intel_iommu.c 103 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330
  1. /*
  2. * QEMU emulation of an Intel IOMMU (VT-d)
  3. * (DMA Remapping device)
  4. *
  5. * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
  6. * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/error-report.h"
  21. #include "qapi/error.h"
  22. #include "hw/sysbus.h"
  23. #include "exec/address-spaces.h"
  24. #include "intel_iommu_internal.h"
  25. #include "hw/pci/pci.h"
  26. #include "hw/pci/pci_bus.h"
  27. #include "hw/i386/pc.h"
  28. #include "hw/i386/apic-msidef.h"
  29. #include "hw/boards.h"
  30. #include "hw/i386/x86-iommu.h"
  31. #include "hw/pci-host/q35.h"
  32. #include "sysemu/kvm.h"
  33. #include "hw/i386/apic_internal.h"
  34. #include "kvm_i386.h"
  35. #include "trace.h"
  36. static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  37. uint64_t wmask, uint64_t w1cmask)
  38. {
  39. stq_le_p(&s->csr[addr], val);
  40. stq_le_p(&s->wmask[addr], wmask);
  41. stq_le_p(&s->w1cmask[addr], w1cmask);
  42. }
  43. static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  44. {
  45. stq_le_p(&s->womask[addr], mask);
  46. }
  47. static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  48. uint32_t wmask, uint32_t w1cmask)
  49. {
  50. stl_le_p(&s->csr[addr], val);
  51. stl_le_p(&s->wmask[addr], wmask);
  52. stl_le_p(&s->w1cmask[addr], w1cmask);
  53. }
  54. static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  55. {
  56. stl_le_p(&s->womask[addr], mask);
  57. }
  58. /* "External" get/set operations */
  59. static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  60. {
  61. uint64_t oldval = ldq_le_p(&s->csr[addr]);
  62. uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  63. uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  64. stq_le_p(&s->csr[addr],
  65. ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  66. }
  67. static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
  68. {
  69. uint32_t oldval = ldl_le_p(&s->csr[addr]);
  70. uint32_t wmask = ldl_le_p(&s->wmask[addr]);
  71. uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  72. stl_le_p(&s->csr[addr],
  73. ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  74. }
  75. static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
  76. {
  77. uint64_t val = ldq_le_p(&s->csr[addr]);
  78. uint64_t womask = ldq_le_p(&s->womask[addr]);
  79. return val & ~womask;
  80. }
  81. static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
  82. {
  83. uint32_t val = ldl_le_p(&s->csr[addr]);
  84. uint32_t womask = ldl_le_p(&s->womask[addr]);
  85. return val & ~womask;
  86. }
  87. /* "Internal" get/set operations */
  88. static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
  89. {
  90. return ldq_le_p(&s->csr[addr]);
  91. }
  92. static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
  93. {
  94. return ldl_le_p(&s->csr[addr]);
  95. }
  96. static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  97. {
  98. stq_le_p(&s->csr[addr], val);
  99. }
  100. static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
  101. uint32_t clear, uint32_t mask)
  102. {
  103. uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
  104. stl_le_p(&s->csr[addr], new_val);
  105. return new_val;
  106. }
  107. static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
  108. uint64_t clear, uint64_t mask)
  109. {
  110. uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
  111. stq_le_p(&s->csr[addr], new_val);
  112. return new_val;
  113. }
  114. static inline void vtd_iommu_lock(IntelIOMMUState *s)
  115. {
  116. qemu_mutex_lock(&s->iommu_lock);
  117. }
  118. static inline void vtd_iommu_unlock(IntelIOMMUState *s)
  119. {
  120. qemu_mutex_unlock(&s->iommu_lock);
  121. }
  122. /* Whether the address space needs to notify new mappings */
  123. static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
  124. {
  125. return as->notifier_flags & IOMMU_NOTIFIER_MAP;
  126. }
  127. /* GHashTable functions */
  128. static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
  129. {
  130. return *((const uint64_t *)v1) == *((const uint64_t *)v2);
  131. }
  132. static guint vtd_uint64_hash(gconstpointer v)
  133. {
  134. return (guint)*(const uint64_t *)v;
  135. }
  136. static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
  137. gpointer user_data)
  138. {
  139. VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
  140. uint16_t domain_id = *(uint16_t *)user_data;
  141. return entry->domain_id == domain_id;
  142. }
  143. /* The shift of an addr for a certain level of paging structure */
  144. static inline uint32_t vtd_slpt_level_shift(uint32_t level)
  145. {
  146. assert(level != 0);
  147. return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
  148. }
  149. static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
  150. {
  151. return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
  152. }
  153. static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
  154. gpointer user_data)
  155. {
  156. VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
  157. VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
  158. uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
  159. uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
  160. return (entry->domain_id == info->domain_id) &&
  161. (((entry->gfn & info->mask) == gfn) ||
  162. (entry->gfn == gfn_tlb));
  163. }
  164. /* Reset all the gen of VTDAddressSpace to zero and set the gen of
  165. * IntelIOMMUState to 1. Must be called with IOMMU lock held.
  166. */
  167. static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
  168. {
  169. VTDAddressSpace *vtd_as;
  170. VTDBus *vtd_bus;
  171. GHashTableIter bus_it;
  172. uint32_t devfn_it;
  173. trace_vtd_context_cache_reset();
  174. g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
  175. while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
  176. for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
  177. vtd_as = vtd_bus->dev_as[devfn_it];
  178. if (!vtd_as) {
  179. continue;
  180. }
  181. vtd_as->context_cache_entry.context_cache_gen = 0;
  182. }
  183. }
  184. s->context_cache_gen = 1;
  185. }
  186. /* Must be called with IOMMU lock held. */
  187. static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
  188. {
  189. assert(s->iotlb);
  190. g_hash_table_remove_all(s->iotlb);
  191. }
  192. static void vtd_reset_iotlb(IntelIOMMUState *s)
  193. {
  194. vtd_iommu_lock(s);
  195. vtd_reset_iotlb_locked(s);
  196. vtd_iommu_unlock(s);
  197. }
  198. static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
  199. uint32_t level)
  200. {
  201. return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
  202. ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
  203. }
  204. static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
  205. {
  206. return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
  207. }
  208. /* Must be called with IOMMU lock held */
  209. static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
  210. hwaddr addr)
  211. {
  212. VTDIOTLBEntry *entry;
  213. uint64_t key;
  214. int level;
  215. for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
  216. key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
  217. source_id, level);
  218. entry = g_hash_table_lookup(s->iotlb, &key);
  219. if (entry) {
  220. goto out;
  221. }
  222. }
  223. out:
  224. return entry;
  225. }
  226. /* Must be with IOMMU lock held */
  227. static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
  228. uint16_t domain_id, hwaddr addr, uint64_t slpte,
  229. uint8_t access_flags, uint32_t level)
  230. {
  231. VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
  232. uint64_t *key = g_malloc(sizeof(*key));
  233. uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
  234. trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
  235. if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
  236. trace_vtd_iotlb_reset("iotlb exceeds size limit");
  237. vtd_reset_iotlb_locked(s);
  238. }
  239. entry->gfn = gfn;
  240. entry->domain_id = domain_id;
  241. entry->slpte = slpte;
  242. entry->access_flags = access_flags;
  243. entry->mask = vtd_slpt_level_page_mask(level);
  244. *key = vtd_get_iotlb_key(gfn, source_id, level);
  245. g_hash_table_replace(s->iotlb, key, entry);
  246. }
  247. /* Given the reg addr of both the message data and address, generate an
  248. * interrupt via MSI.
  249. */
  250. static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
  251. hwaddr mesg_data_reg)
  252. {
  253. MSIMessage msi;
  254. assert(mesg_data_reg < DMAR_REG_SIZE);
  255. assert(mesg_addr_reg < DMAR_REG_SIZE);
  256. msi.address = vtd_get_long_raw(s, mesg_addr_reg);
  257. msi.data = vtd_get_long_raw(s, mesg_data_reg);
  258. trace_vtd_irq_generate(msi.address, msi.data);
  259. apic_get_class()->send_msi(&msi);
  260. }
  261. /* Generate a fault event to software via MSI if conditions are met.
  262. * Notice that the value of FSTS_REG being passed to it should be the one
  263. * before any update.
  264. */
  265. static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
  266. {
  267. if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
  268. pre_fsts & VTD_FSTS_IQE) {
  269. trace_vtd_err("There are previous interrupt conditions "
  270. "to be serviced by software, fault event "
  271. "is not generated.");
  272. return;
  273. }
  274. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
  275. if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
  276. trace_vtd_err("Interrupt Mask set, irq is not generated.");
  277. } else {
  278. vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
  279. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  280. }
  281. }
  282. /* Check if the Fault (F) field of the Fault Recording Register referenced by
  283. * @index is Set.
  284. */
  285. static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
  286. {
  287. /* Each reg is 128-bit */
  288. hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  289. addr += 8; /* Access the high 64-bit half */
  290. assert(index < DMAR_FRCD_REG_NR);
  291. return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
  292. }
  293. /* Update the PPF field of Fault Status Register.
  294. * Should be called whenever change the F field of any fault recording
  295. * registers.
  296. */
  297. static void vtd_update_fsts_ppf(IntelIOMMUState *s)
  298. {
  299. uint32_t i;
  300. uint32_t ppf_mask = 0;
  301. for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
  302. if (vtd_is_frcd_set(s, i)) {
  303. ppf_mask = VTD_FSTS_PPF;
  304. break;
  305. }
  306. }
  307. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
  308. trace_vtd_fsts_ppf(!!ppf_mask);
  309. }
  310. static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
  311. {
  312. /* Each reg is 128-bit */
  313. hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  314. addr += 8; /* Access the high 64-bit half */
  315. assert(index < DMAR_FRCD_REG_NR);
  316. vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
  317. vtd_update_fsts_ppf(s);
  318. }
  319. /* Must not update F field now, should be done later */
  320. static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
  321. uint16_t source_id, hwaddr addr,
  322. VTDFaultReason fault, bool is_write)
  323. {
  324. uint64_t hi = 0, lo;
  325. hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  326. assert(index < DMAR_FRCD_REG_NR);
  327. lo = VTD_FRCD_FI(addr);
  328. hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
  329. if (!is_write) {
  330. hi |= VTD_FRCD_T;
  331. }
  332. vtd_set_quad_raw(s, frcd_reg_addr, lo);
  333. vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
  334. trace_vtd_frr_new(index, hi, lo);
  335. }
  336. /* Try to collapse multiple pending faults from the same requester */
  337. static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
  338. {
  339. uint32_t i;
  340. uint64_t frcd_reg;
  341. hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
  342. for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
  343. frcd_reg = vtd_get_quad_raw(s, addr);
  344. if ((frcd_reg & VTD_FRCD_F) &&
  345. ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
  346. return true;
  347. }
  348. addr += 16; /* 128-bit for each */
  349. }
  350. return false;
  351. }
  352. /* Log and report an DMAR (address translation) fault to software */
  353. static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
  354. hwaddr addr, VTDFaultReason fault,
  355. bool is_write)
  356. {
  357. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  358. assert(fault < VTD_FR_MAX);
  359. if (fault == VTD_FR_RESERVED_ERR) {
  360. /* This is not a normal fault reason case. Drop it. */
  361. return;
  362. }
  363. trace_vtd_dmar_fault(source_id, fault, addr, is_write);
  364. if (fsts_reg & VTD_FSTS_PFO) {
  365. trace_vtd_err("New fault is not recorded due to "
  366. "Primary Fault Overflow.");
  367. return;
  368. }
  369. if (vtd_try_collapse_fault(s, source_id)) {
  370. trace_vtd_err("New fault is not recorded due to "
  371. "compression of faults.");
  372. return;
  373. }
  374. if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
  375. trace_vtd_err("Next Fault Recording Reg is used, "
  376. "new fault is not recorded, set PFO field.");
  377. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
  378. return;
  379. }
  380. vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
  381. if (fsts_reg & VTD_FSTS_PPF) {
  382. trace_vtd_err("There are pending faults already, "
  383. "fault event is not generated.");
  384. vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
  385. s->next_frcd_reg++;
  386. if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
  387. s->next_frcd_reg = 0;
  388. }
  389. } else {
  390. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
  391. VTD_FSTS_FRI(s->next_frcd_reg));
  392. vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
  393. s->next_frcd_reg++;
  394. if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
  395. s->next_frcd_reg = 0;
  396. }
  397. /* This case actually cause the PPF to be Set.
  398. * So generate fault event (interrupt).
  399. */
  400. vtd_generate_fault_event(s, fsts_reg);
  401. }
  402. }
  403. /* Handle Invalidation Queue Errors of queued invalidation interface error
  404. * conditions.
