esp.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734
  1. /*
  2. * QEMU ESP/NCR53C9x emulation
  3. *
  4. * Copyright (c) 2005-2006 Fabrice Bellard
  5. * Copyright (c) 2012 Herve Poussineau
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a copy
  8. * of this software and associated documentation files (the "Software"), to deal
  9. * in the Software without restriction, including without limitation the rights
  10. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. * copies of the Software, and to permit persons to whom the Software is
  12. * furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice shall be included in
  15. * all copies or substantial portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23. * THE SOFTWARE.
  24. */
  25. #include "qemu/osdep.h"
  26. #include "hw/sysbus.h"
  27. #include "hw/scsi/esp.h"
  28. #include "trace.h"
  29. #include "qemu/log.h"
  30. /*
  31. * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
  32. * also produced as NCR89C100. See
  33. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
  34. * and
  35. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
  36. */
  37. static void esp_raise_irq(ESPState *s)
  38. {
  39. if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
  40. s->rregs[ESP_RSTAT] |= STAT_INT;
  41. qemu_irq_raise(s->irq);
  42. trace_esp_raise_irq();
  43. }
  44. }
  45. static void esp_lower_irq(ESPState *s)
  46. {
  47. if (s->rregs[ESP_RSTAT] & STAT_INT) {
  48. s->rregs[ESP_RSTAT] &= ~STAT_INT;
  49. qemu_irq_lower(s->irq);
  50. trace_esp_lower_irq();
  51. }
  52. }
  53. void esp_dma_enable(ESPState *s, int irq, int level)
  54. {
  55. if (level) {
  56. s->dma_enabled = 1;
  57. trace_esp_dma_enable();
  58. if (s->dma_cb) {
  59. s->dma_cb(s);
  60. s->dma_cb = NULL;
  61. }
  62. } else {
  63. trace_esp_dma_disable();
  64. s->dma_enabled = 0;
  65. }
  66. }
  67. void esp_request_cancelled(SCSIRequest *req)
  68. {
  69. ESPState *s = req->hba_private;
  70. if (req == s->current_req) {
  71. scsi_req_unref(s->current_req);
  72. s->current_req = NULL;
  73. s->current_dev = NULL;
  74. }
  75. }
  76. static uint32_t get_cmd(ESPState *s, uint8_t *buf, uint8_t buflen)
  77. {
  78. uint32_t dmalen;
  79. int target;
  80. target = s->wregs[ESP_WBUSID] & BUSID_DID;
  81. if (s->dma) {
  82. dmalen = s->rregs[ESP_TCLO];
  83. dmalen |= s->rregs[ESP_TCMID] << 8;
  84. dmalen |= s->rregs[ESP_TCHI] << 16;
  85. if (dmalen > buflen) {
  86. return 0;
  87. }
  88. s->dma_memory_read(s->dma_opaque, buf, dmalen);
  89. } else {
  90. dmalen = s->ti_size;
  91. if (dmalen > TI_BUFSZ) {
  92. return 0;
  93. }
  94. memcpy(buf, s->ti_buf, dmalen);
  95. buf[0] = buf[2] >> 5;
  96. }
  97. trace_esp_get_cmd(dmalen, target);
  98. s->ti_size = 0;
  99. s->ti_rptr = 0;
  100. s->ti_wptr = 0;
  101. if (s->current_req) {
  102. /* Started a new command before the old one finished. Cancel it. */
  103. scsi_req_cancel(s->current_req);
  104. s->async_len = 0;
  105. }
  106. s->current_dev = scsi_device_find(&s->bus, 0, target, 0);
  107. if (!s->current_dev) {
  108. // No such drive
  109. s->rregs[ESP_RSTAT] = 0;
  110. s->rregs[ESP_RINTR] = INTR_DC;
  111. s->rregs[ESP_RSEQ] = SEQ_0;
  112. esp_raise_irq(s);
  113. return 0;
  114. }
  115. return dmalen;
  116. }
  117. static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid)
