amd_iommu.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748
  1. /*
  2. * QEMU emulation of AMD IOMMU (AMD-Vi)
  3. *
  4. * Copyright (C) 2011 Eduard - Gabriel Munteanu
  5. * Copyright (C) 2015, 2016 David Kiarie Kahurani
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * Cache implementation inspired by hw/i386/intel_iommu.c
  19. */
  20. #include "qemu/osdep.h"
  21. #include "hw/i386/pc.h"
  22. #include "hw/pci/msi.h"
  23. #include "hw/pci/pci_bus.h"
  24. #include "migration/vmstate.h"
  25. #include "amd_iommu.h"
  26. #include "qapi/error.h"
  27. #include "qemu/error-report.h"
  28. #include "hw/i386/apic_internal.h"
  29. #include "trace.h"
  30. #include "hw/i386/apic-msidef.h"
  31. #include "hw/qdev-properties.h"
  32. #include "kvm/kvm_i386.h"
  33. /* used AMD-Vi MMIO registers */
  34. const char *amdvi_mmio_low[] = {
  35. "AMDVI_MMIO_DEVTAB_BASE",
  36. "AMDVI_MMIO_CMDBUF_BASE",
  37. "AMDVI_MMIO_EVTLOG_BASE",
  38. "AMDVI_MMIO_CONTROL",
  39. "AMDVI_MMIO_EXCL_BASE",
  40. "AMDVI_MMIO_EXCL_LIMIT",
  41. "AMDVI_MMIO_EXT_FEATURES",
  42. "AMDVI_MMIO_PPR_BASE",
  43. "UNHANDLED"
  44. };
  45. const char *amdvi_mmio_high[] = {
  46. "AMDVI_MMIO_COMMAND_HEAD",
  47. "AMDVI_MMIO_COMMAND_TAIL",
  48. "AMDVI_MMIO_EVTLOG_HEAD",
  49. "AMDVI_MMIO_EVTLOG_TAIL",
  50. "AMDVI_MMIO_STATUS",
  51. "AMDVI_MMIO_PPR_HEAD",
  52. "AMDVI_MMIO_PPR_TAIL",
  53. "UNHANDLED"
  54. };
  55. struct AMDVIAddressSpace {
  56. uint8_t bus_num; /* bus number */
  57. uint8_t devfn; /* device function */
  58. AMDVIState *iommu_state; /* AMDVI - one per machine */
  59. MemoryRegion root; /* AMDVI Root memory map region */
  60. IOMMUMemoryRegion iommu; /* Device's address translation region */
  61. MemoryRegion iommu_nodma; /* Alias of shared nodma memory region */
  62. MemoryRegion iommu_ir; /* Device's interrupt remapping region */
  63. AddressSpace as; /* device's corresponding address space */
  64. };
  65. /* AMDVI cache entry */
  66. typedef struct AMDVIIOTLBEntry {
  67. uint16_t domid; /* assigned domain id */
  68. uint16_t devid; /* device owning entry */
  69. uint64_t perms; /* access permissions */
  70. uint64_t translated_addr; /* translated address */
  71. uint64_t page_mask; /* physical page size */
  72. } AMDVIIOTLBEntry;
  73. uint64_t amdvi_extended_feature_register(AMDVIState *s)
  74. {
  75. uint64_t feature = AMDVI_DEFAULT_EXT_FEATURES;
  76. if (s->xtsup) {
  77. feature |= AMDVI_FEATURE_XT;
  78. }
  79. return feature;
  80. }
  81. /* configure MMIO registers at startup/reset */
  82. static void amdvi_set_quad(AMDVIState *s, hwaddr addr, uint64_t val,
  83. uint64_t romask, uint64_t w1cmask)
  84. {
  85. stq_le_p(&s->mmior[addr], val);
  86. stq_le_p(&s->romask[addr], romask);
  87. stq_le_p(&s->w1cmask[addr], w1cmask);
  88. }
  89. static uint16_t amdvi_readw(AMDVIState *s, hwaddr addr)
  90. {
  91. return lduw_le_p(&s->mmior[addr]);
  92. }
  93. static uint32_t amdvi_readl(AMDVIState *s, hwaddr addr)
  94. {
  95. return ldl_le_p(&s->mmior[addr]);
  96. }
  97. static uint64_t amdvi_readq(AMDVIState *s, hwaddr addr)
  98. {
  99. return ldq_le_p(&s->mmior[addr]);
  100. }
  101. /* internal write */
  102. static void amdvi_writeq_raw(AMDVIState *s, hwaddr addr, uint64_t val)
  103. {
  104. stq_le_p(&s->mmior[addr], val);
  105. }
  106. /* external write */
  107. static void amdvi_writew(AMDVIState *s, hwaddr addr, uint16_t val)
  108. {
  109. uint16_t romask = lduw_le_p(&s->romask[addr]);
  110. uint16_t w1cmask = lduw_le_p(&s->w1cmask[addr]);
  111. uint16_t oldval = lduw_le_p(&s->mmior[addr]);
  112. stw_le_p(&s->mmior[addr],
  113. ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