  405. */
  406. static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
  407. {
  408. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  409. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
  410. vtd_generate_fault_event(s, fsts_reg);
  411. }
  412. /* Set the IWC field and try to generate an invalidation completion interrupt */
  413. static void vtd_generate_completion_event(IntelIOMMUState *s)
  414. {
  415. if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
  416. trace_vtd_inv_desc_wait_irq("One pending, skip current");
  417. return;
  418. }
  419. vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
  420. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
  421. if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
  422. trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
  423. "new event not generated");
  424. return;
  425. } else {
  426. /* Generate the interrupt event */
  427. trace_vtd_inv_desc_wait_irq("Generating complete event");
  428. vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
  429. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  430. }
  431. }
  432. static inline bool vtd_root_entry_present(VTDRootEntry *root)
  433. {
  434. return root->val & VTD_ROOT_ENTRY_P;
  435. }
  436. static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
  437. VTDRootEntry *re)
  438. {
  439. dma_addr_t addr;
  440. addr = s->root + index * sizeof(*re);
  441. if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
  442. trace_vtd_re_invalid(re->rsvd, re->val);
  443. re->val = 0;
  444. return -VTD_FR_ROOT_TABLE_INV;
  445. }
  446. re->val = le64_to_cpu(re->val);
  447. return 0;
  448. }
  449. static inline bool vtd_ce_present(VTDContextEntry *context)
  450. {
  451. return context->lo & VTD_CONTEXT_ENTRY_P;
  452. }
  453. static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
  454. VTDContextEntry *ce)
  455. {
  456. dma_addr_t addr;
  457. /* we have checked that root entry is present */
  458. addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
  459. if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
  460. trace_vtd_re_invalid(root->rsvd, root->val);
  461. return -VTD_FR_CONTEXT_TABLE_INV;
  462. }
  463. ce->lo = le64_to_cpu(ce->lo);
  464. ce->hi = le64_to_cpu(ce->hi);
  465. return 0;
  466. }
  467. static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
  468. {
  469. return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
  470. }
  471. static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
  472. {
  473. return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
  474. }
  475. /* Whether the pte indicates the address of the page frame */
  476. static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
  477. {
  478. return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
  479. }
  480. /* Get the content of a spte located in @base_addr[@index] */
  481. static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
  482. {
  483. uint64_t slpte;
  484. assert(index < VTD_SL_PT_ENTRY_NR);
  485. if (dma_memory_read(&address_space_memory,
  486. base_addr + index * sizeof(slpte), &slpte,
  487. sizeof(slpte))) {
  488. slpte = (uint64_t)-1;
  489. return slpte;
  490. }
  491. slpte = le64_to_cpu(slpte);
  492. return slpte;
  493. }
  494. /* Given an iova and the level of paging structure, return the offset
  495. * of current level.
  496. */
  497. static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
  498. {
  499. return (iova >> vtd_slpt_level_shift(level)) &
  500. ((1ULL << VTD_SL_LEVEL_BITS) - 1);
  501. }
  502. /* Check Capability Register to see if the @level of page-table is supported */
  503. static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
  504. {
  505. return VTD_CAP_SAGAW_MASK & s->cap &
  506. (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
  507. }
  508. /* Get the page-table level that hardware should use for the second-level
  509. * page-table walk from the Address Width field of context-entry.
  510. */
  511. static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
  512. {
  513. return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
  514. }
  515. static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
  516. {
  517. return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
  518. }
  519. static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
  520. {
  521. return ce->lo & VTD_CONTEXT_ENTRY_TT;
  522. }
  523. /* Return true if check passed, otherwise false */
  524. static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
  525. VTDContextEntry *ce)
  526. {
  527. switch (vtd_ce_get_type(ce)) {
  528. case VTD_CONTEXT_TT_MULTI_LEVEL:
  529. /* Always supported */
  530. break;
  531. case VTD_CONTEXT_TT_DEV_IOTLB:
  532. if (!x86_iommu->dt_supported) {
  533. return false;
  534. }
  535. break;
  536. case VTD_CONTEXT_TT_PASS_THROUGH:
  537. if (!x86_iommu->pt_supported) {
  538. return false;
  539. }
  540. break;
  541. default:
  542. /* Unknwon type */
  543. return false;
  544. }
  545. return true;
  546. }
  547. static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
  548. {
  549. uint32_t ce_agaw = vtd_ce_get_agaw(ce);
  550. return 1ULL << MIN(ce_agaw, aw);
  551. }
  552. /* Return true if IOVA passes range check, otherwise false. */
  553. static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
  554. uint8_t aw)
  555. {
  556. /*
  557. * Check if @iova is above 2^X-1, where X is the minimum of MGAW
  558. * in CAP_REG and AW in context-entry.
  559. */
  560. return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
  561. }
  562. /*
  563. * Rsvd field masks for spte:
  564. * Index [1] to [4] 4k pages
  565. * Index [5] to [8] large pages
  566. */
  567. static uint64_t vtd_paging_entry_rsvd_field[9];
  568. static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
  569. {
  570. if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
  571. /* Maybe large page */
  572. return slpte & vtd_paging_entry_rsvd_field[level + 4];
  573. } else {
  574. return slpte & vtd_paging_entry_rsvd_field[level];
  575. }
  576. }
  577. /* Find the VTD address space associated with a given bus number */
  578. static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
  579. {
  580. VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
  581. if (!vtd_bus) {
  582. /*
  583. * Iterate over the registered buses to find the one which
  584. * currently hold this bus number, and update the bus_num
  585. * lookup table:
  586. */
  587. GHashTableIter iter;
  588. g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
  589. while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
  590. if (pci_bus_num(vtd_bus->bus) == bus_num) {
  591. s->vtd_as_by_bus_num[bus_num] = vtd_bus;
  592. return vtd_bus;
  593. }
  594. }
  595. }
  596. return vtd_bus;
  597. }
  598. /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
  599. * of the translation, can be used for deciding the size of large page.
  600. */
  601. static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
  602. uint64_t *slptep, uint32_t *slpte_level,
  603. bool *reads, bool *writes, uint8_t aw_bits)
  604. {
  605. dma_addr_t addr = vtd_ce_get_slpt_base(ce);
  606. uint32_t level = vtd_ce_get_level(ce);
  607. uint32_t offset;
  608. uint64_t slpte;
  609. uint64_t access_right_check;
  610. if (!vtd_iova_range_check(iova, ce, aw_bits)) {
  611. trace_vtd_err_dmar_iova_overflow(iova);
  612. return -VTD_FR_ADDR_BEYOND_MGAW;
  613. }
  614. /* FIXME: what is the Atomics request here? */
  615. access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
  616. while (true) {
  617. offset = vtd_iova_level_offset(iova, level);
  618. slpte = vtd_get_slpte(addr, offset);
  619. if (slpte == (uint64_t)-1) {
  620. trace_vtd_err_dmar_slpte_read_error(iova, level);
  621. if (level == vtd_ce_get_level(ce)) {
  622. /* Invalid programming of context-entry */
  623. return -VTD_FR_CONTEXT_ENTRY_INV;
  624. } else {
  625. return -VTD_FR_PAGING_ENTRY_INV;
  626. }
  627. }
  628. *reads = (*reads) && (slpte & VTD_SL_R);
  629. *writes = (*writes) && (slpte & VTD_SL_W);
  630. if (!(slpte & access_right_check)) {
  631. trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
  632. return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
  633. }
  634. if (vtd_slpte_nonzero_rsvd(slpte, level)) {
  635. trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
  636. return -VTD_FR_PAGING_ENTRY_RSVD;
  637. }
  638. if (vtd_is_last_slpte(slpte, level)) {
  639. *slptep = slpte;
  640. *slpte_level = level;
  641. return 0;
  642. }
  643. addr = vtd_get_slpte_addr(slpte, aw_bits);
  644. level--;
  645. }
  646. }
  647. typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
  648. /**
  649. * Constant information used during page walking
  650. *
  651. * @hook_fn: hook func to be called when detected page
  652. * @private: private data to be passed into hook func
  653. * @notify_unmap: whether we should notify invalid entries
  654. * @as: VT-d address space of the device
  655. * @aw: maximum address width
  656. * @domain: domain ID of the page walk
  657. */
  658. typedef struct {
  659. VTDAddressSpace *as;
  660. vtd_page_walk_hook hook_fn;
  661. void *private;
  662. bool notify_unmap;
  663. uint8_t aw;
  664. uint16_t domain_id;
  665. } vtd_page_walk_info;
  666. static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
  667. {
  668. VTDAddressSpace *as = info->as;
  669. vtd_page_walk_hook hook_fn = info->hook_fn;
  670. void *private = info->private;
  671. DMAMap target = {
  672. .iova = entry->iova,
  673. .size = entry->addr_mask,
  674. .translated_addr = entry->translated_addr,
  675. .perm = entry->perm,
  676. };
  677. DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
  678. if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
  679. trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
  680. return 0;
  681. }
  682. assert(hook_fn);
  683. /* Update local IOVA mapped ranges */
  684. if (entry->perm) {
  685. if (mapped) {
  686. /* If it's exactly the same translation, skip */
  687. if (!memcmp(mapped, &target, sizeof(target))) {
  688. trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
  689. entry->translated_addr);
  690. return 0;
  691. } else {
  692. /*
  693. * Translation changed. Normally this should not
  694. * happen, but it can happen when with buggy guest
  695. * OSes. Note that there will be a small window that
  696. * we don't have map at all. But that's the best
  697. * effort we can do. The ideal way to emulate this is
  698. * atomically modify the PTE to follow what has
  699. * changed, but we can't. One example is that vfio
  700. * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
  701. * interface to modify a mapping (meanwhile it seems
  702. * meaningless to even provide one). Anyway, let's
  703. * mark this as a TODO in case one day we'll have
  704. * a better solution.
  705. */
  706. IOMMUAccessFlags cache_perm = entry->perm;
  707. int ret;
  708. /* Emulate an UNMAP */
  709. entry->perm = IOMMU_NONE;
  710. trace_vtd_page_walk_one(info->domain_id,
  711. entry->iova,
  712. entry->translated_addr,
  713. entry->addr_mask,
  714. entry->perm);
  715. ret = hook_fn(entry, private);
  716. if (ret) {
  717. return ret;
  718. }
  719. /* Drop any existing mapping */
  720. iova_tree_remove(as->iova_tree, &target);
  721. /* Recover the correct permission */
  722. entry->perm = cache_perm;
  723. }
  724. }
  725. iova_tree_insert(as->iova_tree, &target);
  726. } else {
  727. if (!mapped) {
  728. /* Skip since we didn't map this range at all */
  729. trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
  730. return 0;
  731. }
  732. iova_tree_remove(as->iova_tree, &target);
  733. }
  734. trace_vtd_page_walk_one(info->domain_id, entry->iova,
  735. entry->translated_addr, entry->addr_mask,
  736. entry->perm);
  737. return hook_fn(entry, private);
  738. }
  739. /**
  740. * vtd_page_walk_level - walk over specific level for IOVA range
  741. *
  742. * @addr: base GPA addr to start the walk
  743. * @start: IOVA range start address
  744. * @end: IOVA range end address (start <= addr < end)
  745. * @read: whether parent level has read permission
  746. * @write: whether parent level has write permission
  747. * @info: constant information for the page walk
  748. */
  749. static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
  750. uint64_t end, uint32_t level, bool read,
  751. bool write, vtd_page_walk_info *info)
  752. {
  753. bool read_cur, write_cur, entry_valid;
  754. uint32_t offset;
  755. uint64_t slpte;
  756. uint64_t subpage_size, subpage_mask;
  757. IOMMUTLBEntry entry;
  758. uint64_t iova = start;
  759. uint64_t iova_next;
  760. int ret = 0;
  761. trace_vtd_page_walk_level(addr, level, start, end);
  762. subpage_size = 1ULL << vtd_slpt_level_shift(level);
  763. subpage_mask = vtd_slpt_level_page_mask(level);
  764. while (iova < end) {
  765. iova_next = (iova & subpage_mask) + subpage_size;
  766. offset = vtd_iova_level_offset(iova, level);
  767. slpte = vtd_get_slpte(addr, offset);
  768. if (slpte == (uint64_t)-1) {
  769. trace_vtd_page_walk_skip_read(iova, iova_next);
  770. goto next;
  771. }
  772. if (vtd_slpte_nonzero_rsvd(slpte, level)) {
  773. trace_vtd_page_walk_skip_reserve(iova, iova_next);
  774. goto next;
  775. }
  776. /* Permissions are stacked with parents' */
  777. read_cur = read && (slpte & VTD_SL_R);
  778. write_cur = write && (slpte & VTD_SL_W);
  779. /*
  780. * As long as we have either read/write permission, this is a
  781. * valid entry. The rule works for both page entries and page
  782. * table entries.
  783. */
  784. entry_valid = read_cur | write_cur;
  785. if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
  786. /*
  787. * This is a valid PDE (or even bigger than PDE). We need
  788. * to walk one further level.
