esp-pci.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /*
  2. * QEMU ESP/NCR53C9x emulation
  3. *
  4. * Copyright (c) 2005-2006 Fabrice Bellard
  5. * Copyright (c) 2012 Herve Poussineau
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a copy
  8. * of this software and associated documentation files (the "Software"), to deal
  9. * in the Software without restriction, including without limitation the rights
  10. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. * copies of the Software, and to permit persons to whom the Software is
  12. * furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice shall be included in
  15. * all copies or substantial portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23. * THE SOFTWARE.
  24. */
  25. #include "qemu/osdep.h"
  26. #include "hw/pci/pci.h"
  27. #include "hw/nvram/eeprom93xx.h"
  28. #include "hw/scsi/esp.h"
  29. #include "trace.h"
  30. #include "qapi/error.h"
  31. #include "qemu/log.h"
  32. #define TYPE_AM53C974_DEVICE "am53c974"
  33. #define PCI_ESP(obj) \
  34. OBJECT_CHECK(PCIESPState, (obj), TYPE_AM53C974_DEVICE)
  35. #define DMA_CMD 0x0
  36. #define DMA_STC 0x1
  37. #define DMA_SPA 0x2
  38. #define DMA_WBC 0x3
  39. #define DMA_WAC 0x4
  40. #define DMA_STAT 0x5
  41. #define DMA_SMDLA 0x6
  42. #define DMA_WMAC 0x7
  43. #define DMA_CMD_MASK 0x03
  44. #define DMA_CMD_DIAG 0x04
  45. #define DMA_CMD_MDL 0x10
  46. #define DMA_CMD_INTE_P 0x20
  47. #define DMA_CMD_INTE_D 0x40
  48. #define DMA_CMD_DIR 0x80
  49. #define DMA_STAT_PWDN 0x01
  50. #define DMA_STAT_ERROR 0x02
  51. #define DMA_STAT_ABORT 0x04
  52. #define DMA_STAT_DONE 0x08
  53. #define DMA_STAT_SCSIINT 0x10
  54. #define DMA_STAT_BCMBLT 0x20
  55. #define SBAC_STATUS 0x1000
  56. typedef struct PCIESPState {
  57. /*< private >*/
  58. PCIDevice parent_obj;
  59. /*< public >*/
  60. MemoryRegion io;
  61. uint32_t dma_regs[8];
  62. uint32_t sbac;
  63. ESPState esp;
  64. } PCIESPState;
  65. static void esp_pci_handle_idle(PCIESPState *pci, uint32_t val)
  66. {
  67. trace_esp_pci_dma_idle(val);
  68. esp_dma_enable(&pci->esp, 0, 0);
  69. }
  70. static void esp_pci_handle_blast(PCIESPState *pci, uint32_t val)
  71. {
  72. trace_esp_pci_dma_blast(val);
  73. qemu_log_mask(LOG_UNIMP, "am53c974: cmd BLAST not implemented\n");
  74. }
  75. static void esp_pci_handle_abort(PCIESPState *pci, uint32_t val)
  76. {
  77. trace_esp_pci_dma_abort(val);
  78. if (pci->esp.current_req) {
  79. scsi_req_cancel(pci->esp.current_req);
  80. }
  81. }
  82. static void esp_pci_handle_start(PCIESPState *pci, uint32_t val)
  83. {
  84. trace_esp_pci_dma_start(val);
  85. pci->dma_regs[DMA_WBC] = pci->dma_regs[DMA_STC];
  86. pci->dma_regs[DMA_WAC] = pci->dma_regs[DMA_SPA];
  87. pci->dma_regs[DMA_WMAC] = pci->dma_regs[DMA_SMDLA];
  88. pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
  89. | DMA_STAT_DONE | DMA_STAT_ABORT
  90. | DMA_STAT_ERROR | DMA_STAT_PWDN);
  91. esp_dma_enable(&pci->esp, 0, 1);
  92. }
  93. static void esp_pci_dma_write(PCIESPState *pci, uint32_t saddr, uint32_t val)