  114. }
  115. static void amdvi_writel(AMDVIState *s, hwaddr addr, uint32_t val)
  116. {
  117. uint32_t romask = ldl_le_p(&s->romask[addr]);
  118. uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  119. uint32_t oldval = ldl_le_p(&s->mmior[addr]);
  120. stl_le_p(&s->mmior[addr],
  121. ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
  122. }
  123. static void amdvi_writeq(AMDVIState *s, hwaddr addr, uint64_t val)
  124. {
  125. uint64_t romask = ldq_le_p(&s->romask[addr]);
  126. uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  127. uint32_t oldval = ldq_le_p(&s->mmior[addr]);
  128. stq_le_p(&s->mmior[addr],
  129. ((oldval & romask) | (val & ~romask)) & ~(val & w1cmask));
  130. }
  131. /* OR a 64-bit register with a 64-bit value */
  132. static bool amdvi_test_mask(AMDVIState *s, hwaddr addr, uint64_t val)
  133. {
  134. return amdvi_readq(s, addr) | val;
  135. }
  136. /* OR a 64-bit register with a 64-bit value storing result in the register */
  137. static void amdvi_assign_orq(AMDVIState *s, hwaddr addr, uint64_t val)
  138. {
  139. amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) | val);
  140. }
  141. /* AND a 64-bit register with a 64-bit value storing result in the register */
  142. static void amdvi_assign_andq(AMDVIState *s, hwaddr addr, uint64_t val)
  143. {
  144. amdvi_writeq_raw(s, addr, amdvi_readq(s, addr) & val);
  145. }
  146. static void amdvi_generate_msi_interrupt(AMDVIState *s)
  147. {
  148. MSIMessage msg = {};
  149. MemTxAttrs attrs = {
  150. .requester_id = pci_requester_id(&s->pci.dev)
  151. };
  152. if (msi_enabled(&s->pci.dev)) {
  153. msg = msi_get_message(&s->pci.dev, 0);
  154. address_space_stl_le(&address_space_memory, msg.address, msg.data,
  155. attrs, NULL);
  156. }
  157. }
  158. static void amdvi_log_event(AMDVIState *s, uint64_t *evt)
  159. {
  160. /* event logging not enabled */
  161. if (!s->evtlog_enabled || amdvi_test_mask(s, AMDVI_MMIO_STATUS,
  162. AMDVI_MMIO_STATUS_EVT_OVF)) {
  163. return;
  164. }
  165. /* event log buffer full */
  166. if (s->evtlog_tail >= s->evtlog_len) {
  167. amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_OVF);
  168. /* generate interrupt */
  169. amdvi_generate_msi_interrupt(s);
  170. return;
  171. }
  172. if (dma_memory_write(&address_space_memory, s->evtlog + s->evtlog_tail,
  173. evt, AMDVI_EVENT_LEN, MEMTXATTRS_UNSPECIFIED)) {
  174. trace_amdvi_evntlog_fail(s->evtlog, s->evtlog_tail);
  175. }
  176. s->evtlog_tail += AMDVI_EVENT_LEN;
  177. amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT);
  178. amdvi_generate_msi_interrupt(s);
  179. }
  180. static void amdvi_setevent_bits(uint64_t *buffer, uint64_t value, int start,
  181. int length)
  182. {
  183. int index = start / 64, bitpos = start % 64;
  184. uint64_t mask = MAKE_64BIT_MASK(start, length);
  185. buffer[index] &= ~mask;
  186. buffer[index] |= (value << bitpos) & mask;
  187. }
  188. /*
  189. * AMDVi event structure
  190. * 0:15 -> DeviceID
  191. * 48:63 -> event type + miscellaneous info
  192. * 64:127 -> related address
  193. */
  194. static void amdvi_encode_event(uint64_t *evt, uint16_t devid, uint64_t addr,
  195. uint16_t info)
  196. {
  197. evt[0] = 0;
  198. evt[1] = 0;
  199. amdvi_setevent_bits(evt, devid, 0, 16);
  200. amdvi_setevent_bits(evt, info, 48, 16);
  201. amdvi_setevent_bits(evt, addr, 64, 64);
  202. }
  203. /* log an error encountered during a page walk
  204. *
  205. * @addr: virtual address in translation request
  206. */
  207. static void amdvi_page_fault(AMDVIState *s, uint16_t devid,
  208. hwaddr addr, uint16_t info)
  209. {