  789. */
  790. ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
  791. iova, MIN(iova_next, end), level - 1,
  792. read_cur, write_cur, info);
  793. } else {
  794. /*
  795. * This means we are either:
  796. *
  797. * (1) the real page entry (either 4K page, or huge page)
  798. * (2) the whole range is invalid
  799. *
  800. * In either case, we send an IOTLB notification down.
  801. */
  802. entry.target_as = &address_space_memory;
  803. entry.iova = iova & subpage_mask;
  804. entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
  805. entry.addr_mask = ~subpage_mask;
  806. /* NOTE: this is only meaningful if entry_valid == true */
  807. entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
  808. ret = vtd_page_walk_one(&entry, info);
  809. }
  810. if (ret < 0) {
  811. return ret;
  812. }
  813. next:
  814. iova = iova_next;
  815. }
  816. return 0;
  817. }
  818. /**
  819. * vtd_page_walk - walk specific IOVA range, and call the hook
  820. *
  821. * @ce: context entry to walk upon
  822. * @start: IOVA address to start the walk
  823. * @end: IOVA range end address (start <= addr < end)
  824. * @info: page walking information struct
  825. */
  826. static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
  827. vtd_page_walk_info *info)
  828. {
  829. dma_addr_t addr = vtd_ce_get_slpt_base(ce);
  830. uint32_t level = vtd_ce_get_level(ce);
  831. if (!vtd_iova_range_check(start, ce, info->aw)) {
  832. return -VTD_FR_ADDR_BEYOND_MGAW;
  833. }
  834. if (!vtd_iova_range_check(end, ce, info->aw)) {
  835. /* Fix end so that it reaches the maximum */
  836. end = vtd_iova_limit(ce, info->aw);
  837. }
  838. return vtd_page_walk_level(addr, start, end, level, true, true, info);
  839. }
  840. /* Map a device to its corresponding domain (context-entry) */
  841. static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
  842. uint8_t devfn, VTDContextEntry *ce)
  843. {
  844. VTDRootEntry re;
  845. int ret_fr;
  846. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  847. ret_fr = vtd_get_root_entry(s, bus_num, &re);
  848. if (ret_fr) {
  849. return ret_fr;
  850. }
  851. if (!vtd_root_entry_present(&re)) {
  852. /* Not error - it's okay we don't have root entry. */
  853. trace_vtd_re_not_present(bus_num);
  854. return -VTD_FR_ROOT_ENTRY_P;
  855. }
  856. if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
  857. trace_vtd_re_invalid(re.rsvd, re.val);
  858. return -VTD_FR_ROOT_ENTRY_RSVD;
  859. }
  860. ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
  861. if (ret_fr) {
  862. return ret_fr;
  863. }
  864. if (!vtd_ce_present(ce)) {
  865. /* Not error - it's okay we don't have context entry. */
  866. trace_vtd_ce_not_present(bus_num, devfn);
  867. return -VTD_FR_CONTEXT_ENTRY_P;
  868. }
  869. if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
  870. (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
  871. trace_vtd_ce_invalid(ce->hi, ce->lo);
  872. return -VTD_FR_CONTEXT_ENTRY_RSVD;
  873. }
  874. /* Check if the programming of context-entry is valid */
  875. if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
  876. trace_vtd_ce_invalid(ce->hi, ce->lo);
  877. return -VTD_FR_CONTEXT_ENTRY_INV;
  878. }
  879. /* Do translation type check */
  880. if (!vtd_ce_type_check(x86_iommu, ce)) {
  881. trace_vtd_ce_invalid(ce->hi, ce->lo);
  882. return -VTD_FR_CONTEXT_ENTRY_INV;
  883. }
  884. return 0;
  885. }
  886. static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
  887. void *private)
  888. {
  889. memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
  890. return 0;
  891. }
  892. /* If context entry is NULL, we'll try to fetch it on our own. */
  893. static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
  894. VTDContextEntry *ce,
  895. hwaddr addr, hwaddr size)
  896. {
  897. IntelIOMMUState *s = vtd_as->iommu_state;
  898. vtd_page_walk_info info = {
  899. .hook_fn = vtd_sync_shadow_page_hook,
  900. .private = (void *)&vtd_as->iommu,
  901. .notify_unmap = true,
  902. .aw = s->aw_bits,
  903. .as = vtd_as,
  904. };
  905. VTDContextEntry ce_cache;
  906. int ret;
  907. if (ce) {
  908. /* If the caller provided context entry, use it */
  909. ce_cache = *ce;
  910. } else {
  911. /* If the caller didn't provide ce, try to fetch */
  912. ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
  913. vtd_as->devfn, &ce_cache);
  914. if (ret) {
  915. /*
  916. * This should not really happen, but in case it happens,
  917. * we just skip the sync for this time. After all we even
  918. * don't have the root table pointer!
  919. */
  920. trace_vtd_err("Detected invalid context entry when "
  921. "trying to sync shadow page table");
  922. return 0;
  923. }
  924. }
  925. info.domain_id = VTD_CONTEXT_ENTRY_DID(ce_cache.hi);
  926. return vtd_page_walk(&ce_cache, addr, addr + size, &info);
  927. }
  928. static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
  929. {
  930. return vtd_sync_shadow_page_table_range(vtd_as, NULL, 0, UINT64_MAX);
  931. }
  932. /*
  933. * Fetch translation type for specific device. Returns <0 if error
  934. * happens, otherwise return the shifted type to check against
  935. * VTD_CONTEXT_TT_*.
  936. */
  937. static int vtd_dev_get_trans_type(VTDAddressSpace *as)
  938. {
  939. IntelIOMMUState *s;
  940. VTDContextEntry ce;
  941. int ret;
  942. s = as->iommu_state;
  943. ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
  944. as->devfn, &ce);
  945. if (ret) {
  946. return ret;
  947. }
  948. return vtd_ce_get_type(&ce);
  949. }
  950. static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
  951. {
  952. int ret;
  953. assert(as);
  954. ret = vtd_dev_get_trans_type(as);
  955. if (ret < 0) {
  956. /*
  957. * Possibly failed to parse the context entry for some reason
  958. * (e.g., during init, or any guest configuration errors on
  959. * context entries). We should assume PT not enabled for
  960. * safety.
  961. */
  962. return false;
  963. }
  964. return ret == VTD_CONTEXT_TT_PASS_THROUGH;
  965. }
  966. /* Return whether the device is using IOMMU translation. */
  967. static bool vtd_switch_address_space(VTDAddressSpace *as)
  968. {
  969. bool use_iommu;
  970. /* Whether we need to take the BQL on our own */
  971. bool take_bql = !qemu_mutex_iothread_locked();
  972. assert(as);
  973. use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
  974. trace_vtd_switch_address_space(pci_bus_num(as->bus),
  975. VTD_PCI_SLOT(as->devfn),
  976. VTD_PCI_FUNC(as->devfn),
  977. use_iommu);
  978. /*
  979. * It's possible that we reach here without BQL, e.g., when called
  980. * from vtd_pt_enable_fast_path(). However the memory APIs need
  981. * it. We'd better make sure we have had it already, or, take it.
  982. */
  983. if (take_bql) {
  984. qemu_mutex_lock_iothread();
  985. }
  986. /* Turn off first then on the other */
  987. if (use_iommu) {
  988. memory_region_set_enabled(&as->sys_alias, false);
  989. memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
  990. } else {
  991. memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
  992. memory_region_set_enabled(&as->sys_alias, true);
  993. }
  994. if (take_bql) {
  995. qemu_mutex_unlock_iothread();
  996. }
  997. return use_iommu;
  998. }
  999. static void vtd_switch_address_space_all(IntelIOMMUState *s)
  1000. {
  1001. GHashTableIter iter;
  1002. VTDBus *vtd_bus;
  1003. int i;
  1004. g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
  1005. while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
  1006. for (i = 0; i < PCI_DEVFN_MAX; i++) {
  1007. if (!vtd_bus->dev_as[i]) {
  1008. continue;
  1009. }
  1010. vtd_switch_address_space(vtd_bus->dev_as[i]);
  1011. }
  1012. }
  1013. }
  1014. static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
  1015. {
  1016. return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
  1017. }
  1018. static const bool vtd_qualified_faults[] = {
  1019. [VTD_FR_RESERVED] = false,
  1020. [VTD_FR_ROOT_ENTRY_P] = false,
  1021. [VTD_FR_CONTEXT_ENTRY_P] = true,
  1022. [VTD_FR_CONTEXT_ENTRY_INV] = true,
  1023. [VTD_FR_ADDR_BEYOND_MGAW] = true,
  1024. [VTD_FR_WRITE] = true,
  1025. [VTD_FR_READ] = true,
  1026. [VTD_FR_PAGING_ENTRY_INV] = true,
  1027. [VTD_FR_ROOT_TABLE_INV] = false,
  1028. [VTD_FR_CONTEXT_TABLE_INV] = false,
  1029. [VTD_FR_ROOT_ENTRY_RSVD] = false,
  1030. [VTD_FR_PAGING_ENTRY_RSVD] = true,
  1031. [VTD_FR_CONTEXT_ENTRY_TT] = true,
  1032. [VTD_FR_RESERVED_ERR] = false,
  1033. [VTD_FR_MAX] = false,
  1034. };
  1035. /* To see if a fault condition is "qualified", which is reported to software
  1036. * only if the FPD field in the context-entry used to process the faulting
  1037. * request is 0.
  1038. */
  1039. static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
  1040. {
  1041. return vtd_qualified_faults[fault];
  1042. }
  1043. static inline bool vtd_is_interrupt_addr(hwaddr addr)
  1044. {
  1045. return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
  1046. }
  1047. static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
  1048. {
  1049. VTDBus *vtd_bus;
  1050. VTDAddressSpace *vtd_as;
  1051. bool success = false;
  1052. vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
  1053. if (!vtd_bus) {
  1054. goto out;
  1055. }
  1056. vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
  1057. if (!vtd_as) {
  1058. goto out;
  1059. }
  1060. if (vtd_switch_address_space(vtd_as) == false) {
  1061. /* We switched off IOMMU region successfully. */
  1062. success = true;
  1063. }
  1064. out:
  1065. trace_vtd_pt_enable_fast_path(source_id, success);
  1066. }
  1067. /* Map dev to context-entry then do a paging-structures walk to do a iommu
  1068. * translation.
  1069. *
  1070. * Called from RCU critical section.
  1071. *
  1072. * @bus_num: The bus number
  1073. * @devfn: The devfn, which is the combined of device and function number
  1074. * @is_write: The access is a write operation
  1075. * @entry: IOMMUTLBEntry that contain the addr to be translated and result
  1076. *
  1077. * Returns true if translation is successful, otherwise false.
  1078. */
  1079. static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
  1080. uint8_t devfn, hwaddr addr, bool is_write,
  1081. IOMMUTLBEntry *entry)
  1082. {
  1083. IntelIOMMUState *s = vtd_as->iommu_state;
  1084. VTDContextEntry ce;
  1085. uint8_t bus_num = pci_bus_num(bus);
  1086. VTDContextCacheEntry *cc_entry;
  1087. uint64_t slpte, page_mask;
  1088. uint32_t level;
  1089. uint16_t source_id = vtd_make_source_id(bus_num, devfn);
  1090. int ret_fr;
  1091. bool is_fpd_set = false;
  1092. bool reads = true;
  1093. bool writes = true;
  1094. uint8_t access_flags;
  1095. VTDIOTLBEntry *iotlb_entry;
  1096. /*
  1097. * We have standalone memory region for interrupt addresses, we
  1098. * should never receive translation requests in this region.
  1099. */
  1100. assert(!vtd_is_interrupt_addr(addr));
  1101. vtd_iommu_lock(s);
  1102. cc_entry = &vtd_as->context_cache_entry;
  1103. /* Try to fetch slpte form IOTLB */
  1104. iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
  1105. if (iotlb_entry) {
  1106. trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
  1107. iotlb_entry->domain_id);
  1108. slpte = iotlb_entry->slpte;
  1109. access_flags = iotlb_entry->access_flags;
  1110. page_mask = iotlb_entry->mask;
  1111. goto out;
  1112. }
  1113. /* Try to fetch context-entry from cache first */
  1114. if (cc_entry->context_cache_gen == s->context_cache_gen) {
  1115. trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
  1116. cc_entry->context_entry.lo,
  1117. cc_entry->context_cache_gen);
  1118. ce = cc_entry->context_entry;
  1119. is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
  1120. } else {
  1121. ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
  1122. is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
  1123. if (ret_fr) {
  1124. ret_fr = -ret_fr;
  1125. if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
  1126. trace_vtd_fault_disabled();
  1127. } else {
  1128. vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
  1129. }
  1130. goto error;
  1131. }
  1132. /* Update context-cache */
  1133. trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
  1134. cc_entry->context_cache_gen,
  1135. s->context_cache_gen);
  1136. cc_entry->context_entry = ce;
  1137. cc_entry->context_cache_gen = s->context_cache_gen;
  1138. }
  1139. /*
  1140. * We don't need to translate for pass-through context entries.