  118. {
  119. int32_t datalen;
  120. int lun;
  121. SCSIDevice *current_lun;
  122. trace_esp_do_busid_cmd(busid);
  123. lun = busid & 7;
  124. current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun);
  125. s->current_req = scsi_req_new(current_lun, 0, lun, buf, s);
  126. datalen = scsi_req_enqueue(s->current_req);
  127. s->ti_size = datalen;
  128. if (datalen != 0) {
  129. s->rregs[ESP_RSTAT] = STAT_TC;
  130. s->dma_left = 0;
  131. s->dma_counter = 0;
  132. if (datalen > 0) {
  133. s->rregs[ESP_RSTAT] |= STAT_DI;
  134. } else {
  135. s->rregs[ESP_RSTAT] |= STAT_DO;
  136. }
  137. scsi_req_continue(s->current_req);
  138. }
  139. s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
  140. s->rregs[ESP_RSEQ] = SEQ_CD;
  141. esp_raise_irq(s);
  142. }
  143. static void do_cmd(ESPState *s, uint8_t *buf)
  144. {
  145. uint8_t busid = buf[0];
  146. do_busid_cmd(s, &buf[1], busid);
  147. }
  148. static void handle_satn(ESPState *s)
  149. {
  150. uint8_t buf[32];
  151. int len;
  152. if (s->dma && !s->dma_enabled) {
  153. s->dma_cb = handle_satn;
  154. return;
  155. }
  156. len = get_cmd(s, buf, sizeof(buf));
  157. if (len)
  158. do_cmd(s, buf);
  159. }
  160. static void handle_s_without_atn(ESPState *s)
  161. {
  162. uint8_t buf[32];
  163. int len;
  164. if (s->dma && !s->dma_enabled) {
  165. s->dma_cb = handle_s_without_atn;
  166. return;
  167. }
  168. len = get_cmd(s, buf, sizeof(buf));
  169. if (len) {
  170. do_busid_cmd(s, buf, 0);
  171. }
  172. }
  173. static void handle_satn_stop(ESPState *s)
  174. {
  175. if (s->dma && !s->dma_enabled) {
  176. s->dma_cb = handle_satn_stop;
  177. return;
  178. }
  179. s->cmdlen = get_cmd(s, s->cmdbuf, sizeof(s->cmdbuf));
  180. if (s->cmdlen) {
  181. trace_esp_handle_satn_stop(s->cmdlen);
  182. s->do_cmd = 1;
  183. s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
  184. s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
  185. s->rregs[ESP_RSEQ] = SEQ_CD;
  186. esp_raise_irq(s);
  187. }
  188. }
  189. static void write_response(ESPState *s)
  190. {
  191. trace_esp_write_response(s->status);
  192. s->ti_buf[0] = s->status;
  193. s->ti_buf[1] = 0;
  194. if (s->dma) {
  195. s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
  196. s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
  197. s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
  198. s->rregs[ESP_RSEQ] = SEQ_CD;
  199. } else {
  200. s->ti_size = 2;
  201. s->ti_rptr = 0;
  202. s->ti_wptr = 2;
  203. s->rregs[ESP_RFLAGS] = 2;
  204. }
  205. esp_raise_irq(s);
  206. }
  207. static void esp_dma_done(ESPState *s)
  208. {
  209. s->rregs[ESP_RSTAT] |= STAT_TC;
  210. s->rregs[ESP_RINTR] = INTR_BS;
  211. s->rregs[ESP_RSEQ] = 0;
  212. s->rregs[ESP_RFLAGS] = 0;
  213. s->rregs[ESP_TCLO] = 0;
  214. s->rregs[ESP_TCMID] = 0;
  215. s->rregs[ESP_TCHI] = 0;
  216. esp_raise_irq(s);
  217. }
  218. static void esp_do_dma(ESPState *s)
  219. {
  220. uint32_t len;
  221. int to_device;
  222. len = s->dma_left;
  223. if (s->do_cmd) {
  224. trace_esp_do_dma(s->cmdlen, len);
  225. assert (s->cmdlen <= sizeof(s->cmdbuf) &&
  226. len <= sizeof(s->cmdbuf) - s->cmdlen);
  227. s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
  228. return;
  229. }
  230. if (s->async_len == 0) {
  231. /* Defer until data is available. */