  210. uint64_t evt[2];
  211. info |= AMDVI_EVENT_IOPF_I | AMDVI_EVENT_IOPF;
  212. amdvi_encode_event(evt, devid, addr, info);
  213. amdvi_log_event(s, evt);
  214. pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
  215. PCI_STATUS_SIG_TARGET_ABORT);
  216. }
  217. /*
  218. * log a master abort accessing device table
  219. * @devtab : address of device table entry
  220. * @info : error flags
  221. */
  222. static void amdvi_log_devtab_error(AMDVIState *s, uint16_t devid,
  223. hwaddr devtab, uint16_t info)
  224. {
  225. uint64_t evt[2];
  226. info |= AMDVI_EVENT_DEV_TAB_HW_ERROR;
  227. amdvi_encode_event(evt, devid, devtab, info);
  228. amdvi_log_event(s, evt);
  229. pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
  230. PCI_STATUS_SIG_TARGET_ABORT);
  231. }
  232. /* log an event trying to access command buffer
  233. * @addr : address that couldn't be accessed
  234. */
  235. static void amdvi_log_command_error(AMDVIState *s, hwaddr addr)
  236. {
  237. uint64_t evt[2];
  238. uint16_t info = AMDVI_EVENT_COMMAND_HW_ERROR;
  239. amdvi_encode_event(evt, 0, addr, info);
  240. amdvi_log_event(s, evt);
  241. pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
  242. PCI_STATUS_SIG_TARGET_ABORT);
  243. }
  244. /* log an illegal command event
  245. * @addr : address of illegal command
  246. */
  247. static void amdvi_log_illegalcom_error(AMDVIState *s, uint16_t info,
  248. hwaddr addr)
  249. {
  250. uint64_t evt[2];
  251. info |= AMDVI_EVENT_ILLEGAL_COMMAND_ERROR;
  252. amdvi_encode_event(evt, 0, addr, info);
  253. amdvi_log_event(s, evt);
  254. }
  255. /* log an error accessing device table
  256. *
  257. * @devid : device owning the table entry
  258. * @devtab : address of device table entry
  259. * @info : error flags
  260. */
  261. static void amdvi_log_illegaldevtab_error(AMDVIState *s, uint16_t devid,
  262. hwaddr addr, uint16_t info)
  263. {
  264. uint64_t evt[2];
  265. info |= AMDVI_EVENT_ILLEGAL_DEVTAB_ENTRY;
  266. amdvi_encode_event(evt, devid, addr, info);
  267. amdvi_log_event(s, evt);
  268. }
  269. /* log an error accessing a PTE entry
  270. * @addr : address that couldn't be accessed
  271. */
  272. static void amdvi_log_pagetab_error(AMDVIState *s, uint16_t devid,
  273. hwaddr addr, uint16_t info)
  274. {
  275. uint64_t evt[2];
  276. info |= AMDVI_EVENT_PAGE_TAB_HW_ERROR;
  277. amdvi_encode_event(evt, devid, addr, info);
  278. amdvi_log_event(s, evt);
  279. pci_word_test_and_set_mask(s->pci.dev.config + PCI_STATUS,
  280. PCI_STATUS_SIG_TARGET_ABORT);
  281. }
  282. static gboolean amdvi_uint64_equal(gconstpointer v1, gconstpointer v2)
  283. {
  284. return *((const uint64_t *)v1) == *((const uint64_t *)v2);
  285. }
  286. static guint amdvi_uint64_hash(gconstpointer v)
  287. {
  288. return (guint)*(const uint64_t *)v;
  289. }
  290. static AMDVIIOTLBEntry *amdvi_iotlb_lookup(AMDVIState *s, hwaddr addr,
  291. uint64_t devid)
  292. {
  293. uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) |
  294. ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
  295. return g_hash_table_lookup(s->iotlb, &key);
  296. }
  297. static void amdvi_iotlb_reset(AMDVIState *s)
  298. {
  299. assert(s->iotlb);
  300. trace_amdvi_iotlb_reset();
  301. g_hash_table_remove_all(s->iotlb);
  302. }
  303. static gboolean amdvi_iotlb_remove_by_devid(gpointer key, gpointer value,
  304. gpointer user_data)
  305. {
  306. AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value;
  307. uint16_t devid = *(uint16_t *)user_data;
  308. return entry->devid == devid;
  309. }
  310. static void amdvi_iotlb_remove_page(AMDVIState *s, hwaddr addr,