  1141. * Also, let's ignore IOTLB caching as well for PT devices.
  1142. */
  1143. if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
  1144. entry->iova = addr & VTD_PAGE_MASK_4K;
  1145. entry->translated_addr = entry->iova;
  1146. entry->addr_mask = ~VTD_PAGE_MASK_4K;
  1147. entry->perm = IOMMU_RW;
  1148. trace_vtd_translate_pt(source_id, entry->iova);
  1149. /*
  1150. * When this happens, it means firstly caching-mode is not
  1151. * enabled, and this is the first passthrough translation for
  1152. * the device. Let's enable the fast path for passthrough.
  1153. *
  1154. * When passthrough is disabled again for the device, we can
  1155. * capture it via the context entry invalidation, then the
  1156. * IOMMU region can be swapped back.
  1157. */
  1158. vtd_pt_enable_fast_path(s, source_id);
  1159. vtd_iommu_unlock(s);
  1160. return true;
  1161. }
  1162. ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
  1163. &reads, &writes, s->aw_bits);
  1164. if (ret_fr) {
  1165. ret_fr = -ret_fr;
  1166. if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
  1167. trace_vtd_fault_disabled();
  1168. } else {
  1169. vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
  1170. }
  1171. goto error;
  1172. }
  1173. page_mask = vtd_slpt_level_page_mask(level);
  1174. access_flags = IOMMU_ACCESS_FLAG(reads, writes);
  1175. vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
  1176. access_flags, level);
  1177. out:
  1178. vtd_iommu_unlock(s);
  1179. entry->iova = addr & page_mask;
  1180. entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
  1181. entry->addr_mask = ~page_mask;
  1182. entry->perm = access_flags;
  1183. return true;
  1184. error:
  1185. vtd_iommu_unlock(s);
  1186. entry->iova = 0;
  1187. entry->translated_addr = 0;
  1188. entry->addr_mask = 0;
  1189. entry->perm = IOMMU_NONE;
  1190. return false;
  1191. }
  1192. static void vtd_root_table_setup(IntelIOMMUState *s)
  1193. {
  1194. s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
  1195. s->root_extended = s->root & VTD_RTADDR_RTT;
  1196. s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
  1197. trace_vtd_reg_dmar_root(s->root, s->root_extended);
  1198. }
  1199. static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
  1200. uint32_t index, uint32_t mask)
  1201. {
  1202. x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
  1203. }
  1204. static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
  1205. {
  1206. uint64_t value = 0;
  1207. value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
  1208. s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
  1209. s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
  1210. s->intr_eime = value & VTD_IRTA_EIME;
  1211. /* Notify global invalidation */
  1212. vtd_iec_notify_all(s, true, 0, 0);
  1213. trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
  1214. }
  1215. static void vtd_iommu_replay_all(IntelIOMMUState *s)
  1216. {
  1217. VTDAddressSpace *vtd_as;
  1218. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  1219. vtd_sync_shadow_page_table(vtd_as);
  1220. }
  1221. }
  1222. static void vtd_context_global_invalidate(IntelIOMMUState *s)
  1223. {
  1224. trace_vtd_inv_desc_cc_global();
  1225. /* Protects context cache */
  1226. vtd_iommu_lock(s);
  1227. s->context_cache_gen++;
  1228. if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
  1229. vtd_reset_context_cache_locked(s);
  1230. }
  1231. vtd_iommu_unlock(s);
  1232. vtd_switch_address_space_all(s);
  1233. /*
  1234. * From VT-d spec 6.5.2.1, a global context entry invalidation
  1235. * should be followed by a IOTLB global invalidation, so we should
  1236. * be safe even without this. Hoewever, let's replay the region as
  1237. * well to be safer, and go back here when we need finer tunes for
  1238. * VT-d emulation codes.
  1239. */
  1240. vtd_iommu_replay_all(s);
  1241. }
  1242. /* Do a context-cache device-selective invalidation.
  1243. * @func_mask: FM field after shifting
  1244. */
  1245. static void vtd_context_device_invalidate(IntelIOMMUState *s,
  1246. uint16_t source_id,
  1247. uint16_t func_mask)
  1248. {
  1249. uint16_t mask;
  1250. VTDBus *vtd_bus;
  1251. VTDAddressSpace *vtd_as;
  1252. uint8_t bus_n, devfn;
  1253. uint16_t devfn_it;
  1254. trace_vtd_inv_desc_cc_devices(source_id, func_mask);
  1255. switch (func_mask & 3) {
  1256. case 0:
  1257. mask = 0; /* No bits in the SID field masked */
  1258. break;
  1259. case 1:
  1260. mask = 4; /* Mask bit 2 in the SID field */
  1261. break;
  1262. case 2:
  1263. mask = 6; /* Mask bit 2:1 in the SID field */
  1264. break;
  1265. case 3:
  1266. mask = 7; /* Mask bit 2:0 in the SID field */
  1267. break;
  1268. }
  1269. mask = ~mask;
  1270. bus_n = VTD_SID_TO_BUS(source_id);
  1271. vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
  1272. if (vtd_bus) {
  1273. devfn = VTD_SID_TO_DEVFN(source_id);
  1274. for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
  1275. vtd_as = vtd_bus->dev_as[devfn_it];
  1276. if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
  1277. trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
  1278. VTD_PCI_FUNC(devfn_it));
  1279. vtd_iommu_lock(s);
  1280. vtd_as->context_cache_entry.context_cache_gen = 0;
  1281. vtd_iommu_unlock(s);
  1282. /*
  1283. * Do switch address space when needed, in case if the
  1284. * device passthrough bit is switched.
  1285. */
  1286. vtd_switch_address_space(vtd_as);
  1287. /*
  1288. * So a device is moving out of (or moving into) a
  1289. * domain, resync the shadow page table.
  1290. * This won't bring bad even if we have no such
  1291. * notifier registered - the IOMMU notification
  1292. * framework will skip MAP notifications if that
  1293. * happened.
  1294. */
  1295. vtd_sync_shadow_page_table(vtd_as);
  1296. }
  1297. }
  1298. }
  1299. }
  1300. /* Context-cache invalidation
  1301. * Returns the Context Actual Invalidation Granularity.
  1302. * @val: the content of the CCMD_REG
  1303. */
  1304. static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
  1305. {
  1306. uint64_t caig;
  1307. uint64_t type = val & VTD_CCMD_CIRG_MASK;
  1308. switch (type) {
  1309. case VTD_CCMD_DOMAIN_INVL:
  1310. /* Fall through */
  1311. case VTD_CCMD_GLOBAL_INVL:
  1312. caig = VTD_CCMD_GLOBAL_INVL_A;
  1313. vtd_context_global_invalidate(s);
  1314. break;
  1315. case VTD_CCMD_DEVICE_INVL:
  1316. caig = VTD_CCMD_DEVICE_INVL_A;
  1317. vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
  1318. break;
  1319. default:
  1320. trace_vtd_err("Context cache invalidate type error.");
  1321. caig = 0;
  1322. }
  1323. return caig;
  1324. }
  1325. static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
  1326. {
  1327. trace_vtd_inv_desc_iotlb_global();
  1328. vtd_reset_iotlb(s);
  1329. vtd_iommu_replay_all(s);
  1330. }
  1331. static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
  1332. {
  1333. VTDContextEntry ce;
  1334. VTDAddressSpace *vtd_as;
  1335. trace_vtd_inv_desc_iotlb_domain(domain_id);
  1336. vtd_iommu_lock(s);
  1337. g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
  1338. &domain_id);
  1339. vtd_iommu_unlock(s);
  1340. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  1341. if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
  1342. vtd_as->devfn, &ce) &&
  1343. domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
  1344. vtd_sync_shadow_page_table(vtd_as);
  1345. }
  1346. }
  1347. }
  1348. static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
  1349. uint16_t domain_id, hwaddr addr,
  1350. uint8_t am)
  1351. {
  1352. VTDAddressSpace *vtd_as;
  1353. VTDContextEntry ce;
  1354. int ret;
  1355. hwaddr size = (1 << am) * VTD_PAGE_SIZE;
  1356. QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
  1357. ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
  1358. vtd_as->devfn, &ce);
  1359. if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
  1360. if (vtd_as_has_map_notifier(vtd_as)) {
  1361. /*
  1362. * As long as we have MAP notifications registered in
  1363. * any of our IOMMU notifiers, we need to sync the
  1364. * shadow page table.
  1365. */
  1366. vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
  1367. } else {
  1368. /*
  1369. * For UNMAP-only notifiers, we don't need to walk the
  1370. * page tables. We just deliver the PSI down to
  1371. * invalidate caches.
  1372. */
  1373. IOMMUTLBEntry entry = {
  1374. .target_as = &address_space_memory,
  1375. .iova = addr,
  1376. .translated_addr = 0,
  1377. .addr_mask = size - 1,
  1378. .perm = IOMMU_NONE,
  1379. };
  1380. memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
  1381. }
  1382. }
  1383. }
  1384. }
  1385. static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
  1386. hwaddr addr, uint8_t am)
  1387. {
  1388. VTDIOTLBPageInvInfo info;
  1389. trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
  1390. assert(am <= VTD_MAMV);
  1391. info.domain_id = domain_id;
  1392. info.addr = addr;
  1393. info.mask = ~((1 << am) - 1);
  1394. vtd_iommu_lock(s);
  1395. g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
  1396. vtd_iommu_unlock(s);
  1397. vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
  1398. }
  1399. /* Flush IOTLB
  1400. * Returns the IOTLB Actual Invalidation Granularity.
  1401. * @val: the content of the IOTLB_REG
  1402. */
  1403. static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
  1404. {
  1405. uint64_t iaig;
  1406. uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
  1407. uint16_t domain_id;
  1408. hwaddr addr;
  1409. uint8_t am;
  1410. switch (type) {
  1411. case VTD_TLB_GLOBAL_FLUSH:
  1412. iaig = VTD_TLB_GLOBAL_FLUSH_A;
  1413. vtd_iotlb_global_invalidate(s);
  1414. break;
  1415. case VTD_TLB_DSI_FLUSH:
  1416. domain_id = VTD_TLB_DID(val);
  1417. iaig = VTD_TLB_DSI_FLUSH_A;
  1418. vtd_iotlb_domain_invalidate(s, domain_id);
  1419. break;
  1420. case VTD_TLB_PSI_FLUSH:
  1421. domain_id = VTD_TLB_DID(val);
  1422. addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
  1423. am = VTD_IVA_AM(addr);
  1424. addr = VTD_IVA_ADDR(addr);
  1425. if (am > VTD_MAMV) {
  1426. trace_vtd_err("IOTLB PSI flush: address mask overflow.");
  1427. iaig = 0;
  1428. break;
  1429. }
  1430. iaig = VTD_TLB_PSI_FLUSH_A;
  1431. vtd_iotlb_page_invalidate(s, domain_id, addr, am);
  1432. break;
  1433. default:
  1434. trace_vtd_err("IOTLB flush: invalid granularity.");
  1435. iaig = 0;
  1436. }
  1437. return iaig;
  1438. }
  1439. static void vtd_fetch_inv_desc(IntelIOMMUState *s);
  1440. static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
  1441. {
  1442. return s->qi_enabled && (s->iq_tail == s->iq_head) &&
  1443. (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
  1444. }
  1445. static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
  1446. {
  1447. uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
  1448. trace_vtd_inv_qi_enable(en);
  1449. if (en) {
  1450. s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
  1451. /* 2^(x+8) entries */
  1452. s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
  1453. s->qi_enabled = true;
  1454. trace_vtd_inv_qi_setup(s->iq, s->iq_size);
  1455. /* Ok - report back to driver */
  1456. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
  1457. if (s->iq_tail != 0) {
  1458. /*
  1459. * This is a spec violation but Windows guests are known to set up
  1460. * Queued Invalidation this way so we allow the write and process
  1461. * Invalidation Descriptors right away.