  94. {
  95. trace_esp_pci_dma_write(saddr, pci->dma_regs[saddr], val);
  96. switch (saddr) {
  97. case DMA_CMD:
  98. pci->dma_regs[saddr] = val;
  99. switch (val & DMA_CMD_MASK) {
  100. case 0x0: /* IDLE */
  101. esp_pci_handle_idle(pci, val);
  102. break;
  103. case 0x1: /* BLAST */
  104. esp_pci_handle_blast(pci, val);
  105. break;
  106. case 0x2: /* ABORT */
  107. esp_pci_handle_abort(pci, val);
  108. break;
  109. case 0x3: /* START */
  110. esp_pci_handle_start(pci, val);
  111. break;
  112. default: /* can't happen */
  113. abort();
  114. }
  115. break;
  116. case DMA_STC:
  117. case DMA_SPA:
  118. case DMA_SMDLA:
  119. pci->dma_regs[saddr] = val;
  120. break;
  121. case DMA_STAT:
  122. if (!(pci->sbac & SBAC_STATUS)) {
  123. /* clear some bits on write */
  124. uint32_t mask = DMA_STAT_ERROR | DMA_STAT_ABORT | DMA_STAT_DONE;
  125. pci->dma_regs[DMA_STAT] &= ~(val & mask);
  126. }
  127. break;
  128. default:
  129. trace_esp_pci_error_invalid_write_dma(val, saddr);
  130. return;
  131. }
  132. }
  133. static uint32_t esp_pci_dma_read(PCIESPState *pci, uint32_t saddr)
  134. {
  135. uint32_t val;
  136. val = pci->dma_regs[saddr];
  137. if (saddr == DMA_STAT) {
  138. if (pci->esp.rregs[ESP_RSTAT] & STAT_INT) {
  139. val |= DMA_STAT_SCSIINT;
  140. }
  141. if (pci->sbac & SBAC_STATUS) {
  142. pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_ERROR | DMA_STAT_ABORT |
  143. DMA_STAT_DONE);
  144. }
  145. }
  146. trace_esp_pci_dma_read(saddr, val);
  147. return val;
  148. }
  149. static void esp_pci_io_write(void *opaque, hwaddr addr,
  150. uint64_t val, unsigned int size)
  151. {
  152. PCIESPState *pci = opaque;
  153. if (size < 4 || addr & 3) {
  154. /* need to upgrade request: we only support 4-bytes accesses */
  155. uint32_t current = 0, mask;
  156. int shift;
  157. if (addr < 0x40) {
  158. current = pci->esp.wregs[addr >> 2];
  159. } else if (addr < 0x60) {
  160. current = pci->dma_regs[(addr - 0x40) >> 2];
  161. } else if (addr < 0x74) {
  162. current = pci->sbac;
  163. }
  164. shift = (4 - size) * 8;
  165. mask = (~(uint32_t)0 << shift) >> shift;
  166. shift = ((4 - (addr & 3)) & 3) * 8;
  167. val <<= shift;
  168. val |= current & ~(mask << shift);
  169. addr &= ~3;
  170. size = 4;
  171. }
  172. if (addr < 0x40) {
  173. /* SCSI core reg */
  174. esp_reg_write(&pci->esp, addr >> 2, val);
  175. } else if (addr < 0x60) {
  176. /* PCI DMA CCB */
  177. esp_pci_dma_write(pci, (addr - 0x40) >> 2, val);
  178. } else if (addr == 0x70) {
  179. /* DMA SCSI Bus and control */
  180. trace_esp_pci_sbac_write(pci->sbac, val);
  181. pci->sbac = val;
  182. } else {
  183. trace_esp_pci_error_invalid_write((int)addr);
  184. }
  185. }
  186. static uint64_t esp_pci_io_read(void *opaque, hwaddr addr,
  187. unsigned int size)
  188. {
  189. PCIESPState *pci = opaque;
  190. uint32_t ret;
  191. if (addr < 0x40) {
  192. /* SCSI core reg */
  193. ret = esp_reg_read(&pci->esp, addr >> 2);
  194. } else if (addr < 0x60) {
  195. /* PCI DMA CCB */
