->drq[OMAP_DMA_MMC_TX]);
  3417. qdev_connect_gpio_out_named(s->mmc, "dma-rx", 0, s->drq[OMAP_DMA_MMC_RX]);
  3418. sysbus_connect_irq(SYS_BUS_DEVICE(s->mmc), 0,
  3419. qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN));
  3420. if (dinfo) {
  3421. DeviceState *card = qdev_new(TYPE_SD_CARD);
  3422. qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
  3423. &error_fatal);
  3424. qdev_realize_and_unref(card, qdev_get_child_bus(s->mmc, "sd-bus"),
  3425. &error_fatal);
  3426. }
  3427. s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
  3428. qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
  3429. qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
  3430. s->wakeup, omap_findclk(s, "clk32-kHz"));
  3431. s->gpio = qdev_new("omap-gpio");
  3432. qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
  3433. omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
  3434. sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
  3435. sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
  3436. qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
  3437. sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
  3438. s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
  3439. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
  3440. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
  3441. s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
  3442. s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
  3443. omap_findclk(s, "armxor_ck"));
  3444. s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
  3445. omap_findclk(s, "armxor_ck"));
  3446. s->i2c[0] = qdev_new("omap_i2c");
  3447. qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
  3448. omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
  3449. busdev = SYS_BUS_DEVICE(s->i2c[0]);
  3450. sysbus_realize_and_unref(busdev, &error_fatal);
  3451. sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
  3452. sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
  3453. sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
  3454. sysbus_mmio_map(busdev, 0, 0xfffb3800);
  3455. s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
  3456. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
  3457. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
  3458. omap_findclk(s, "clk32-kHz"));
  3459. s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
  3460. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
  3461. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
  3462. &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
  3463. s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
  3464. qdev_get_gpio_in(s->ih[0],
  3465. OMAP_INT_310_McBSP2_TX),
  3466. qdev_get_gpio_in(s->ih[0],
  3467. OMAP_INT_310_McBSP2_RX),
  3468. &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
  3469. s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
  3470. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
  3471. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
  3472. &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
  3473. s->led[0] = omap_lpg_init(system_memory,
  3474. 0xfffbd000, omap_findclk(s, "clk32-kHz"));
  3475. s->led[1] = omap_lpg_init(system_memory,
  3476. 0xfffbd800, omap_findclk(s, "clk32-kHz"));
  3477. /* Register mappings not currently implemented:
  3478. * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
  3479. * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
  3480. * USB W2FC fffb4000 - fffb47ff
  3481. * Camera Interface fffb6800 - fffb6fff
  3482. * USB Host fffba000 - fffba7ff
  3483. * FAC fffba800 - fffbafff
  3484. * HDQ/1-Wire fffbc000 - fffbc7ff
  3485. * TIPB switches fffbc800 - fffbcfff
  3486. * Mailbox fffcf000 - fffcf7ff
  3487. * Local bus IF fffec100 - fffec1ff
  3488. * Local bus MMU fffec200 - fffec2ff
  3489. * DSP MMU fffed200 - fffed2ff
  3490. */
  3491. omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
  3492. omap_setup_mpui_io(system_memory, s);
  3493. qemu_register_reset(omap1_mpu_reset, s);
  3494. return s;
  3495. }