  1462. */
  1463. trace_vtd_warn_invalid_qi_tail(s->iq_tail);
  1464. if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
  1465. vtd_fetch_inv_desc(s);
  1466. }
  1467. }
  1468. } else {
  1469. if (vtd_queued_inv_disable_check(s)) {
  1470. /* disable Queued Invalidation */
  1471. vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
  1472. s->iq_head = 0;
  1473. s->qi_enabled = false;
  1474. /* Ok - report back to driver */
  1475. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
  1476. } else {
  1477. trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
  1478. }
  1479. }
  1480. }
  1481. /* Set Root Table Pointer */
  1482. static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
  1483. {
  1484. vtd_root_table_setup(s);
  1485. /* Ok - report back to driver */
  1486. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
  1487. }
  1488. /* Set Interrupt Remap Table Pointer */
  1489. static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
  1490. {
  1491. vtd_interrupt_remap_table_setup(s);
  1492. /* Ok - report back to driver */
  1493. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
  1494. }
  1495. /* Handle Translation Enable/Disable */
  1496. static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
  1497. {
  1498. if (s->dmar_enabled == en) {
  1499. return;
  1500. }
  1501. trace_vtd_dmar_enable(en);
  1502. if (en) {
  1503. s->dmar_enabled = true;
  1504. /* Ok - report back to driver */
  1505. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
  1506. } else {
  1507. s->dmar_enabled = false;
  1508. /* Clear the index of Fault Recording Register */
  1509. s->next_frcd_reg = 0;
  1510. /* Ok - report back to driver */
  1511. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
  1512. }
  1513. vtd_switch_address_space_all(s);
  1514. }
  1515. /* Handle Interrupt Remap Enable/Disable */
  1516. static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
  1517. {
  1518. trace_vtd_ir_enable(en);
  1519. if (en) {
  1520. s->intr_enabled = true;
  1521. /* Ok - report back to driver */
  1522. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
  1523. } else {
  1524. s->intr_enabled = false;
  1525. /* Ok - report back to driver */
  1526. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
  1527. }
  1528. }
  1529. /* Handle write to Global Command Register */
  1530. static void vtd_handle_gcmd_write(IntelIOMMUState *s)
  1531. {
  1532. uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
  1533. uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
  1534. uint32_t changed = status ^ val;
  1535. trace_vtd_reg_write_gcmd(status, val);
  1536. if (changed & VTD_GCMD_TE) {
  1537. /* Translation enable/disable */
  1538. vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
  1539. }
  1540. if (val & VTD_GCMD_SRTP) {
  1541. /* Set/update the root-table pointer */
  1542. vtd_handle_gcmd_srtp(s);
  1543. }
  1544. if (changed & VTD_GCMD_QIE) {
  1545. /* Queued Invalidation Enable */
  1546. vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
  1547. }
  1548. if (val & VTD_GCMD_SIRTP) {
  1549. /* Set/update the interrupt remapping root-table pointer */
  1550. vtd_handle_gcmd_sirtp(s);
  1551. }
  1552. if (changed & VTD_GCMD_IRE) {
  1553. /* Interrupt remap enable/disable */
  1554. vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
  1555. }
  1556. }
  1557. /* Handle write to Context Command Register */
  1558. static void vtd_handle_ccmd_write(IntelIOMMUState *s)
  1559. {
  1560. uint64_t ret;
  1561. uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
  1562. /* Context-cache invalidation request */
  1563. if (val & VTD_CCMD_ICC) {
  1564. if (s->qi_enabled) {
  1565. trace_vtd_err("Queued Invalidation enabled, "
  1566. "should not use register-based invalidation");
  1567. return;
  1568. }
  1569. ret = vtd_context_cache_invalidate(s, val);
  1570. /* Invalidation completed. Change something to show */
  1571. vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
  1572. ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
  1573. ret);
  1574. }
  1575. }
  1576. /* Handle write to IOTLB Invalidation Register */
  1577. static void vtd_handle_iotlb_write(IntelIOMMUState *s)
  1578. {
  1579. uint64_t ret;
  1580. uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
  1581. /* IOTLB invalidation request */
  1582. if (val & VTD_TLB_IVT) {
  1583. if (s->qi_enabled) {
  1584. trace_vtd_err("Queued Invalidation enabled, "
  1585. "should not use register-based invalidation.");
  1586. return;
  1587. }
  1588. ret = vtd_iotlb_flush(s, val);
  1589. /* Invalidation completed. Change something to show */
  1590. vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
  1591. ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
  1592. VTD_TLB_FLUSH_GRANU_MASK_A, ret);
  1593. }
  1594. }
  1595. /* Fetch an Invalidation Descriptor from the Invalidation Queue */
  1596. static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
  1597. VTDInvDesc *inv_desc)
  1598. {
  1599. dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
  1600. if (dma_memory_read(&address_space_memory, addr, inv_desc,
  1601. sizeof(*inv_desc))) {
  1602. trace_vtd_err("Read INV DESC failed.");
  1603. inv_desc->lo = 0;
  1604. inv_desc->hi = 0;
  1605. return false;
  1606. }
  1607. inv_desc->lo = le64_to_cpu(inv_desc->lo);
  1608. inv_desc->hi = le64_to_cpu(inv_desc->hi);
  1609. return true;
  1610. }
  1611. static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
  1612. {
  1613. if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
  1614. (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
  1615. trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
  1616. return false;
  1617. }
  1618. if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
  1619. /* Status Write */
  1620. uint32_t status_data = (uint32_t)(inv_desc->lo >>
  1621. VTD_INV_DESC_WAIT_DATA_SHIFT);
  1622. assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
  1623. /* FIXME: need to be masked with HAW? */
  1624. dma_addr_t status_addr = inv_desc->hi;
  1625. trace_vtd_inv_desc_wait_sw(status_addr, status_data);
  1626. status_data = cpu_to_le32(status_data);
  1627. if (dma_memory_write(&address_space_memory, status_addr, &status_data,
  1628. sizeof(status_data))) {
  1629. trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
  1630. return false;
  1631. }
  1632. } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
  1633. /* Interrupt flag */
  1634. vtd_generate_completion_event(s);
  1635. } else {
  1636. trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
  1637. return false;
  1638. }
  1639. return true;
  1640. }
  1641. static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
  1642. VTDInvDesc *inv_desc)
  1643. {
  1644. uint16_t sid, fmask;
  1645. if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
  1646. trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
  1647. return false;
  1648. }
  1649. switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
  1650. case VTD_INV_DESC_CC_DOMAIN:
  1651. trace_vtd_inv_desc_cc_domain(
  1652. (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
  1653. /* Fall through */
  1654. case VTD_INV_DESC_CC_GLOBAL:
  1655. vtd_context_global_invalidate(s);
  1656. break;
  1657. case VTD_INV_DESC_CC_DEVICE:
  1658. sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
  1659. fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
  1660. vtd_context_device_invalidate(s, sid, fmask);
  1661. break;
  1662. default:
  1663. trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
  1664. return false;
  1665. }
  1666. return true;
  1667. }
  1668. static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
  1669. {
  1670. uint16_t domain_id;
  1671. uint8_t am;
  1672. hwaddr addr;
  1673. if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
  1674. (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
  1675. trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
  1676. return false;
  1677. }
  1678. switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
  1679. case VTD_INV_DESC_IOTLB_GLOBAL:
  1680. vtd_iotlb_global_invalidate(s);
  1681. break;
  1682. case VTD_INV_DESC_IOTLB_DOMAIN:
  1683. domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
  1684. vtd_iotlb_domain_invalidate(s, domain_id);
  1685. break;
  1686. case VTD_INV_DESC_IOTLB_PAGE:
  1687. domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
  1688. addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
  1689. am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
  1690. if (am > VTD_MAMV) {
  1691. trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
  1692. return false;
  1693. }
  1694. vtd_iotlb_page_invalidate(s, domain_id, addr, am);
  1695. break;
  1696. default:
  1697. trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
  1698. return false;
  1699. }
  1700. return true;
  1701. }
  1702. static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
  1703. VTDInvDesc *inv_desc)
  1704. {
  1705. trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
  1706. inv_desc->iec.index,
  1707. inv_desc->iec.index_mask);
  1708. vtd_iec_notify_all(s, !inv_desc->iec.granularity,
  1709. inv_desc->iec.index,
  1710. inv_desc->iec.index_mask);
  1711. return true;
  1712. }
  1713. static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
  1714. VTDInvDesc *inv_desc)
  1715. {
  1716. VTDAddressSpace *vtd_dev_as;
  1717. IOMMUTLBEntry entry;
  1718. struct VTDBus *vtd_bus;
  1719. hwaddr addr;
  1720. uint64_t sz;
  1721. uint16_t sid;
  1722. uint8_t devfn;
  1723. bool size;
  1724. uint8_t bus_num;
  1725. addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
  1726. sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
  1727. devfn = sid & 0xff;
  1728. bus_num = sid >> 8;
  1729. size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
  1730. if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
  1731. (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
  1732. trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
  1733. return false;
  1734. }
  1735. vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
  1736. if (!vtd_bus) {
  1737. goto done;
  1738. }
  1739. vtd_dev_as = vtd_bus->dev_as[devfn];
  1740. if (!vtd_dev_as) {
  1741. goto done;
  1742. }
  1743. /* According to ATS spec table 2.4:
  1744. * S = 0, bits 15:12 = xxxx range size: 4K
  1745. * S = 1, bits 15:12 = xxx0 range size: 8K
  1746. * S = 1, bits 15:12 = xx01 range size: 16K
  1747. * S = 1, bits 15:12 = x011 range size: 32K
  1748. * S = 1, bits 15:12 = 0111 range size: 64K
  1749. * ...
  1750. */
  1751. if (size) {
  1752. sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
  1753. addr &= ~(sz - 1);
  1754. } else {
  1755. sz = VTD_PAGE_SIZE;
  1756. }
  1757. entry.target_as = &vtd_dev_as->as;
  1758. entry.addr_mask = sz - 1;
  1759. entry.iova = addr;
  1760. entry.perm = IOMMU_NONE;
  1761. entry.translated_addr = 0;
  1762. memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
  1763. done:
  1764. return true;
  1765. }
  1766. static bool vtd_process_inv_desc(IntelIOMMUState *s)
  1767. {
  1768. VTDInvDesc inv_desc;
  1769. uint8_t desc_type;
  1770. trace_vtd_inv_qi_head(s->iq_head);
  1771. if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
  1772. s->iq_last_desc_type = VTD_INV_DESC_NONE;
  1773. return false;
  1774. }
  1775. desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
  1776. /* FIXME: should update at first or at last? */
  1777. s->iq_last_desc_type = desc_type;
  1778. switch (desc_type) {
  1779. case VTD_INV_DESC_CC:
  1780. trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
  1781. if (!vtd_process_context_cache_desc(s, &inv_desc)) {
  1782. return false;
  1783. }
  1784. break;
  1785. case VTD_INV_DESC_IOTLB:
  1786. trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
  1787. if (!vtd_process_iotlb_desc(s, &inv_desc)) {
  1788. return false;
  1789. }
  1790. break;
  1791. case VTD_INV_DESC_WAIT:
  1792. trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
  1793. if (!vtd_process_wait_desc(s, &inv_desc)) {
  1794. return false;
  1795. }
  1796. break;
  1797. case VTD_INV_DESC_IEC:
  1798. trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
  1799. if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
  1800. return false;
  1801. }
  1802. break;
  1803. case VTD_INV_DESC_DEVICE:
  1804. trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
  1805. if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
  1806. return false;
  1807. }
  1808. break;
  1809. default:
  1810. trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
  1811. return false;
  1812. }
  1813. s->iq_head++;
  1814. if (s->iq_head == s->iq_size) {
  1815. s->iq_head = 0;
  1816. }
  1817. return true;
  1818. }
  1819. /* Try to fetch and process more Invalidation Descriptors */
  1820. static void vtd_fetch_inv_desc(IntelIOMMUState *s)
  1821. {
  1822. trace_vtd_inv_qi_fetch();
  1823. if (s->iq_tail >= s->iq_size) {
  1824. /* Detects an invalid Tail pointer */
  1825. trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
  1826. vtd_handle_inv_queue_error(s);
  1827. return;
  1828. }
  1829. while (s->iq_head != s->iq_tail) {
  1830. if (!vtd_process_inv_desc(s)) {
  1831. /* Invalidation Queue Errors */
  1832. vtd_handle_inv_queue_error(s);
  1833. break;
  1834. }
  1835. /* Must update the IQH_REG in time */
  1836. vtd_set_quad_raw(s, DMAR_IQH_REG,
  1837. (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
  1838. VTD_IQH_QH_MASK);
  1839. }
  1840. }
  1841. /* Handle write to Invalidation Queue Tail Register */
  1842. static void vtd_handle_iqt_write(IntelIOMMUState *s)
  1843. {
  1844. uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
  1845. s->iq_tail = VTD_IQT_QT(val);
  1846. trace_vtd_inv_qi_tail(s->iq_tail);
  1847. if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
  1848. /* Process Invalidation Queue here */
  1849. vtd_fetch_inv_desc(s);
  1850. }
  1851. }
  1852. static void vtd_handle_fsts_write(IntelIOMMUState *s)
  1853. {
  1854. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  1855. uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
  1856. uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
  1857. if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
  1858. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  1859. trace_vtd_fsts_clear_ip();
  1860. }
  1861. /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
  1862. * Descriptors if there are any when Queued Invalidation is enabled?
  1863. */
  1864. }
  1865. static void vtd_handle_fectl_write(IntelIOMMUState *s)
  1866. {
  1867. uint32_t fectl_reg;
  1868. /* FIXME: when software clears the IM field, check the IP field. But do we
  1869. * need to compare the old value and the new value to conclude that
  1870. * software clears the IM field? Or just check if the IM field is zero?