  232. return;
  233. }
  234. if (len > s->async_len) {
  235. len = s->async_len;
  236. }
  237. to_device = (s->ti_size < 0);
  238. if (to_device) {
  239. s->dma_memory_read(s->dma_opaque, s->async_buf, len);
  240. } else {
  241. s->dma_memory_write(s->dma_opaque, s->async_buf, len);
  242. }
  243. s->dma_left -= len;
  244. s->async_buf += len;
  245. s->async_len -= len;
  246. if (to_device)
  247. s->ti_size += len;
  248. else
  249. s->ti_size -= len;
  250. if (s->async_len == 0) {
  251. scsi_req_continue(s->current_req);
  252. /* If there is still data to be read from the device then
  253. complete the DMA operation immediately. Otherwise defer
  254. until the scsi layer has completed. */
  255. if (to_device || s->dma_left != 0 || s->ti_size == 0) {
  256. return;
  257. }
  258. }
  259. /* Partially filled a scsi buffer. Complete immediately. */
  260. esp_dma_done(s);
  261. }
  262. void esp_command_complete(SCSIRequest *req, uint32_t status,
  263. size_t resid)
  264. {
  265. ESPState *s = req->hba_private;
  266. trace_esp_command_complete();
  267. if (s->ti_size != 0) {
  268. trace_esp_command_complete_unexpected();
  269. }
  270. s->ti_size = 0;
  271. s->dma_left = 0;
  272. s->async_len = 0;
  273. if (status) {
  274. trace_esp_command_complete_fail();
  275. }
  276. s->status = status;
  277. s->rregs[ESP_RSTAT] = STAT_ST;
  278. esp_dma_done(s);
  279. if (s->current_req) {
  280. scsi_req_unref(s->current_req);
  281. s->current_req = NULL;
  282. s->current_dev = NULL;
  283. }
  284. }
  285. void esp_transfer_data(SCSIRequest *req, uint32_t len)
  286. {
  287. ESPState *s = req->hba_private;
  288. assert(!s->do_cmd);
  289. trace_esp_transfer_data(s->dma_left, s->ti_size);
  290. s->async_len = len;
  291. s->async_buf = scsi_req_get_buf(req);
  292. if (s->dma_left) {
  293. esp_do_dma(s);
  294. } else if (s->dma_counter != 0 && s->ti_size <= 0) {
  295. /* If this was the last part of a DMA transfer then the
  296. completion interrupt is deferred to here. */
  297. esp_dma_done(s);
  298. }
  299. }
  300. static void handle_ti(ESPState *s)
  301. {
  302. uint32_t dmalen, minlen;
  303. if (s->dma && !s->dma_enabled) {
  304. s->dma_cb = handle_ti;
  305. return;
  306. }
  307. dmalen = s->rregs[ESP_TCLO];
  308. dmalen |= s->rregs[ESP_TCMID] << 8;
  309. dmalen |= s->rregs[ESP_TCHI] << 16;
  310. if (dmalen==0) {
  311. dmalen=0x10000;
  312. }
  313. s->dma_counter = dmalen;
  314. if (s->do_cmd)
  315. minlen = (dmalen < ESP_CMDBUF_SZ) ? dmalen : ESP_CMDBUF_SZ;
  316. else if (s->ti_size < 0)
  317. minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
  318. else
  319. minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
  320. trace_esp_handle_ti(minlen);
  321. if (s->dma) {
  322. s->dma_left = minlen;
  323. s->rregs[ESP_RSTAT] &= ~STAT_TC;
  324. esp_do_dma(s);
  325. }
  326. if (s->do_cmd) {
  327. trace_esp_handle_ti_cmd(s->cmdlen);
  328. s->ti_size = 0;
  329. s->cmdlen = 0;
  330. s->do_cmd = 0;
  331. do_cmd(s, s->cmdbuf);
  332. }
  333. }
  334. void esp_hard_reset(ESPState *s)
  335. {
  336. memset(s->rregs, 0, ESP_REGS);
  337. memset(s->wregs, 0, ESP_REGS);
  338. s->tchi_written = 0;
  339. s->ti_size = 0;
  340. s->ti_rptr = 0;
  341. s->ti_wptr = 0;
  342. s->dma = 0;
  343. s->do_cmd = 0;
  344. s->dma_cb = NULL;
  345. s->rregs[ESP_CFG1] = 7;