  196. ret = esp_pci_dma_read(pci, (addr - 0x40) >> 2);
  197. } else if (addr == 0x70) {
  198. /* DMA SCSI Bus and control */
  199. trace_esp_pci_sbac_read(pci->sbac);
  200. ret = pci->sbac;
  201. } else {
  202. /* Invalid region */
  203. trace_esp_pci_error_invalid_read((int)addr);
  204. ret = 0;
  205. }
  206. /* give only requested data */
  207. ret >>= (addr & 3) * 8;
  208. ret &= ~(~(uint64_t)0 << (8 * size));
  209. return ret;
  210. }
  211. static void esp_pci_dma_memory_rw(PCIESPState *pci, uint8_t *buf, int len,
  212. DMADirection dir)
  213. {
  214. dma_addr_t addr;
  215. DMADirection expected_dir;
  216. if (pci->dma_regs[DMA_CMD] & DMA_CMD_DIR) {
  217. expected_dir = DMA_DIRECTION_FROM_DEVICE;
  218. } else {
  219. expected_dir = DMA_DIRECTION_TO_DEVICE;
  220. }
  221. if (dir != expected_dir) {
  222. trace_esp_pci_error_invalid_dma_direction();
  223. return;
  224. }
  225. if (pci->dma_regs[DMA_STAT] & DMA_CMD_MDL) {
  226. qemu_log_mask(LOG_UNIMP, "am53c974: MDL transfer not implemented\n");
  227. }
  228. addr = pci->dma_regs[DMA_SPA];
  229. if (pci->dma_regs[DMA_WBC] < len) {
  230. len = pci->dma_regs[DMA_WBC];
  231. }
  232. pci_dma_rw(PCI_DEVICE(pci), addr, buf, len, dir);
  233. /* update status registers */
  234. pci->dma_regs[DMA_WBC] -= len;
  235. pci->dma_regs[DMA_WAC] += len;
  236. if (pci->dma_regs[DMA_WBC] == 0) {
  237. pci->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
  238. }
  239. }
  240. static void esp_pci_dma_memory_read(void *opaque, uint8_t *buf, int len)
  241. {
  242. PCIESPState *pci = opaque;
  243. esp_pci_dma_memory_rw(pci, buf, len, DMA_DIRECTION_TO_DEVICE);
  244. }
  245. static void esp_pci_dma_memory_write(void *opaque, uint8_t *buf, int len)
  246. {
  247. PCIESPState *pci = opaque;
  248. esp_pci_dma_memory_rw(pci, buf, len, DMA_DIRECTION_FROM_DEVICE);
  249. }
  250. static const MemoryRegionOps esp_pci_io_ops = {
  251. .read = esp_pci_io_read,
  252. .write = esp_pci_io_write,
  253. .endianness = DEVICE_LITTLE_ENDIAN,
  254. .impl = {
  255. .min_access_size = 1,
  256. .max_access_size = 4,
  257. },
  258. };
  259. static void esp_pci_hard_reset(DeviceState *dev)
  260. {
  261. PCIESPState *pci = PCI_ESP(dev);
  262. esp_hard_reset(&pci->esp);
  263. pci->dma_regs[DMA_CMD] &= ~(DMA_CMD_DIR | DMA_CMD_INTE_D | DMA_CMD_INTE_P
  264. | DMA_CMD_MDL | DMA_CMD_DIAG | DMA_CMD_MASK);
  265. pci->dma_regs[DMA_WBC] &= ~0xffff;
  266. pci->dma_regs[DMA_WAC] = 0xffffffff;
  267. pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
  268. | DMA_STAT_DONE | DMA_STAT_ABORT
  269. | DMA_STAT_ERROR);
  270. pci->dma_regs[DMA_WMAC] = 0xfffffffd;
  271. }
  272. static const VMStateDescription vmstate_esp_pci_scsi = {
  273. .name = "pciespscsi",
  274. .version_id = 0,
  275. .minimum_version_id = 0,
  276. .fields = (VMStateField[]) {
  277. VMSTATE_PCI_DEVICE(parent_obj, PCIESPState),
  278. VMSTATE_BUFFER_UNSAFE(dma_regs, PCIESPState, 0, 8 * sizeof(uint32_t)),
  279. VMSTATE_STRUCT(esp, PCIESPState, 0, vmstate_esp, ESPState),
  280. VMSTATE_END_OF_LIST()
