boot.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. /*
  2. * QEMU RISC-V Boot Helper
  3. *
  4. * Copyright (c) 2017 SiFive, Inc.
  5. * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2 or later, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along with
  17. * this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu-common.h"
  21. #include "qemu/datadir.h"
  22. #include "qemu/units.h"
  23. #include "qemu/error-report.h"
  24. #include "exec/cpu-defs.h"
  25. #include "hw/boards.h"
  26. #include "hw/loader.h"
  27. #include "hw/riscv/boot.h"
  28. #include "hw/riscv/boot_opensbi.h"
  29. #include "elf.h"
  30. #include "sysemu/device_tree.h"
  31. #include "sysemu/qtest.h"
  32. #include <libfdt.h>
  33. #if defined(TARGET_RISCV32)
  34. #define fw_dynamic_info_data(__val) cpu_to_le32(__val)
  35. #else
  36. #define fw_dynamic_info_data(__val) cpu_to_le64(__val)
  37. #endif
  38. bool riscv_is_32_bit(MachineState *machine)
  39. {
  40. if (!strncmp(machine->cpu_type, "rv32", 4)) {
  41. return true;
  42. } else {
  43. return false;
  44. }
  45. }
  46. target_ulong riscv_calc_kernel_start_addr(MachineState *machine,
  47. target_ulong firmware_end_addr) {
  48. if (riscv_is_32_bit(machine)) {
  49. return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
  50. } else {
  51. return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
  52. }
  53. }
  54. target_ulong riscv_find_and_load_firmware(MachineState *machine,
  55. const char *default_machine_firmware,
  56. hwaddr firmware_load_addr,
  57. symbol_fn_t sym_cb)
  58. {
  59. char *firmware_filename = NULL;
  60. target_ulong firmware_end_addr = firmware_load_addr;
  61. if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
  62. /*
  63. * The user didn't specify -bios, or has specified "-bios default".
  64. * That means we are going to load the OpenSBI binary included in
  65. * the QEMU source.
  66. */
  67. firmware_filename = riscv_find_firmware(default_machine_firmware);
  68. } else if (strcmp(machine->firmware, "none")) {
  69. firmware_filename = riscv_find_firmware(machine->firmware);
  70. }
  71. if (firmware_filename) {
  72. /* If not "none" load the firmware */
  73. firmware_end_addr = riscv_load_firmware(firmware_filename,
  74. firmware_load_addr, sym_cb);
  75. g_free(firmware_filename);
  76. }
  77. return firmware_end_addr;
  78. }
  79. char *riscv_find_firmware(const char *firmware_filename)
  80. {
  81. char *filename;
  82. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
  83. if (filename == NULL) {
  84. if (!qtest_enabled()) {
  85. /*
  86. * We only ship plain binary bios images in the QEMU source.
  87. * With Spike machine that uses ELF images as the default bios,
  88. * running QEMU test will complain hence let's suppress the error
  89. * report for QEMU testing.
  90. */
  91. error_report("Unable to load the RISC-V firmware \"%s\"",
  92. firmware_filename);
  93. exit(1);
  94. }
  95. }
  96. return filename;
  97. }
  98. target_ulong riscv_load_firmware(const char *firmware_filename,
  99. hwaddr firmware_load_addr,
  100. symbol_fn_t sym_cb)
  101. {
  102. uint64_t firmware_entry, firmware_size, firmware_end;
  103. if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
  104. &firmware_entry, NULL, &firmware_end, NULL,
  105. 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
  106. return firmware_end;
  107. }
  108. firmware_size = load_image_targphys_as(firmware_filename,
  109. firmware_load_addr,
  110. current_machine->ram_size, NULL);
  111. if (firmware_size > 0) {
  112. return firmware_load_addr + firmware_size;
  113. }
  114. error_report("could not load firmware '%s'", firmware_filename);
  115. exit(1);
  116. }
  117. target_ulong riscv_load_kernel(const char *kernel_filename,
  118. target_ulong kernel_start_addr,
  119. symbol_fn_t sym_cb)
  120. {
  121. uint64_t kernel_entry;
  122. if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
  123. &kernel_entry, NULL, NULL, NULL, 0,
  124. EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
  125. return kernel_entry;
  126. }
  127. if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
  128. NULL, NULL, NULL) > 0) {
  129. return kernel_entry;
  130. }
  131. if (load_image_targphys_as(kernel_filename, kernel_start_addr,
  132. current_machine->ram_size, NULL) > 0) {
  133. return kernel_start_addr;
  134. }
  135. error_report("could not load kernel '%s'", kernel_filename);
  136. exit(1);
  137. }
  138. hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
  139. uint64_t kernel_entry, hwaddr *start)
  140. {
  141. int size;
  142. /*
  143. * We want to put the initrd far enough into RAM that when the
  144. * kernel is uncompressed it will not clobber the initrd. However
  145. * on boards without much RAM we must ensure that we still leave
  146. * enough room for a decent sized initrd, and on boards with large
  147. * amounts of RAM we must avoid the initrd being so far up in RAM
  148. * that it is outside lowmem and inaccessible to the kernel.