  311. uint64_t devid)
  312. {
  313. uint64_t key = (addr >> AMDVI_PAGE_SHIFT_4K) |
  314. ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
  315. g_hash_table_remove(s->iotlb, &key);
  316. }
  317. static void amdvi_update_iotlb(AMDVIState *s, uint16_t devid,
  318. uint64_t gpa, IOMMUTLBEntry to_cache,
  319. uint16_t domid)
  320. {
  321. /* don't cache erroneous translations */
  322. if (to_cache.perm != IOMMU_NONE) {
  323. AMDVIIOTLBEntry *entry = g_new(AMDVIIOTLBEntry, 1);
  324. uint64_t *key = g_new(uint64_t, 1);
  325. uint64_t gfn = gpa >> AMDVI_PAGE_SHIFT_4K;
  326. trace_amdvi_cache_update(domid, PCI_BUS_NUM(devid), PCI_SLOT(devid),
  327. PCI_FUNC(devid), gpa, to_cache.translated_addr);
  328. if (g_hash_table_size(s->iotlb) >= AMDVI_IOTLB_MAX_SIZE) {
  329. amdvi_iotlb_reset(s);
  330. }
  331. entry->domid = domid;
  332. entry->perms = to_cache.perm;
  333. entry->translated_addr = to_cache.translated_addr;
  334. entry->page_mask = to_cache.addr_mask;
  335. *key = gfn | ((uint64_t)(devid) << AMDVI_DEVID_SHIFT);
  336. g_hash_table_replace(s->iotlb, key, entry);
  337. }
  338. }
  339. static void amdvi_completion_wait(AMDVIState *s, uint64_t *cmd)
  340. {
  341. /* pad the last 3 bits */
  342. hwaddr addr = cpu_to_le64(extract64(cmd[0], 3, 49)) << 3;
  343. uint64_t data = cpu_to_le64(cmd[1]);
  344. if (extract64(cmd[0], 52, 8)) {
  345. amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
  346. s->cmdbuf + s->cmdbuf_head);
  347. }
  348. if (extract64(cmd[0], 0, 1)) {
  349. if (dma_memory_write(&address_space_memory, addr, &data,
  350. AMDVI_COMPLETION_DATA_SIZE,
  351. MEMTXATTRS_UNSPECIFIED)) {
  352. trace_amdvi_completion_wait_fail(addr);
  353. }
  354. }
  355. /* set completion interrupt */
  356. if (extract64(cmd[0], 1, 1)) {
  357. amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_COMP_INT);
  358. /* generate interrupt */
  359. amdvi_generate_msi_interrupt(s);
  360. }
  361. trace_amdvi_completion_wait(addr, data);
  362. }
  363. /* log error without aborting since linux seems to be using reserved bits */
  364. static void amdvi_inval_devtab_entry(AMDVIState *s, uint64_t *cmd)
  365. {
  366. uint16_t devid = cpu_to_le16((uint16_t)extract64(cmd[0], 0, 16));
  367. /* This command should invalidate internal caches of which there isn't */
  368. if (extract64(cmd[0], 16, 44) || cmd[1]) {
  369. amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
  370. s->cmdbuf + s->cmdbuf_head);
  371. }
  372. trace_amdvi_devtab_inval(PCI_BUS_NUM(devid), PCI_SLOT(devid),
  373. PCI_FUNC(devid));
  374. }
  375. static void amdvi_complete_ppr(AMDVIState *s, uint64_t *cmd)
  376. {
  377. if (extract64(cmd[0], 16, 16) || extract64(cmd[0], 52, 8) ||
  378. extract64(cmd[1], 0, 2) || extract64(cmd[1], 3, 29)
  379. || extract64(cmd[1], 48, 16)) {
  380. amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
  381. s->cmdbuf + s->cmdbuf_head);
  382. }
  383. trace_amdvi_ppr_exec();
  384. }
  385. static void amdvi_intremap_inval_notify_all(AMDVIState *s, bool global,
  386. uint32_t index, uint32_t mask)
  387. {
  388. x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
  389. }
  390. static void amdvi_inval_all(AMDVIState *s, uint64_t *cmd)
  391. {
  392. if (extract64(cmd[0], 0, 60) || cmd[1]) {
  393. amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
  394. s->cmdbuf + s->cmdbuf_head);
  395. }
  396. /* Notify global invalidation */
  397. amdvi_intremap_inval_notify_all(s, true, 0, 0);
  398. amdvi_iotlb_reset(s);
  399. trace_amdvi_all_inval();
  400. }
  401. static gboolean amdvi_iotlb_remove_by_domid(gpointer key, gpointer value,
  402. gpointer user_data)
  403. {