  281. }
  282. };
  283. static void esp_pci_command_complete(SCSIRequest *req, uint32_t status,
  284. size_t resid)
  285. {
  286. ESPState *s = req->hba_private;
  287. PCIESPState *pci = container_of(s, PCIESPState, esp);
  288. esp_command_complete(req, status, resid);
  289. pci->dma_regs[DMA_WBC] = 0;
  290. pci->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
  291. }
  292. static const struct SCSIBusInfo esp_pci_scsi_info = {
  293. .tcq = false,
  294. .max_target = ESP_MAX_DEVS,
  295. .max_lun = 7,
  296. .transfer_data = esp_transfer_data,
  297. .complete = esp_pci_command_complete,
  298. .cancel = esp_request_cancelled,
  299. };
  300. static void esp_pci_scsi_realize(PCIDevice *dev, Error **errp)
  301. {
  302. PCIESPState *pci = PCI_ESP(dev);
  303. DeviceState *d = DEVICE(dev);
  304. ESPState *s = &pci->esp;
  305. uint8_t *pci_conf;
  306. pci_conf = dev->config;
  307. /* Interrupt pin A */
  308. pci_conf[PCI_INTERRUPT_PIN] = 0x01;
  309. s->dma_memory_read = esp_pci_dma_memory_read;
  310. s->dma_memory_write = esp_pci_dma_memory_write;
  311. s->dma_opaque = pci;
  312. s->chip_id = TCHI_AM53C974;
  313. memory_region_init_io(&pci->io, OBJECT(pci), &esp_pci_io_ops, pci,
  314. "esp-io", 0x80);
  315. pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &pci->io);
  316. s->irq = pci_allocate_irq(dev);
  317. scsi_bus_new(&s->bus, sizeof(s->bus), d, &esp_pci_scsi_info, NULL);
  318. }
  319. static void esp_pci_scsi_uninit(PCIDevice *d)
  320. {
  321. PCIESPState *pci = PCI_ESP(d);
  322. qemu_free_irq(pci->esp.irq);
  323. }
  324. static void esp_pci_class_init(ObjectClass *klass, void *data)
  325. {
  326. DeviceClass *dc = DEVICE_CLASS(klass);
  327. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  328. k->realize = esp_pci_scsi_realize;
  329. k->exit = esp_pci_scsi_uninit;
  330. k->vendor_id = PCI_VENDOR_ID_AMD;
  331. k->device_id = PCI_DEVICE_ID_AMD_SCSI;
  332. k->revision = 0x10;
  333. k->class_id = PCI_CLASS_STORAGE_SCSI;
  334. set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
  335. dc->desc = "AMD Am53c974 PCscsi-PCI SCSI adapter";
  336. dc->reset = esp_pci_hard_reset;
  337. dc->vmsd = &vmstate_esp_pci_scsi;
  338. }
  339. static const TypeInfo esp_pci_info = {
  340. .name = TYPE_AM53C974_DEVICE,
  341. .parent = TYPE_PCI_DEVICE,
  342. .instance_size = sizeof(PCIESPState),
  343. .class_init = esp_pci_class_init,
  344. .interfaces = (InterfaceInfo[]) {
  345. { INTERFACE_CONVENTIONAL_PCI_DEVICE },
  346. { },
  347. },
  348. };
  349. typedef struct {
  350. PCIESPState pci;
  351. eeprom_t *eeprom;
  352. } DC390State;
  353. #define TYPE_DC390_DEVICE "dc390"
  354. #define DC390(obj) \
  355. OBJECT_CHECK(DC390State, obj, TYPE_DC390_DEVICE)
  356. #define EE_ADAPT_SCSI_ID 64
  357. #define EE_MODE2 65
  358. #define EE_DELAY 66
  359. #define EE_TAG_CMD_NUM 67
  360. #define EE_ADAPT_OPTIONS 68
  361. #define EE_BOOT_SCSI_ID 69
  362. #define EE_BOOT_SCSI_LUN 70
  363. #define EE_CHKSUM1 126
  364. #define EE_CHKSUM2 127
  365. #define EE_ADAPT_OPTION_F6_F8_AT_BOOT 0x01