  1871. */
  1872. fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
  1873. trace_vtd_reg_write_fectl(fectl_reg);
  1874. if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
  1875. vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
  1876. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  1877. }
  1878. }
  1879. static void vtd_handle_ics_write(IntelIOMMUState *s)
  1880. {
  1881. uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
  1882. uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
  1883. if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
  1884. trace_vtd_reg_ics_clear_ip();
  1885. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  1886. }
  1887. }
  1888. static void vtd_handle_iectl_write(IntelIOMMUState *s)
  1889. {
  1890. uint32_t iectl_reg;
  1891. /* FIXME: when software clears the IM field, check the IP field. But do we
  1892. * need to compare the old value and the new value to conclude that
  1893. * software clears the IM field? Or just check if the IM field is zero?
  1894. */
  1895. iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
  1896. trace_vtd_reg_write_iectl(iectl_reg);
  1897. if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
  1898. vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
  1899. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  1900. }
  1901. }
  1902. static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
  1903. {
  1904. IntelIOMMUState *s = opaque;
  1905. uint64_t val;
  1906. trace_vtd_reg_read(addr, size);
  1907. if (addr + size > DMAR_REG_SIZE) {
  1908. trace_vtd_err("Read MMIO over range.");
  1909. return (uint64_t)-1;
  1910. }
  1911. switch (addr) {
  1912. /* Root Table Address Register, 64-bit */
  1913. case DMAR_RTADDR_REG:
  1914. if (size == 4) {
  1915. val = s->root & ((1ULL << 32) - 1);
  1916. } else {
  1917. val = s->root;
  1918. }
  1919. break;
  1920. case DMAR_RTADDR_REG_HI:
  1921. assert(size == 4);
  1922. val = s->root >> 32;
  1923. break;
  1924. /* Invalidation Queue Address Register, 64-bit */
  1925. case DMAR_IQA_REG:
  1926. val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
  1927. if (size == 4) {
  1928. val = val & ((1ULL << 32) - 1);
  1929. }
  1930. break;
  1931. case DMAR_IQA_REG_HI:
  1932. assert(size == 4);
  1933. val = s->iq >> 32;
  1934. break;
  1935. default:
  1936. if (size == 4) {
  1937. val = vtd_get_long(s, addr);
  1938. } else {
  1939. val = vtd_get_quad(s, addr);
  1940. }
  1941. }
  1942. return val;
  1943. }
  1944. static void vtd_mem_write(void *opaque, hwaddr addr,
  1945. uint64_t val, unsigned size)
  1946. {
  1947. IntelIOMMUState *s = opaque;
  1948. trace_vtd_reg_write(addr, size, val);
  1949. if (addr + size > DMAR_REG_SIZE) {
  1950. trace_vtd_err("Write MMIO over range.");
  1951. return;
  1952. }
  1953. switch (addr) {
  1954. /* Global Command Register, 32-bit */
  1955. case DMAR_GCMD_REG:
  1956. vtd_set_long(s, addr, val);
  1957. vtd_handle_gcmd_write(s);
  1958. break;
  1959. /* Context Command Register, 64-bit */
  1960. case DMAR_CCMD_REG:
  1961. if (size == 4) {
  1962. vtd_set_long(s, addr, val);
  1963. } else {
  1964. vtd_set_quad(s, addr, val);
  1965. vtd_handle_ccmd_write(s);
  1966. }
  1967. break;
  1968. case DMAR_CCMD_REG_HI:
  1969. assert(size == 4);
  1970. vtd_set_long(s, addr, val);
  1971. vtd_handle_ccmd_write(s);
  1972. break;
  1973. /* IOTLB Invalidation Register, 64-bit */
  1974. case DMAR_IOTLB_REG:
  1975. if (size == 4) {
  1976. vtd_set_long(s, addr, val);
  1977. } else {
  1978. vtd_set_quad(s, addr, val);
  1979. vtd_handle_iotlb_write(s);
  1980. }
  1981. break;
  1982. case DMAR_IOTLB_REG_HI:
  1983. assert(size == 4);
  1984. vtd_set_long(s, addr, val);
  1985. vtd_handle_iotlb_write(s);
  1986. break;
  1987. /* Invalidate Address Register, 64-bit */
  1988. case DMAR_IVA_REG:
  1989. if (size == 4) {
  1990. vtd_set_long(s, addr, val);
  1991. } else {
  1992. vtd_set_quad(s, addr, val);
  1993. }
  1994. break;
  1995. case DMAR_IVA_REG_HI:
  1996. assert(size == 4);
  1997. vtd_set_long(s, addr, val);
  1998. break;
  1999. /* Fault Status Register, 32-bit */
  2000. case DMAR_FSTS_REG:
  2001. assert(size == 4);
  2002. vtd_set_long(s, addr, val);
  2003. vtd_handle_fsts_write(s);
  2004. break;
  2005. /* Fault Event Control Register, 32-bit */
  2006. case DMAR_FECTL_REG:
  2007. assert(size == 4);
  2008. vtd_set_long(s, addr, val);
  2009. vtd_handle_fectl_write(s);
  2010. break;
  2011. /* Fault Event Data Register, 32-bit */
  2012. case DMAR_FEDATA_REG:
  2013. assert(size == 4);
  2014. vtd_set_long(s, addr, val);
  2015. break;
  2016. /* Fault Event Address Register, 32-bit */
  2017. case DMAR_FEADDR_REG:
  2018. if (size == 4) {
  2019. vtd_set_long(s, addr, val);
  2020. } else {
  2021. /*
  2022. * While the register is 32-bit only, some guests (Xen...) write to
  2023. * it with 64-bit.
  2024. */
  2025. vtd_set_quad(s, addr, val);
  2026. }
  2027. break;
  2028. /* Fault Event Upper Address Register, 32-bit */
  2029. case DMAR_FEUADDR_REG:
  2030. assert(size == 4);
  2031. vtd_set_long(s, addr, val);
  2032. break;
  2033. /* Protected Memory Enable Register, 32-bit */
  2034. case DMAR_PMEN_REG:
  2035. assert(size == 4);
  2036. vtd_set_long(s, addr, val);
  2037. break;
  2038. /* Root Table Address Register, 64-bit */
  2039. case DMAR_RTADDR_REG:
  2040. if (size == 4) {
  2041. vtd_set_long(s, addr, val);
  2042. } else {
  2043. vtd_set_quad(s, addr, val);
  2044. }
  2045. break;
  2046. case DMAR_RTADDR_REG_HI:
  2047. assert(size == 4);
  2048. vtd_set_long(s, addr, val);
  2049. break;
  2050. /* Invalidation Queue Tail Register, 64-bit */
  2051. case DMAR_IQT_REG:
  2052. if (size == 4) {
  2053. vtd_set_long(s, addr, val);
  2054. } else {
  2055. vtd_set_quad(s, addr, val);
  2056. }
  2057. vtd_handle_iqt_write(s);
  2058. break;
  2059. case DMAR_IQT_REG_HI:
  2060. assert(size == 4);
  2061. vtd_set_long(s, addr, val);
  2062. /* 19:63 of IQT_REG is RsvdZ, do nothing here */
  2063. break;
  2064. /* Invalidation Queue Address Register, 64-bit */
  2065. case DMAR_IQA_REG:
  2066. if (size == 4) {
  2067. vtd_set_long(s, addr, val);
  2068. } else {
  2069. vtd_set_quad(s, addr, val);
  2070. }
  2071. break;
  2072. case DMAR_IQA_REG_HI:
  2073. assert(size == 4);
  2074. vtd_set_long(s, addr, val);
  2075. break;
  2076. /* Invalidation Completion Status Register, 32-bit */
  2077. case DMAR_ICS_REG:
  2078. assert(size == 4);
  2079. vtd_set_long(s, addr, val);
  2080. vtd_handle_ics_write(s);
  2081. break;
  2082. /* Invalidation Event Control Register, 32-bit */
  2083. case DMAR_IECTL_REG:
  2084. assert(size == 4);
  2085. vtd_set_long(s, addr, val);
  2086. vtd_handle_iectl_write(s);
  2087. break;
  2088. /* Invalidation Event Data Register, 32-bit */
  2089. case DMAR_IEDATA_REG:
  2090. assert(size == 4);
  2091. vtd_set_long(s, addr, val);
  2092. break;
  2093. /* Invalidation Event Address Register, 32-bit */
  2094. case DMAR_IEADDR_REG:
  2095. assert(size == 4);
  2096. vtd_set_long(s, addr, val);
  2097. break;
  2098. /* Invalidation Event Upper Address Register, 32-bit */
  2099. case DMAR_IEUADDR_REG:
  2100. assert(size == 4);
  2101. vtd_set_long(s, addr, val);
  2102. break;
  2103. /* Fault Recording Registers, 128-bit */
  2104. case DMAR_FRCD_REG_0_0:
  2105. if (size == 4) {
  2106. vtd_set_long(s, addr, val);
  2107. } else {
  2108. vtd_set_quad(s, addr, val);
  2109. }
  2110. break;
  2111. case DMAR_FRCD_REG_0_1:
  2112. assert(size == 4);
  2113. vtd_set_long(s, addr, val);
  2114. break;
  2115. case DMAR_FRCD_REG_0_2:
  2116. if (size == 4) {
  2117. vtd_set_long(s, addr, val);
  2118. } else {
  2119. vtd_set_quad(s, addr, val);
  2120. /* May clear bit 127 (Fault), update PPF */
  2121. vtd_update_fsts_ppf(s);
  2122. }
  2123. break;
  2124. case DMAR_FRCD_REG_0_3:
  2125. assert(size == 4);
  2126. vtd_set_long(s, addr, val);
  2127. /* May clear bit 127 (Fault), update PPF */
  2128. vtd_update_fsts_ppf(s);
  2129. break;
  2130. case DMAR_IRTA_REG:
  2131. if (size == 4) {
  2132. vtd_set_long(s, addr, val);
  2133. } else {
  2134. vtd_set_quad(s, addr, val);
  2135. }
  2136. break;
  2137. case DMAR_IRTA_REG_HI:
  2138. assert(size == 4);
  2139. vtd_set_long(s, addr, val);
  2140. break;
  2141. default:
  2142. if (size == 4) {
  2143. vtd_set_long(s, addr, val);
  2144. } else {
  2145. vtd_set_quad(s, addr, val);
  2146. }
  2147. }
  2148. }
  2149. static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
  2150. IOMMUAccessFlags flag, int iommu_idx)
  2151. {
  2152. VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
  2153. IntelIOMMUState *s = vtd_as->iommu_state;
  2154. IOMMUTLBEntry iotlb = {
  2155. /* We'll fill in the rest later. */
  2156. .target_as = &address_space_memory,
  2157. };
  2158. bool success;
  2159. if (likely(s->dmar_enabled)) {
  2160. success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
  2161. addr, flag & IOMMU_WO, &iotlb);
  2162. } else {
  2163. /* DMAR disabled, passthrough, use 4k-page*/
  2164. iotlb.iova = addr & VTD_PAGE_MASK_4K;
  2165. iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
  2166. iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
  2167. iotlb.perm = IOMMU_RW;
  2168. success = true;
  2169. }
  2170. if (likely(success)) {
  2171. trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
  2172. VTD_PCI_SLOT(vtd_as->devfn),
  2173. VTD_PCI_FUNC(vtd_as->devfn),
  2174. iotlb.iova, iotlb.translated_addr,
  2175. iotlb.addr_mask);
  2176. } else {
  2177. trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
  2178. VTD_PCI_SLOT(vtd_as->devfn),
  2179. VTD_PCI_FUNC(vtd_as->devfn),
  2180. iotlb.iova);
  2181. }
  2182. return iotlb;
  2183. }
  2184. static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
  2185. IOMMUNotifierFlag old,
  2186. IOMMUNotifierFlag new)
  2187. {
  2188. VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
  2189. IntelIOMMUState *s = vtd_as->iommu_state;
  2190. if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
  2191. error_report("We need to set caching-mode=1 for intel-iommu to enable "
  2192. "device assignment with IOMMU protection.");
  2193. exit(1);
  2194. }
  2195. /* Update per-address-space notifier flags */
  2196. vtd_as->notifier_flags = new;
  2197. if (old == IOMMU_NOTIFIER_NONE) {
  2198. QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
  2199. } else if (new == IOMMU_NOTIFIER_NONE) {
  2200. QLIST_REMOVE(vtd_as, next);
  2201. }
  2202. }
  2203. static int vtd_post_load(void *opaque, int version_id)
  2204. {
  2205. IntelIOMMUState *iommu = opaque;
  2206. /*
  2207. * Memory regions are dynamically turned on/off depending on
  2208. * context entry configurations from the guest. After migration,
  2209. * we need to make sure the memory regions are still correct.