  346. }
  347. static void esp_soft_reset(ESPState *s)
  348. {
  349. qemu_irq_lower(s->irq);
  350. esp_hard_reset(s);
  351. }
  352. static void parent_esp_reset(ESPState *s, int irq, int level)
  353. {
  354. if (level) {
  355. esp_soft_reset(s);
  356. }
  357. }
  358. uint64_t esp_reg_read(ESPState *s, uint32_t saddr)
  359. {
  360. uint32_t old_val;
  361. trace_esp_mem_readb(saddr, s->rregs[saddr]);
  362. switch (saddr) {
  363. case ESP_FIFO:
  364. if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
  365. /* Data out. */
  366. qemu_log_mask(LOG_UNIMP, "esp: PIO data read not implemented\n");
  367. s->rregs[ESP_FIFO] = 0;
  368. } else if (s->ti_rptr < s->ti_wptr) {
  369. s->ti_size--;
  370. s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
  371. }
  372. if (s->ti_rptr == s->ti_wptr) {
  373. s->ti_rptr = 0;
  374. s->ti_wptr = 0;
  375. }
  376. break;
  377. case ESP_RINTR:
  378. /* Clear sequence step, interrupt register and all status bits
  379. except TC */
  380. old_val = s->rregs[ESP_RINTR];
  381. s->rregs[ESP_RINTR] = 0;
  382. s->rregs[ESP_RSTAT] &= ~STAT_TC;
  383. s->rregs[ESP_RSEQ] = SEQ_CD;
  384. esp_lower_irq(s);
  385. return old_val;
  386. case ESP_TCHI:
  387. /* Return the unique id if the value has never been written */
  388. if (!s->tchi_written) {
  389. return s->chip_id;
  390. }
  391. default:
  392. break;
  393. }
  394. return s->rregs[saddr];
  395. }
  396. void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val)
  397. {
  398. trace_esp_mem_writeb(saddr, s->wregs[saddr], val);
  399. switch (saddr) {
  400. case ESP_TCHI:
  401. s->tchi_written = true;
  402. /* fall through */
  403. case ESP_TCLO:
  404. case ESP_TCMID:
  405. s->rregs[ESP_RSTAT] &= ~STAT_TC;
  406. break;
  407. case ESP_FIFO:
  408. if (s->do_cmd) {
  409. if (s->cmdlen < ESP_CMDBUF_SZ) {
  410. s->cmdbuf[s->cmdlen++] = val & 0xff;
  411. } else {
  412. trace_esp_error_fifo_overrun();
  413. }
  414. } else if (s->ti_wptr == TI_BUFSZ - 1) {
  415. trace_esp_error_fifo_overrun();
  416. } else {
  417. s->ti_size++;
  418. s->ti_buf[s->ti_wptr++] = val & 0xff;
  419. }
  420. break;
  421. case ESP_CMD:
  422. s->rregs[saddr] = val;
  423. if (val & CMD_DMA) {
  424. s->dma = 1;
  425. /* Reload DMA counter. */
  426. s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
  427. s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
  428. s->rregs[ESP_TCHI] = s->wregs[ESP_TCHI];
  429. } else {
  430. s->dma = 0;
  431. }
  432. switch(val & CMD_CMD) {
  433. case CMD_NOP:
  434. trace_esp_mem_writeb_cmd_nop(val);
  435. break;
  436. case CMD_FLUSH:
  437. trace_esp_mem_writeb_cmd_flush(val);
  438. //s->ti_size = 0;
  439. s->rregs[ESP_RINTR] = INTR_FC;
  440. s->rregs[ESP_RSEQ] = 0;
  441. s->rregs[ESP_RFLAGS] = 0;
  442. break;
  443. case CMD_RESET:
  444. trace_esp_mem_writeb_cmd_reset(val);
  445. esp_soft_reset(s);
  446. break;
  447. case CMD_BUSRESET:
  448. trace_esp_mem_writeb_cmd_bus_reset(val);
  449. s->rregs[ESP_RINTR] = INTR_RST;
  450. if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
  451. esp_raise_irq(s);
  452. }
  453. break;
  454. case CMD_TI:
  455. handle_ti(s);
  456. break;
  457. case CMD_ICCS:
  458. trace_esp_mem_writeb_cmd_iccs(val);
  459. write_response(s);
  460. s->rregs[ESP_RINTR] = INTR_FC;
  461. s->rregs[ESP_RSTAT] |= STAT_MI;