  366. #define EE_ADAPT_OPTION_BOOT_FROM_CDROM 0x02
  367. #define EE_ADAPT_OPTION_INT13 0x04
  368. #define EE_ADAPT_OPTION_SCAM_SUPPORT 0x08
  369. static uint32_t dc390_read_config(PCIDevice *dev, uint32_t addr, int l)
  370. {
  371. DC390State *pci = DC390(dev);
  372. uint32_t val;
  373. val = pci_default_read_config(dev, addr, l);
  374. if (addr == 0x00 && l == 1) {
  375. /* First byte of address space is AND-ed with EEPROM DO line */
  376. if (!eeprom93xx_read(pci->eeprom)) {
  377. val &= ~0xff;
  378. }
  379. }
  380. return val;
  381. }
  382. static void dc390_write_config(PCIDevice *dev,
  383. uint32_t addr, uint32_t val, int l)
  384. {
  385. DC390State *pci = DC390(dev);
  386. if (addr == 0x80) {
  387. /* EEPROM write */
  388. int eesk = val & 0x80 ? 1 : 0;
  389. int eedi = val & 0x40 ? 1 : 0;
  390. eeprom93xx_write(pci->eeprom, 1, eesk, eedi);
  391. } else if (addr == 0xc0) {
  392. /* EEPROM CS low */
  393. eeprom93xx_write(pci->eeprom, 0, 0, 0);
  394. } else {
  395. pci_default_write_config(dev, addr, val, l);
  396. }
  397. }
  398. static void dc390_scsi_realize(PCIDevice *dev, Error **errp)
  399. {
  400. DC390State *pci = DC390(dev);
  401. Error *err = NULL;
  402. uint8_t *contents;
  403. uint16_t chksum = 0;
  404. int i;
  405. /* init base class */
  406. esp_pci_scsi_realize(dev, &err);
  407. if (err) {
  408. error_propagate(errp, err);
  409. return;
  410. }
  411. /* EEPROM */
  412. pci->eeprom = eeprom93xx_new(DEVICE(dev), 64);
  413. /* set default eeprom values */
  414. contents = (uint8_t *)eeprom93xx_data(pci->eeprom);
  415. for (i = 0; i < 16; i++) {
  416. contents[i * 2] = 0x57;
  417. contents[i * 2 + 1] = 0x00;
  418. }
  419. contents[EE_ADAPT_SCSI_ID] = 7;
  420. contents[EE_MODE2] = 0x0f;
  421. contents[EE_TAG_CMD_NUM] = 0x04;
  422. contents[EE_ADAPT_OPTIONS] = EE_ADAPT_OPTION_F6_F8_AT_BOOT
  423. | EE_ADAPT_OPTION_BOOT_FROM_CDROM
  424. | EE_ADAPT_OPTION_INT13;
  425. /* update eeprom checksum */
  426. for (i = 0; i < EE_CHKSUM1; i += 2) {
  427. chksum += contents[i] + (((uint16_t)contents[i + 1]) << 8);
  428. }
  429. chksum = 0x1234 - chksum;
  430. contents[EE_CHKSUM1] = chksum & 0xff;
  431. contents[EE_CHKSUM2] = chksum >> 8;
  432. }
  433. static void dc390_class_init(ObjectClass *klass, void *data)
  434. {
  435. DeviceClass *dc = DEVICE_CLASS(klass);
  436. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  437. k->realize = dc390_scsi_realize;
  438. k->config_read = dc390_read_config;
  439. k->config_write = dc390_write_config;
  440. set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
  441. dc->desc = "Tekram DC-390 SCSI adapter";
  442. }
  443. static const TypeInfo dc390_info = {
  444. .name = "dc390",
  445. .parent = TYPE_AM53C974_DEVICE,
  446. .instance_size = sizeof(DC390State),
  447. .class_init = dc390_class_init,
  448. };
  449. static void esp_pci_register_types(void)
  450. {
  451. type_register_static(&esp_pci_info);
  452. type_register_static(&dc390_info);
  453. }
  454. type_init(esp_pci_register_types)