  2210. */
  2211. vtd_switch_address_space_all(iommu);
  2212. return 0;
  2213. }
  2214. static const VMStateDescription vtd_vmstate = {
  2215. .name = "iommu-intel",
  2216. .version_id = 1,
  2217. .minimum_version_id = 1,
  2218. .priority = MIG_PRI_IOMMU,
  2219. .post_load = vtd_post_load,
  2220. .fields = (VMStateField[]) {
  2221. VMSTATE_UINT64(root, IntelIOMMUState),
  2222. VMSTATE_UINT64(intr_root, IntelIOMMUState),
  2223. VMSTATE_UINT64(iq, IntelIOMMUState),
  2224. VMSTATE_UINT32(intr_size, IntelIOMMUState),
  2225. VMSTATE_UINT16(iq_head, IntelIOMMUState),
  2226. VMSTATE_UINT16(iq_tail, IntelIOMMUState),
  2227. VMSTATE_UINT16(iq_size, IntelIOMMUState),
  2228. VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
  2229. VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
  2230. VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
  2231. VMSTATE_BOOL(root_extended, IntelIOMMUState),
  2232. VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
  2233. VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
  2234. VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
  2235. VMSTATE_BOOL(intr_eime, IntelIOMMUState),
  2236. VMSTATE_END_OF_LIST()
  2237. }
  2238. };
  2239. static const MemoryRegionOps vtd_mem_ops = {
  2240. .read = vtd_mem_read,
  2241. .write = vtd_mem_write,
  2242. .endianness = DEVICE_LITTLE_ENDIAN,
  2243. .impl = {
  2244. .min_access_size = 4,
  2245. .max_access_size = 8,
  2246. },
  2247. .valid = {
  2248. .min_access_size = 4,
  2249. .max_access_size = 8,
  2250. },
  2251. };
  2252. static Property vtd_properties[] = {
  2253. DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
  2254. DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
  2255. ON_OFF_AUTO_AUTO),
  2256. DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
  2257. DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
  2258. VTD_HOST_ADDRESS_WIDTH),
  2259. DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
  2260. DEFINE_PROP_END_OF_LIST(),
  2261. };
  2262. /* Read IRTE entry with specific index */
  2263. static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
  2264. VTD_IR_TableEntry *entry, uint16_t sid)
  2265. {
  2266. static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
  2267. {0xffff, 0xfffb, 0xfff9, 0xfff8};
  2268. dma_addr_t addr = 0x00;
  2269. uint16_t mask, source_id;
  2270. uint8_t bus, bus_max, bus_min;
  2271. addr = iommu->intr_root + index * sizeof(*entry);
  2272. if (dma_memory_read(&address_space_memory, addr, entry,
  2273. sizeof(*entry))) {
  2274. trace_vtd_err("Memory read failed for IRTE.");
  2275. return -VTD_FR_IR_ROOT_INVAL;
  2276. }
  2277. trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
  2278. le64_to_cpu(entry->data[0]));
  2279. if (!entry->irte.present) {
  2280. trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
  2281. le64_to_cpu(entry->data[0]));
  2282. return -VTD_FR_IR_ENTRY_P;
  2283. }
  2284. if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
  2285. entry->irte.__reserved_2) {
  2286. trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
  2287. le64_to_cpu(entry->data[0]));
  2288. return -VTD_FR_IR_IRTE_RSVD;
  2289. }
  2290. if (sid != X86_IOMMU_SID_INVALID) {
  2291. /* Validate IRTE SID */
  2292. source_id = le32_to_cpu(entry->irte.source_id);
  2293. switch (entry->irte.sid_vtype) {
  2294. case VTD_SVT_NONE:
  2295. break;
  2296. case VTD_SVT_ALL:
  2297. mask = vtd_svt_mask[entry->irte.sid_q];
  2298. if ((source_id & mask) != (sid & mask)) {
  2299. trace_vtd_err_irte_sid(index, sid, source_id);
  2300. return -VTD_FR_IR_SID_ERR;
  2301. }
  2302. break;
  2303. case VTD_SVT_BUS:
  2304. bus_max = source_id >> 8;
  2305. bus_min = source_id & 0xff;
  2306. bus = sid >> 8;
  2307. if (bus > bus_max || bus < bus_min) {
  2308. trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
  2309. return -VTD_FR_IR_SID_ERR;
  2310. }
  2311. break;
  2312. default:
  2313. trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
  2314. /* Take this as verification failure. */
  2315. return -VTD_FR_IR_SID_ERR;
  2316. break;
  2317. }
  2318. }
  2319. return 0;
  2320. }
  2321. /* Fetch IRQ information of specific IR index */
  2322. static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
  2323. VTDIrq *irq, uint16_t sid)
  2324. {
  2325. VTD_IR_TableEntry irte = {};
  2326. int ret = 0;
  2327. ret = vtd_irte_get(iommu, index, &irte, sid);
  2328. if (ret) {
  2329. return ret;
  2330. }
  2331. irq->trigger_mode = irte.irte.trigger_mode;
  2332. irq->vector = irte.irte.vector;
  2333. irq->delivery_mode = irte.irte.delivery_mode;
  2334. irq->dest = le32_to_cpu(irte.irte.dest_id);
  2335. if (!iommu->intr_eime) {
  2336. #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
  2337. #define VTD_IR_APIC_DEST_SHIFT (8)
  2338. irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
  2339. VTD_IR_APIC_DEST_SHIFT;
  2340. }
  2341. irq->dest_mode = irte.irte.dest_mode;
  2342. irq->redir_hint = irte.irte.redir_hint;
  2343. trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
  2344. irq->delivery_mode, irq->dest, irq->dest_mode);
  2345. return 0;
  2346. }
  2347. /* Generate one MSI message from VTDIrq info */
  2348. static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
  2349. {
  2350. VTD_MSIMessage msg = {};
  2351. /* Generate address bits */
  2352. msg.dest_mode = irq->dest_mode;
  2353. msg.redir_hint = irq->redir_hint;
  2354. msg.dest = irq->dest;
  2355. msg.__addr_hi = irq->dest & 0xffffff00;
  2356. msg.__addr_head = cpu_to_le32(0xfee);
  2357. /* Keep this from original MSI address bits */
  2358. msg.__not_used = irq->msi_addr_last_bits;
  2359. /* Generate data bits */
  2360. msg.vector = irq->vector;
  2361. msg.delivery_mode = irq->delivery_mode;
  2362. msg.level = 1;
  2363. msg.trigger_mode = irq->trigger_mode;
  2364. msg_out->address = msg.msi_addr;
  2365. msg_out->data = msg.msi_data;
  2366. }
  2367. /* Interrupt remapping for MSI/MSI-X entry */
  2368. static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
  2369. MSIMessage *origin,
  2370. MSIMessage *translated,
  2371. uint16_t sid)
  2372. {
  2373. int ret = 0;
  2374. VTD_IR_MSIAddress addr;
  2375. uint16_t index;
  2376. VTDIrq irq = {};
  2377. assert(origin && translated);
  2378. trace_vtd_ir_remap_msi_req(origin->address, origin->data);
  2379. if (!iommu || !iommu->intr_enabled) {
  2380. memcpy(translated, origin, sizeof(*origin));
  2381. goto out;
  2382. }
  2383. if (origin->address & VTD_MSI_ADDR_HI_MASK) {
  2384. trace_vtd_err("MSI address high 32 bits non-zero when "
  2385. "Interrupt Remapping enabled.");
  2386. return -VTD_FR_IR_REQ_RSVD;
  2387. }
  2388. addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
  2389. if (addr.addr.__head != 0xfee) {
  2390. trace_vtd_err("MSI addr low 32 bit invalid.");
  2391. return -VTD_FR_IR_REQ_RSVD;
  2392. }
  2393. /* This is compatible mode. */
  2394. if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
  2395. memcpy(translated, origin, sizeof(*origin));
  2396. goto out;
  2397. }
  2398. index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
  2399. #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
  2400. #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
  2401. if (addr.addr.sub_valid) {
  2402. /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
  2403. index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
  2404. }
  2405. ret = vtd_remap_irq_get(iommu, index, &irq, sid);
  2406. if (ret) {
  2407. return ret;
  2408. }
  2409. if (addr.addr.sub_valid) {
  2410. trace_vtd_ir_remap_type("MSI");
  2411. if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
  2412. trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
  2413. return -VTD_FR_IR_REQ_RSVD;
  2414. }
  2415. } else {
  2416. uint8_t vector = origin->data & 0xff;
  2417. uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
  2418. trace_vtd_ir_remap_type("IOAPIC");
  2419. /* IOAPIC entry vector should be aligned with IRTE vector
  2420. * (see vt-d spec 5.1.5.1). */
  2421. if (vector != irq.vector) {
  2422. trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
  2423. }
  2424. /* The Trigger Mode field must match the Trigger Mode in the IRTE.
  2425. * (see vt-d spec 5.1.5.1). */
  2426. if (trigger_mode != irq.trigger_mode) {
  2427. trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
  2428. irq.trigger_mode);
  2429. }
  2430. }
  2431. /*
  2432. * We'd better keep the last two bits, assuming that guest OS
  2433. * might modify it. Keep it does not hurt after all.
  2434. */
  2435. irq.msi_addr_last_bits = addr.addr.__not_care;
  2436. /* Translate VTDIrq to MSI message */
  2437. vtd_generate_msi_message(&irq, translated);
  2438. out:
  2439. trace_vtd_ir_remap_msi(origin->address, origin->data,
  2440. translated->address, translated->data);
  2441. return 0;
  2442. }
  2443. static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
  2444. MSIMessage *dst, uint16_t sid)
  2445. {
  2446. return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
  2447. src, dst, sid);
  2448. }
  2449. static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
  2450. uint64_t *data, unsigned size,
  2451. MemTxAttrs attrs)
  2452. {
  2453. return MEMTX_OK;
  2454. }
  2455. static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
  2456. uint64_t value, unsigned size,
  2457. MemTxAttrs attrs)
  2458. {
  2459. int ret = 0;
  2460. MSIMessage from = {}, to = {};
  2461. uint16_t sid = X86_IOMMU_SID_INVALID;
  2462. from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
  2463. from.data = (uint32_t) value;
  2464. if (!attrs.unspecified) {
  2465. /* We have explicit Source ID */
  2466. sid = attrs.requester_id;
  2467. }
  2468. ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
  2469. if (ret) {
  2470. /* TODO: report error */
  2471. /* Drop this interrupt */
  2472. return MEMTX_ERROR;
  2473. }
  2474. apic_get_class()->send_msi(&to);
  2475. return MEMTX_OK;
  2476. }
  2477. static const MemoryRegionOps vtd_mem_ir_ops = {
  2478. .read_with_attrs = vtd_mem_ir_read,
  2479. .write_with_attrs = vtd_mem_ir_write,
  2480. .endianness = DEVICE_LITTLE_ENDIAN,
  2481. .impl = {
  2482. .min_access_size = 4,
  2483. .max_access_size = 4,
  2484. },
  2485. .valid = {
  2486. .min_access_size = 4,
  2487. .max_access_size = 4,
  2488. },
  2489. };
  2490. VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
  2491. {
  2492. uintptr_t key = (uintptr_t)bus;
  2493. VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
  2494. VTDAddressSpace *vtd_dev_as;
  2495. char name[128];
  2496. if (!vtd_bus) {
  2497. uintptr_t *new_key = g_malloc(sizeof(*new_key));
  2498. *new_key = (uintptr_t)bus;
  2499. /* No corresponding free() */
  2500. vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
  2501. PCI_DEVFN_MAX);
  2502. vtd_bus->bus = bus;
  2503. g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
  2504. }
  2505. vtd_dev_as = vtd_bus->dev_as[devfn];
  2506. if (!vtd_dev_as) {
  2507. snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
  2508. vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
  2509. vtd_dev_as->bus = bus;
  2510. vtd_dev_as->devfn = (uint8_t)devfn;
  2511. vtd_dev_as->iommu_state = s;
  2512. vtd_dev_as->context_cache_entry.context_cache_gen = 0;
  2513. vtd_dev_as->iova_tree = iova_tree_new();
  2514. /*
  2515. * Memory region relationships looks like (Address range shows
  2516. * only lower 32 bits to make it short in length...):
  2517. *
  2518. * |-----------------+-------------------+----------|
  2519. * | Name | Address range | Priority |
  2520. * |-----------------+-------------------+----------+
  2521. * | vtd_root | 00000000-ffffffff | 0 |
  2522. * | intel_iommu | 00000000-ffffffff | 1 |
  2523. * | vtd_sys_alias | 00000000-ffffffff | 1 |
  2524. * | intel_iommu_ir | fee00000-feefffff | 64 |
  2525. * |-----------------+-------------------+----------|
  2526. *
  2527. * We enable/disable DMAR by switching enablement for
  2528. * vtd_sys_alias and intel_iommu regions. IR region is always
  2529. * enabled.