  462. break;
  463. case CMD_MSGACC:
  464. trace_esp_mem_writeb_cmd_msgacc(val);
  465. s->rregs[ESP_RINTR] = INTR_DC;
  466. s->rregs[ESP_RSEQ] = 0;
  467. s->rregs[ESP_RFLAGS] = 0;
  468. esp_raise_irq(s);
  469. break;
  470. case CMD_PAD:
  471. trace_esp_mem_writeb_cmd_pad(val);
  472. s->rregs[ESP_RSTAT] = STAT_TC;
  473. s->rregs[ESP_RINTR] = INTR_FC;
  474. s->rregs[ESP_RSEQ] = 0;
  475. break;
  476. case CMD_SATN:
  477. trace_esp_mem_writeb_cmd_satn(val);
  478. break;
  479. case CMD_RSTATN:
  480. trace_esp_mem_writeb_cmd_rstatn(val);
  481. break;
  482. case CMD_SEL:
  483. trace_esp_mem_writeb_cmd_sel(val);
  484. handle_s_without_atn(s);
  485. break;
  486. case CMD_SELATN:
  487. trace_esp_mem_writeb_cmd_selatn(val);
  488. handle_satn(s);
  489. break;
  490. case CMD_SELATNS:
  491. trace_esp_mem_writeb_cmd_selatns(val);
  492. handle_satn_stop(s);
  493. break;
  494. case CMD_ENSEL:
  495. trace_esp_mem_writeb_cmd_ensel(val);
  496. s->rregs[ESP_RINTR] = 0;
  497. break;
  498. case CMD_DISSEL:
  499. trace_esp_mem_writeb_cmd_dissel(val);
  500. s->rregs[ESP_RINTR] = 0;
  501. esp_raise_irq(s);
  502. break;
  503. default:
  504. trace_esp_error_unhandled_command(val);
  505. break;
  506. }
  507. break;
  508. case ESP_WBUSID ... ESP_WSYNO:
  509. break;
  510. case ESP_CFG1:
  511. case ESP_CFG2: case ESP_CFG3:
  512. case ESP_RES3: case ESP_RES4:
  513. s->rregs[saddr] = val;
  514. break;
  515. case ESP_WCCF ... ESP_WTEST:
  516. break;
  517. default:
  518. trace_esp_error_invalid_write(val, saddr);
  519. return;
  520. }
  521. s->wregs[saddr] = val;
  522. }
  523. static bool esp_mem_accepts(void *opaque, hwaddr addr,
  524. unsigned size, bool is_write,
  525. MemTxAttrs attrs)
  526. {
  527. return (size == 1) || (is_write && size == 4);
  528. }
  529. const VMStateDescription vmstate_esp = {
  530. .name ="esp",
  531. .version_id = 4,
  532. .minimum_version_id = 3,
  533. .fields = (VMStateField[]) {
  534. VMSTATE_BUFFER(rregs, ESPState),
  535. VMSTATE_BUFFER(wregs, ESPState),
  536. VMSTATE_INT32(ti_size, ESPState),
  537. VMSTATE_UINT32(ti_rptr, ESPState),
  538. VMSTATE_UINT32(ti_wptr, ESPState),
  539. VMSTATE_BUFFER(ti_buf, ESPState),
  540. VMSTATE_UINT32(status, ESPState),
  541. VMSTATE_UINT32(dma, ESPState),
  542. VMSTATE_PARTIAL_BUFFER(cmdbuf, ESPState, 16),
  543. VMSTATE_BUFFER_START_MIDDLE_V(cmdbuf, ESPState, 16, 4),
  544. VMSTATE_UINT32(cmdlen, ESPState),
  545. VMSTATE_UINT32(do_cmd, ESPState),
  546. VMSTATE_UINT32(dma_left, ESPState),
  547. VMSTATE_END_OF_LIST()
  548. }
  549. };
  550. static void sysbus_esp_mem_write(void *opaque, hwaddr addr,
  551. uint64_t val, unsigned int size)
  552. {
  553. SysBusESPState *sysbus = opaque;
  554. uint32_t saddr;
  555. saddr = addr >> sysbus->it_shift;
  556. esp_reg_write(&sysbus->esp, saddr, val);
  557. }
  558. static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr,
  559. unsigned int size)
  560. {
  561. SysBusESPState *sysbus = opaque;
  562. uint32_t saddr;
  563. saddr = addr >> sysbus->it_shift;
  564. return esp_reg_read(&sysbus->esp, saddr);
  565. }
  566. static const MemoryRegionOps sysbus_esp_mem_ops = {
  567. .read = sysbus_esp_mem_read,
  568. .write = sysbus_esp_mem_write,
  569. .endianness = DEVICE_NATIVE_ENDIAN,
  570. .valid.accepts = esp_mem_accepts,
  571. };