  149. * So for boards with less than 256MB of RAM we put the initrd
  150. * halfway into RAM, and for boards with 256MB of RAM or more we put
  151. * the initrd at 128MB.
  152. */
  153. *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
  154. size = load_ramdisk(filename, *start, mem_size - *start);
  155. if (size == -1) {
  156. size = load_image_targphys(filename, *start, mem_size - *start);
  157. if (size == -1) {
  158. error_report("could not load ramdisk '%s'", filename);
  159. exit(1);
  160. }
  161. }
  162. return *start + size;
  163. }
  164. uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
  165. {
  166. uint32_t temp, fdt_addr;
  167. hwaddr dram_end = dram_base + mem_size;
  168. int fdtsize = fdt_totalsize(fdt);
  169. if (fdtsize <= 0) {
  170. error_report("invalid device-tree");
  171. exit(1);
  172. }
  173. /*
  174. * We should put fdt as far as possible to avoid kernel/initrd overwriting
  175. * its content. But it should be addressable by 32 bit system as well.
  176. * Thus, put it at an aligned address that less than fdt size from end of
  177. * dram or 4GB whichever is lesser.
  178. */
  179. temp = MIN(dram_end, 4096 * MiB);
  180. fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
  181. fdt_pack(fdt);
  182. /* copy in the device tree */
  183. qemu_fdt_dumpdtb(fdt, fdtsize);
  184. rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
  185. &address_space_memory);
  186. return fdt_addr;
  187. }
  188. void riscv_rom_copy_firmware_info(hwaddr rom_base, hwaddr rom_size,
  189. uint32_t reset_vec_size, uint64_t kernel_entry)
  190. {
  191. struct fw_dynamic_info dinfo;
  192. size_t dinfo_len;
  193. dinfo.magic = fw_dynamic_info_data(FW_DYNAMIC_INFO_MAGIC_VALUE);
  194. dinfo.version = fw_dynamic_info_data(FW_DYNAMIC_INFO_VERSION);
  195. dinfo.next_mode = fw_dynamic_info_data(FW_DYNAMIC_INFO_NEXT_MODE_S);
  196. dinfo.next_addr = fw_dynamic_info_data(kernel_entry);
  197. dinfo.options = 0;
  198. dinfo.boot_hart = 0;
  199. dinfo_len = sizeof(dinfo);
  200. /**
  201. * copy the dynamic firmware info. This information is specific to
  202. * OpenSBI but doesn't break any other firmware as long as they don't
  203. * expect any certain value in "a2" register.
  204. */
  205. if (dinfo_len > (rom_size - reset_vec_size)) {
  206. error_report("not enough space to store dynamic firmware info");
  207. exit(1);
  208. }
  209. rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
  210. rom_base + reset_vec_size,
  211. &address_space_memory);
  212. }
  213. void riscv_setup_rom_reset_vec(hwaddr start_addr, hwaddr rom_base,
  214. hwaddr rom_size, uint64_t kernel_entry,
  215. uint32_t fdt_load_addr, void *fdt)
  216. {
  217. int i;
  218. uint32_t start_addr_hi32 = 0x00000000;
  219. #if defined(TARGET_RISCV64)
  220. start_addr_hi32 = start_addr >> 32;
  221. #endif
  222. /* reset vector */
  223. uint32_t reset_vec[10] = {
  224. 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
  225. 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
  226. 0xf1402573, /* csrr a0, mhartid */
  227. #if defined(TARGET_RISCV32)
  228. 0x0202a583, /* lw a1, 32(t0) */
  229. 0x0182a283, /* lw t0, 24(t0) */
  230. #elif defined(TARGET_RISCV64)
  231. 0x0202b583, /* ld a1, 32(t0) */
  232. 0x0182b283, /* ld t0, 24(t0) */
  233. #endif
  234. 0x00028067, /* jr t0 */
  235. start_addr, /* start: .dword */
  236. start_addr_hi32,
  237. fdt_load_addr, /* fdt_laddr: .dword */
  238. 0x00000000,
  239. /* fw_dyn: */
  240. };
  241. /* copy in the reset vector in little_endian byte order */
  242. for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
  243. reset_vec[i] = cpu_to_le32(reset_vec[i]);
  244. }
  245. rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
  246. rom_base, &address_space_memory);
  247. riscv_rom_copy_firmware_info(rom_base, rom_size, sizeof(reset_vec),
  248. kernel_entry);
  249. return;
  250. }