  2530. */
  2531. memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
  2532. TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
  2533. "intel_iommu_dmar",
  2534. UINT64_MAX);
  2535. memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
  2536. "vtd_sys_alias", get_system_memory(),
  2537. 0, memory_region_size(get_system_memory()));
  2538. memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
  2539. &vtd_mem_ir_ops, s, "intel_iommu_ir",
  2540. VTD_INTERRUPT_ADDR_SIZE);
  2541. memory_region_init(&vtd_dev_as->root, OBJECT(s),
  2542. "vtd_root", UINT64_MAX);
  2543. memory_region_add_subregion_overlap(&vtd_dev_as->root,
  2544. VTD_INTERRUPT_ADDR_FIRST,
  2545. &vtd_dev_as->iommu_ir, 64);
  2546. address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
  2547. memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
  2548. &vtd_dev_as->sys_alias, 1);
  2549. memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
  2550. MEMORY_REGION(&vtd_dev_as->iommu),
  2551. 1);
  2552. vtd_switch_address_space(vtd_dev_as);
  2553. }
  2554. return vtd_dev_as;
  2555. }
  2556. /* Unmap the whole range in the notifier's scope. */
  2557. static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
  2558. {
  2559. IOMMUTLBEntry entry;
  2560. hwaddr size;
  2561. hwaddr start = n->start;
  2562. hwaddr end = n->end;
  2563. IntelIOMMUState *s = as->iommu_state;
  2564. DMAMap map;
  2565. /*
  2566. * Note: all the codes in this function has a assumption that IOVA
  2567. * bits are no more than VTD_MGAW bits (which is restricted by
  2568. * VT-d spec), otherwise we need to consider overflow of 64 bits.
  2569. */
  2570. if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
  2571. /*
  2572. * Don't need to unmap regions that is bigger than the whole
  2573. * VT-d supported address space size
  2574. */
  2575. end = VTD_ADDRESS_SIZE(s->aw_bits);
  2576. }
  2577. assert(start <= end);
  2578. size = end - start;
  2579. if (ctpop64(size) != 1) {
  2580. /*
  2581. * This size cannot format a correct mask. Let's enlarge it to
  2582. * suite the minimum available mask.
  2583. */
  2584. int n = 64 - clz64(size);
  2585. if (n > s->aw_bits) {
  2586. /* should not happen, but in case it happens, limit it */
  2587. n = s->aw_bits;
  2588. }
  2589. size = 1ULL << n;
  2590. }
  2591. entry.target_as = &address_space_memory;
  2592. /* Adjust iova for the size */
  2593. entry.iova = n->start & ~(size - 1);
  2594. /* This field is meaningless for unmap */
  2595. entry.translated_addr = 0;
  2596. entry.perm = IOMMU_NONE;
  2597. entry.addr_mask = size - 1;
  2598. trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
  2599. VTD_PCI_SLOT(as->devfn),
  2600. VTD_PCI_FUNC(as->devfn),
  2601. entry.iova, size);
  2602. map.iova = entry.iova;
  2603. map.size = entry.addr_mask;
  2604. iova_tree_remove(as->iova_tree, &map);
  2605. memory_region_notify_one(n, &entry);
  2606. }
  2607. static void vtd_address_space_unmap_all(IntelIOMMUState *s)
  2608. {
  2609. VTDAddressSpace *vtd_as;
  2610. IOMMUNotifier *n;
  2611. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  2612. IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
  2613. vtd_address_space_unmap(vtd_as, n);
  2614. }
  2615. }
  2616. }
  2617. static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
  2618. {
  2619. memory_region_notify_one((IOMMUNotifier *)private, entry);
  2620. return 0;
  2621. }
  2622. static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
  2623. {
  2624. VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
  2625. IntelIOMMUState *s = vtd_as->iommu_state;
  2626. uint8_t bus_n = pci_bus_num(vtd_as->bus);
  2627. VTDContextEntry ce;
  2628. /*
  2629. * The replay can be triggered by either a invalidation or a newly
  2630. * created entry. No matter what, we release existing mappings
  2631. * (it means flushing caches for UNMAP-only registers).
  2632. */
  2633. vtd_address_space_unmap(vtd_as, n);
  2634. if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
  2635. trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
  2636. PCI_FUNC(vtd_as->devfn),
  2637. VTD_CONTEXT_ENTRY_DID(ce.hi),
  2638. ce.hi, ce.lo);
  2639. if (vtd_as_has_map_notifier(vtd_as)) {
  2640. /* This is required only for MAP typed notifiers */
  2641. vtd_page_walk_info info = {
  2642. .hook_fn = vtd_replay_hook,
  2643. .private = (void *)n,
  2644. .notify_unmap = false,
  2645. .aw = s->aw_bits,
  2646. .as = vtd_as,
  2647. .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
  2648. };
  2649. vtd_page_walk(&ce, 0, ~0ULL, &info);
  2650. }
  2651. } else {
  2652. trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
  2653. PCI_FUNC(vtd_as->devfn));
  2654. }
  2655. return;
  2656. }
  2657. /* Do the initialization. It will also be called when reset, so pay
  2658. * attention when adding new initialization stuff.
  2659. */
  2660. static void vtd_init(IntelIOMMUState *s)
  2661. {
  2662. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  2663. memset(s->csr, 0, DMAR_REG_SIZE);
  2664. memset(s->wmask, 0, DMAR_REG_SIZE);
  2665. memset(s->w1cmask, 0, DMAR_REG_SIZE);
  2666. memset(s->womask, 0, DMAR_REG_SIZE);
  2667. s->root = 0;
  2668. s->root_extended = false;
  2669. s->dmar_enabled = false;
  2670. s->iq_head = 0;
  2671. s->iq_tail = 0;
  2672. s->iq = 0;
  2673. s->iq_size = 0;
  2674. s->qi_enabled = false;
  2675. s->iq_last_desc_type = VTD_INV_DESC_NONE;
  2676. s->next_frcd_reg = 0;
  2677. s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
  2678. VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
  2679. VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
  2680. if (s->aw_bits == VTD_HOST_AW_48BIT) {
  2681. s->cap |= VTD_CAP_SAGAW_48bit;
  2682. }
  2683. s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
  2684. /*
  2685. * Rsvd field masks for spte
  2686. */
  2687. vtd_paging_entry_rsvd_field[0] = ~0ULL;
  2688. vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
  2689. vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
  2690. vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
  2691. vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
  2692. vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
  2693. vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
  2694. vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
  2695. vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
  2696. if (x86_iommu->intr_supported) {
  2697. s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
  2698. if (s->intr_eim == ON_OFF_AUTO_ON) {
  2699. s->ecap |= VTD_ECAP_EIM;
  2700. }
  2701. assert(s->intr_eim != ON_OFF_AUTO_AUTO);
  2702. }
  2703. if (x86_iommu->dt_supported) {
  2704. s->ecap |= VTD_ECAP_DT;
  2705. }
  2706. if (x86_iommu->pt_supported) {
  2707. s->ecap |= VTD_ECAP_PT;
  2708. }
  2709. if (s->caching_mode) {
  2710. s->cap |= VTD_CAP_CM;
  2711. }
  2712. vtd_iommu_lock(s);
  2713. vtd_reset_context_cache_locked(s);
  2714. vtd_reset_iotlb_locked(s);
  2715. vtd_iommu_unlock(s);
  2716. /* Define registers with default values and bit semantics */
  2717. vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
  2718. vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
  2719. vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
  2720. vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
  2721. vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
  2722. vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
  2723. vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
  2724. vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
  2725. vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
  2726. /* Advanced Fault Logging not supported */
  2727. vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
  2728. vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
  2729. vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
  2730. vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
  2731. /* Treated as RsvdZ when EIM in ECAP_REG is not supported
  2732. * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
  2733. */
  2734. vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
  2735. /* Treated as RO for implementations that PLMR and PHMR fields reported
  2736. * as Clear in the CAP_REG.
  2737. * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
  2738. */
  2739. vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
  2740. vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
  2741. vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
  2742. vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
  2743. vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
  2744. vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
  2745. vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
  2746. vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
  2747. /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
  2748. vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
  2749. /* IOTLB registers */
  2750. vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
  2751. vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
  2752. vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
  2753. /* Fault Recording Registers, 128-bit */
  2754. vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
  2755. vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
  2756. /*
  2757. * Interrupt remapping registers.
  2758. */
  2759. vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
  2760. }
  2761. /* Should not reset address_spaces when reset because devices will still use
  2762. * the address space they got at first (won't ask the bus again).
  2763. */
  2764. static void vtd_reset(DeviceState *dev)
  2765. {
  2766. IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
  2767. vtd_init(s);
  2768. /*
  2769. * When device reset, throw away all mappings and external caches
  2770. */
  2771. vtd_address_space_unmap_all(s);
  2772. }
  2773. static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
  2774. {
  2775. IntelIOMMUState *s = opaque;
  2776. VTDAddressSpace *vtd_as;
  2777. assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
  2778. vtd_as = vtd_find_add_as(s, bus, devfn);
  2779. return &vtd_as->as;
  2780. }
  2781. static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
  2782. {
  2783. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  2784. /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
  2785. if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
  2786. !kvm_irqchip_is_split()) {
  2787. error_setg(errp, "Intel Interrupt Remapping cannot work with "
  2788. "kernel-irqchip=on, please use 'split|off'.");
  2789. return false;
  2790. }
  2791. if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
  2792. error_setg(errp, "eim=on cannot be selected without intremap=on");
  2793. return false;
  2794. }
  2795. if (s->intr_eim == ON_OFF_AUTO_AUTO) {
  2796. s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
  2797. && x86_iommu->intr_supported ?
  2798. ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
  2799. }
  2800. if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
  2801. if (!kvm_irqchip_in_kernel()) {
  2802. error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
  2803. return false;
  2804. }
  2805. if (!kvm_enable_x2apic()) {
  2806. error_setg(errp, "eim=on requires support on the KVM side"
  2807. "(X2APIC_API, first shipped in v4.7)");
  2808. return false;
  2809. }
  2810. }
  2811. /* Currently only address widths supported are 39 and 48 bits */
  2812. if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
  2813. (s->aw_bits != VTD_HOST_AW_48BIT)) {
  2814. error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
  2815. VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
  2816. return false;
  2817. }
  2818. return true;
  2819. }
  2820. static void vtd_realize(DeviceState *dev, Error **errp)
  2821. {
  2822. MachineState *ms = MACHINE(qdev_get_machine());
  2823. PCMachineState *pcms = PC_MACHINE(ms);
  2824. PCIBus *bus = pcms->bus;
  2825. IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
  2826. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
  2827. x86_iommu->type = TYPE_INTEL;
  2828. if (!vtd_decide_config(s, errp)) {
  2829. return;
  2830. }
  2831. QLIST_INIT(&s->vtd_as_with_notifiers);
  2832. qemu_mutex_init(&s->iommu_lock);
  2833. memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
  2834. memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
  2835. "intel_iommu", DMAR_REG_SIZE);
  2836. sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
  2837. /* No corresponding destroy */
  2838. s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
  2839. g_free, g_free);
  2840. s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
  2841. g_free, g_free);
  2842. vtd_init(s);
  2843. sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
  2844. pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
  2845. /* Pseudo address space under root PCI bus. */
  2846. pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
  2847. }
  2848. static void vtd_class_init(ObjectClass *klass, void *data)
  2849. {
  2850. DeviceClass *dc = DEVICE_CLASS(klass);
  2851. X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
  2852. dc->reset = vtd_reset;
  2853. dc->vmsd = &vtd_vmstate;
  2854. dc->props = vtd_properties;
  2855. dc->hotpluggable = false;
  2856. x86_class->realize = vtd_realize;
  2857. x86_class->int_remap = vtd_int_remap;
  2858. /* Supported by the pc-q35-* machine types */
  2859. dc->user_creatable = true;
  2860. }
  2861. static const TypeInfo vtd_info = {
  2862. .name = TYPE_INTEL_IOMMU_DEVICE,
  2863. .parent = TYPE_X86_IOMMU_DEVICE,
  2864. .instance_size = sizeof(IntelIOMMUState),
  2865. .class_init = vtd_class_init,
  2866. };
  2867. static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
  2868. void *data)
  2869. {
  2870. IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
  2871. imrc->translate = vtd_iommu_translate;
  2872. imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
  2873. imrc->replay = vtd_iommu_replay;
  2874. }
  2875. static const TypeInfo vtd_iommu_memory_region_info = {
  2876. .parent = TYPE_IOMMU_MEMORY_REGION,
  2877. .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
  2878. .class_init = vtd_iommu_memory_region_class_init,
  2879. };
  2880. static void vtd_register_types(void)
  2881. {
  2882. type_register_static(&vtd_info);
  2883. type_register_static(&vtd_iommu_memory_region_info);
  2884. }
  2885. type_init(vtd_register_types)