  404. AMDVIIOTLBEntry *entry = (AMDVIIOTLBEntry *)value;
  405. uint16_t domid = *(uint16_t *)user_data;
  406. return entry->domid == domid;
  407. }
  408. /* we don't have devid - we can't remove pages by address */
  409. static void amdvi_inval_pages(AMDVIState *s, uint64_t *cmd)
  410. {
  411. uint16_t domid = cpu_to_le16((uint16_t)extract64(cmd[0], 32, 16));
  412. if (extract64(cmd[0], 20, 12) || extract64(cmd[0], 48, 12) ||
  413. extract64(cmd[1], 3, 9)) {
  414. amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
  415. s->cmdbuf + s->cmdbuf_head);
  416. }
  417. g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_domid,
  418. &domid);
  419. trace_amdvi_pages_inval(domid);
  420. }
  421. static void amdvi_prefetch_pages(AMDVIState *s, uint64_t *cmd)
  422. {
  423. if (extract64(cmd[0], 16, 8) || extract64(cmd[0], 52, 8) ||
  424. extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 1) ||
  425. extract64(cmd[1], 5, 7)) {
  426. amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
  427. s->cmdbuf + s->cmdbuf_head);
  428. }
  429. trace_amdvi_prefetch_pages();
  430. }
  431. static void amdvi_inval_inttable(AMDVIState *s, uint64_t *cmd)
  432. {
  433. if (extract64(cmd[0], 16, 44) || cmd[1]) {
  434. amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
  435. s->cmdbuf + s->cmdbuf_head);
  436. return;
  437. }
  438. /* Notify global invalidation */
  439. amdvi_intremap_inval_notify_all(s, true, 0, 0);
  440. trace_amdvi_intr_inval();
  441. }
  442. /* FIXME: Try to work with the specified size instead of all the pages
  443. * when the S bit is on
  444. */
  445. static void iommu_inval_iotlb(AMDVIState *s, uint64_t *cmd)
  446. {
  447. uint16_t devid = extract64(cmd[0], 0, 16);
  448. if (extract64(cmd[1], 1, 1) || extract64(cmd[1], 3, 1) ||
  449. extract64(cmd[1], 6, 6)) {
  450. amdvi_log_illegalcom_error(s, extract64(cmd[0], 60, 4),
  451. s->cmdbuf + s->cmdbuf_head);
  452. return;
  453. }
  454. if (extract64(cmd[1], 0, 1)) {
  455. g_hash_table_foreach_remove(s->iotlb, amdvi_iotlb_remove_by_devid,
  456. &devid);
  457. } else {
  458. amdvi_iotlb_remove_page(s, cpu_to_le64(extract64(cmd[1], 12, 52)) << 12,
  459. cpu_to_le16(extract64(cmd[1], 0, 16)));
  460. }
  461. trace_amdvi_iotlb_inval();
  462. }
  463. /* not honouring reserved bits is regarded as an illegal command */
  464. static void amdvi_cmdbuf_exec(AMDVIState *s)
  465. {
  466. uint64_t cmd[2];
  467. if (dma_memory_read(&address_space_memory, s->cmdbuf + s->cmdbuf_head,
  468. cmd, AMDVI_COMMAND_SIZE, MEMTXATTRS_UNSPECIFIED)) {
  469. trace_amdvi_command_read_fail(s->cmdbuf, s->cmdbuf_head);
  470. amdvi_log_command_error(s, s->cmdbuf + s->cmdbuf_head);
  471. return;
  472. }
  473. switch (extract64(cmd[0], 60, 4)) {
  474. case AMDVI_CMD_COMPLETION_WAIT:
  475. amdvi_completion_wait(s, cmd);
  476. break;
  477. case AMDVI_CMD_INVAL_DEVTAB_ENTRY:
  478. amdvi_inval_devtab_entry(s, cmd);
  479. break;
  480. case AMDVI_CMD_INVAL_AMDVI_PAGES:
  481. amdvi_inval_pages(s, cmd);
  482. break;
  483. case AMDVI_CMD_INVAL_IOTLB_PAGES:
  484. iommu_inval_iotlb(s, cmd);
  485. break;
  486. case AMDVI_CMD_INVAL_INTR_TABLE:
  487. amdvi_inval_inttable(s, cmd);
  488. break;
  489. case AMDVI_CMD_PREFETCH_AMDVI_PAGES:
  490. amdvi_prefetch_pages(s, cmd);
  491. break;
  492. case AMDVI_CMD_COMPLETE_PPR_REQUEST:
  493. amdvi_complete_ppr(s, cmd);
  494. break;
  495. case AMDVI_CMD_INVAL_AMDVI_ALL:
  496. amdvi_inval_all(s, cmd);
  497. break;
  498. default:
  499. trace_amdvi_unhandled_command(extract64(cmd[1], 60, 4));
  500. /* log illegal command */
  501. amdvi_log_illegalcom_error(s, extract64(cmd[1], 60, 4),