  572. ESPState *esp_init(hwaddr espaddr, int it_shift,
  573. ESPDMAMemoryReadWriteFunc dma_memory_read,
  574. ESPDMAMemoryReadWriteFunc dma_memory_write,
  575. void *dma_opaque, qemu_irq irq, qemu_irq *reset,
  576. qemu_irq *dma_enable)
  577. {
  578. DeviceState *dev;
  579. SysBusDevice *s;
  580. SysBusESPState *sysbus;
  581. ESPState *esp;
  582. dev = qdev_create(NULL, TYPE_ESP);
  583. sysbus = ESP_STATE(dev);
  584. esp = &sysbus->esp;
  585. esp->dma_memory_read = dma_memory_read;
  586. esp->dma_memory_write = dma_memory_write;
  587. esp->dma_opaque = dma_opaque;
  588. sysbus->it_shift = it_shift;
  589. /* XXX for now until rc4030 has been changed to use DMA enable signal */
  590. esp->dma_enabled = 1;
  591. qdev_init_nofail(dev);
  592. s = SYS_BUS_DEVICE(dev);
  593. sysbus_connect_irq(s, 0, irq);
  594. sysbus_mmio_map(s, 0, espaddr);
  595. *reset = qdev_get_gpio_in(dev, 0);
  596. *dma_enable = qdev_get_gpio_in(dev, 1);
  597. return esp;
  598. }
  599. static const struct SCSIBusInfo esp_scsi_info = {
  600. .tcq = false,
  601. .max_target = ESP_MAX_DEVS,
  602. .max_lun = 7,
  603. .transfer_data = esp_transfer_data,
  604. .complete = esp_command_complete,
  605. .cancel = esp_request_cancelled
  606. };
  607. static void sysbus_esp_gpio_demux(void *opaque, int irq, int level)
  608. {
  609. SysBusESPState *sysbus = ESP_STATE(opaque);
  610. ESPState *s = &sysbus->esp;
  611. switch (irq) {
  612. case 0:
  613. parent_esp_reset(s, irq, level);
  614. break;
  615. case 1:
  616. esp_dma_enable(opaque, irq, level);
  617. break;
  618. }
  619. }
  620. static void sysbus_esp_realize(DeviceState *dev, Error **errp)
  621. {
  622. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  623. SysBusESPState *sysbus = ESP_STATE(dev);
  624. ESPState *s = &sysbus->esp;
  625. sysbus_init_irq(sbd, &s->irq);
  626. assert(sysbus->it_shift != -1);
  627. s->chip_id = TCHI_FAS100A;
  628. memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops,
  629. sysbus, "esp", ESP_REGS << sysbus->it_shift);
  630. sysbus_init_mmio(sbd, &sysbus->iomem);
  631. qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2);
  632. scsi_bus_new(&s->bus, sizeof(s->bus), dev, &esp_scsi_info, NULL);
  633. }
  634. static void sysbus_esp_hard_reset(DeviceState *dev)
  635. {
  636. SysBusESPState *sysbus = ESP_STATE(dev);
  637. esp_hard_reset(&sysbus->esp);
  638. }
  639. static const VMStateDescription vmstate_sysbus_esp_scsi = {
  640. .name = "sysbusespscsi",
  641. .version_id = 0,
  642. .minimum_version_id = 0,
  643. .fields = (VMStateField[]) {
  644. VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState),
  645. VMSTATE_END_OF_LIST()
  646. }
  647. };
  648. static void sysbus_esp_class_init(ObjectClass *klass, void *data)
  649. {
  650. DeviceClass *dc = DEVICE_CLASS(klass);
  651. dc->realize = sysbus_esp_realize;
  652. dc->reset = sysbus_esp_hard_reset;
  653. dc->vmsd = &vmstate_sysbus_esp_scsi;
  654. set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
  655. }
  656. static const TypeInfo sysbus_esp_info = {
  657. .name = TYPE_ESP,
  658. .parent = TYPE_SYS_BUS_DEVICE,
  659. .instance_size = sizeof(SysBusESPState),
  660. .class_init = sysbus_esp_class_init,
  661. };
  662. static void esp_register_types(void)
  663. {
  664. type_register_static(&sysbus_esp_info);
  665. }
  666. type_init(esp_register_types)