  502. s->cmdbuf + s->cmdbuf_head);
  503. }
  504. }
  505. static void amdvi_cmdbuf_run(AMDVIState *s)
  506. {
  507. if (!s->cmdbuf_enabled) {
  508. trace_amdvi_command_error(amdvi_readq(s, AMDVI_MMIO_CONTROL));
  509. return;
  510. }
  511. /* check if there is work to do. */
  512. while (s->cmdbuf_head != s->cmdbuf_tail) {
  513. trace_amdvi_command_exec(s->cmdbuf_head, s->cmdbuf_tail, s->cmdbuf);
  514. amdvi_cmdbuf_exec(s);
  515. s->cmdbuf_head += AMDVI_COMMAND_SIZE;
  516. amdvi_writeq_raw(s, AMDVI_MMIO_COMMAND_HEAD, s->cmdbuf_head);
  517. /* wrap head pointer */
  518. if (s->cmdbuf_head >= s->cmdbuf_len * AMDVI_COMMAND_SIZE) {
  519. s->cmdbuf_head = 0;
  520. }
  521. }
  522. }
  523. static void amdvi_mmio_trace(hwaddr addr, unsigned size)
  524. {
  525. uint8_t index = (addr & ~0x2000) / 8;
  526. if ((addr & 0x2000)) {
  527. /* high table */
  528. index = index >= AMDVI_MMIO_REGS_HIGH ? AMDVI_MMIO_REGS_HIGH : index;
  529. trace_amdvi_mmio_read(amdvi_mmio_high[index], addr, size, addr & ~0x07);
  530. } else {
  531. index = index >= AMDVI_MMIO_REGS_LOW ? AMDVI_MMIO_REGS_LOW : index;
  532. trace_amdvi_mmio_read(amdvi_mmio_low[index], addr, size, addr & ~0x07);
  533. }
  534. }
  535. static uint64_t amdvi_mmio_read(void *opaque, hwaddr addr, unsigned size)
  536. {
  537. AMDVIState *s = opaque;
  538. uint64_t val = -1;
  539. if (addr + size > AMDVI_MMIO_SIZE) {
  540. trace_amdvi_mmio_read_invalid(AMDVI_MMIO_SIZE, addr, size);
  541. return (uint64_t)-1;
  542. }
  543. if (size == 2) {
  544. val = amdvi_readw(s, addr);
  545. } else if (size == 4) {
  546. val = amdvi_readl(s, addr);
  547. } else if (size == 8) {
  548. val = amdvi_readq(s, addr);
  549. }
  550. amdvi_mmio_trace(addr, size);
  551. return val;
  552. }
  553. static void amdvi_handle_control_write(AMDVIState *s)
  554. {
  555. unsigned long control = amdvi_readq(s, AMDVI_MMIO_CONTROL);
  556. s->enabled = !!(control & AMDVI_MMIO_CONTROL_AMDVIEN);
  557. s->ats_enabled = !!(control & AMDVI_MMIO_CONTROL_HTTUNEN);
  558. s->evtlog_enabled = s->enabled && !!(control &
  559. AMDVI_MMIO_CONTROL_EVENTLOGEN);
  560. s->evtlog_intr = !!(control & AMDVI_MMIO_CONTROL_EVENTINTEN);
  561. s->completion_wait_intr = !!(control & AMDVI_MMIO_CONTROL_COMWAITINTEN);
  562. s->cmdbuf_enabled = s->enabled && !!(control &
  563. AMDVI_MMIO_CONTROL_CMDBUFLEN);
  564. s->ga_enabled = !!(control & AMDVI_MMIO_CONTROL_GAEN);
  565. /* update the flags depending on the control register */
  566. if (s->cmdbuf_enabled) {
  567. amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_CMDBUF_RUN);
  568. } else {
  569. amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_CMDBUF_RUN);
  570. }
  571. if (s->evtlog_enabled) {
  572. amdvi_assign_orq(s, AMDVI_MMIO_STATUS, AMDVI_MMIO_STATUS_EVT_RUN);
  573. } else {
  574. amdvi_assign_andq(s, AMDVI_MMIO_STATUS, ~AMDVI_MMIO_STATUS_EVT_RUN);
  575. }
  576. trace_amdvi_control_status(control);
  577. amdvi_cmdbuf_run(s);
  578. }
  579. static inline void amdvi_handle_devtab_write(AMDVIState *s)
  580. {
  581. uint64_t val = amdvi_readq(s, AMDVI_MMIO_DEVICE_TABLE);
  582. s->devtab = (val & AMDVI_MMIO_DEVTAB_BASE_MASK);
  583. /* set device table length */
  584. s->devtab_len = ((val & AMDVI_MMIO_DEVTAB_SIZE_MASK) + 1 *
  585. (AMDVI_MMIO_DEVTAB_SIZE_UNIT /
  586. AMDVI_MMIO_DEVTAB_ENTRY_SIZE));
  587. }
  588. static inline void amdvi_handle_cmdhead_write(AMDVIState *s)
  589. {
  590. s->cmdbuf_head = amdvi_readq(s, AMDVI_MMIO_COMMAND_HEAD)
  591. & AMDVI_MMIO_CMDBUF_HEAD_MASK;
  592. amdvi_cmdbuf_run(s);
  593. }
  594. static inline void amdvi_handle_cmdbase_write(AMDVIState *s)
  595. {
  596. s->cmdbuf = amdvi_readq(s, AMDVI_MMIO_COMMAND_BASE)
  597. & AMDVI_MMIO_CMDBUF_BASE_MASK;
  598. s->cmdbuf_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_CMDBUF_SIZE_BYTE)
  599. & AMDVI_MMIO_CMDBUF_SIZE_MASK);
  600. s->cmdbuf_head = s->cmdbuf_tail = 0;
  601. }
  602. static inline void amdvi_handle_cmdtail_write(AMDVIState *s)
  603. {
  604. s->cmdbuf_tail = amdvi_readq(s, AMDVI_MMIO_COMMAND_TAIL)
  605. & AMDVI_MMIO_CMDBUF_TAIL_MASK;
  606. amdvi_cmdbuf_run(s);
  607. }
  608. static inline void amdvi_handle_excllim_write(AMDVIState *s)
  609. {
  610. uint64_t val = amdvi_readq(s, AMDVI_MMIO_EXCL_LIMIT);
  611. s->excl_limit = (val & AMDVI_MMIO_EXCL_LIMIT_MASK) |
  612. AMDVI_MMIO_EXCL_LIMIT_LOW;
  613. }
  614. static inline void amdvi_handle_evtbase_write(AMDVIState *s)
  615. {
  616. uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_BASE);
  617. s->evtlog = val & AMDVI_MMIO_EVTLOG_BASE_MASK;
  618. s->evtlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_EVTLOG_SIZE_BYTE)
  619. & AMDVI_MMIO_EVTLOG_SIZE_MASK);
  620. }
  621. static inline void amdvi_handle_evttail_write(AMDVIState *s)
  622. {
  623. uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_TAIL);
  624. s->evtlog_tail = val & AMDVI_MMIO_EVTLOG_TAIL_MASK;
  625. }
  626. static inline void amdvi_handle_evthead_write(AMDVIState *s)
  627. {
  628. uint64_t val = amdvi_readq(s, AMDVI_MMIO_EVENT_HEAD);
  629. s->evtlog_head = val & AMDVI_MMIO_EVTLOG_HEAD_MASK;
  630. }
  631. static inline void amdvi_handle_pprbase_write(AMDVIState *s)
  632. {
  633. uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_BASE);
  634. s->ppr_log = val & AMDVI_MMIO_PPRLOG_BASE_MASK;
  635. s->pprlog_len = 1UL << (amdvi_readq(s, AMDVI_MMIO_PPRLOG_SIZE_BYTE)
  636. & AMDVI_MMIO_PPRLOG_SIZE_MASK);
  637. }
  638. static inline void amdvi_handle_pprhead_write(AMDVIState *s)
  639. {
  640. uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_HEAD);
  641. s->pprlog_head = val & AMDVI_MMIO_PPRLOG_HEAD_MASK;
  642. }
  643. static inline void amdvi_handle_pprtail_write(AMDVIState *s)
  644. {
  645. uint64_t val = amdvi_readq(s, AMDVI_MMIO_PPR_TAIL);
  646. s->pprlog_tail = val & AMDVI_MMIO_PPRLOG_TAIL_MASK;
  647. }
  648. /* FIXME: something might go wrong if System Software writes in chunks
  649. * of one byte but linux writes in chunks of 4 bytes so currently it
  650. * works correctly with linux but will definitely be busted if software
  651. * reads/writes 8 bytes
  652. */
  653. static void amdvi_mmio_reg_write(AMDVIState *s, unsigned size, uint64_t val,
  654. hwaddr addr)
  655. {
  656. if (size == 2) {
  657. amdvi_writew(s, addr, val);
  658. } else if (size == 4) {
  659. amdvi_writel(s, addr, val);
  660. } else if (size == 8) {
  661. amdvi_writeq(s, addr, val);
  662. }
  663. }
  664. static void amdvi_mmio_write(void *opaque, hwaddr addr, uint64_t val,
  665. unsigned size)
  666. {
  667. AMDVIState *s = opaque;
  668. unsigned long offset = addr & 0x07;
  669. if (addr + size > AMDVI_MMIO_SIZE) {
  670. trace_amdvi_mmio_write("error: addr outside region: max ",
  671. (uint64_t)AMDVI_MMIO_SIZE, size, val, offset);
  672. return;
  673. }
  674. amdvi_mmio_trace(addr, size);
  675. switch (addr & ~0x07) {
  676. case AMDVI_MMIO_CONTROL:
  677. amdvi_mmio_reg_write(s, size, val, addr);
  678. amdvi_handle_control_write(s);
  679. break;
  680. case AMDVI_MMIO_DEVICE_TABLE:
  681. amdvi_mmio_reg_write(s, size, val, addr);
  682. /* set device table address
  683. * This also suffers from inability to tell whether software
  684. * is done writing
  685. */
  686. if (offset || (size == 8)) {
  687. amdvi_handle_devtab_write(s);
  688. }
  689. break;
  690. case AMDVI_MMIO_COMMAND_HEAD:
  691. amdvi_mmio_reg_write(s, size, val, addr);
  692. amdvi_handle_cmdhead_write(s);
  693. break;
  694. case AMDVI_MMIO_COMMAND_BASE:
  695. amdvi_mmio_reg_write(s, size, val, addr);
  696. /* FIXME - make sure System Software has finished writing in case
  697. * it writes in chucks less than 8 bytes in a robust way.As for
  698. * now, this hacks works for the linux driver
  699. */
  700. if (offset || (size == 8)) {
  701. amdvi_handle_cmdbase_write(s);
  702. }
  703. break;
  704. case AMDVI_MMIO_COMMAND_TAIL:
  705. amdvi_mmio_reg_write(s, size, val, addr);
  706. amdvi_handle_cmdtail_write(s);
  707. break;
  708. case AMDVI_MMIO_EVENT_BASE:
  709. amdvi_mmio_reg_write(s, size, val, addr);
  710. amdvi_handle_evtbase_write(s);
  711. break;
  712. case AMDVI_MMIO_EVENT_HEAD:
  713. amdvi_mmio_reg_write(s, size, val, addr);
  714. amdvi_handle_evthead_write(s);
  715. break;
  716. case AMDVI_MMIO_EVENT_TAIL:
  717. amdvi_mmio_reg_write(s, size, val, addr);
  718. amdvi_handle_evttail_write(s);
  719. break;
  720. case AMDVI_MMIO_EXCL_LIMIT:
  721. amdvi_mmio_reg_write(s, size, val, addr);
  722. amdvi_handle_excllim_write(s);
  723. break;
  724. /* PPR log base - unused for now */
  725. case AMDVI_MMIO_PPR_BASE:
  726. amdvi_mmio_reg_write(s, size, val, addr);
  727. amdvi_handle_pprbase_write(s);
  728. break;
  729. /* PPR log head - also unused for now */
  730. case AMDVI_MMIO_PPR_HEAD:
  731. amdvi_mmio_reg_write(s, size, val, addr);
  732. amdvi_handle_pprhead_write(s);
  733. break;
  734. /* PPR log tail - unused for now */
  735. case AMDVI_MMIO_PPR_TAIL:
  736. amdvi_mmio_reg_write(s, size, val, addr);
  737. amdvi_handle_pprtail_write(s);
  738. break;
  739. }
  740. }
  741. static inline uint64_t amdvi_get_perms(uint64_t entry)
  742. {
  743. return (entry & (AMDVI_DEV_PERM_READ | AMDVI_DEV_PERM_WRITE)) >>
  744. AMDVI_DEV_PERM_SHIFT;
  745. }
  746. /* validate that reserved bits are honoured */
  747. static bool amdvi_validate_dte(AMDVIState *s, uint16_t devid,
  748. uint64_t *dte)
  749. {
  750. if ((dte[0] & AMDVI_DTE_LOWER_QUAD_RESERVED)
  751. || (dte[1] & AMDVI_DTE_MIDDLE_QUAD_RESERVED)
  752. || (dte[2] & AMDVI_DTE_UPPER_QUAD_RESERVED) || dte[3]) {
  753. amdvi_log_illegaldevtab_error(s, devid,
  754. s->devtab +
  755. devid * AMDVI_DEVTAB_ENTRY_SIZE, 0);
  756. return false;
  757. }
  758. return true;
  759. }
  760. /* get a device table entry given the devid */
  761. static bool amdvi_get_dte(AMDVIState *s, int devid, uint64_t *entry)
  762. {
  763. uint32_t offset = devid * AMDVI_DEVTAB_ENTRY_SIZE;
  764. if (dma_memory_read(&address_space_memory, s->devtab + offset, entry,
  765. AMDVI_DEVTAB_ENTRY_SIZE, MEMTXATTRS_UNSPECIFIED)) {
  766. trace_amdvi_dte_get_fail(s->devtab, offset);
  767. /* log error accessing dte */
  768. amdvi_log_devtab_error(s, devid, s->devtab + offset, 0);
  769. return false;
  770. }
  771. *entry = le64_to_cpu(*entry);
  772. if (!amdvi_validate_dte(s, devid, entry)) {
  773. trace_amdvi_invalid_dte(entry[0]);
  774. return false;
  775. }
  776. return true;
  777. }
  778. /* get pte translation mode */
  779. static inline uint8_t get_pte_translation_mode(uint64_t pte)
  780. {
  781. return (pte >> AMDVI_DEV_MODE_RSHIFT) & AMDVI_DEV_MODE_MASK;
  782. }
  783. static inline uint64_t pte_override_page_mask(uint64_t pte)
  784. {
  785. uint8_t page_mask = 13;
  786. uint64_t addr = (pte & AMDVI_DEV_PT_ROOT_MASK) >> 12;
  787. /* find the first zero bit */
  788. while (addr & 1) {
  789. page_mask++;
  790. addr = addr >> 1;
  791. }
  792. return ~((1ULL << page_mask) - 1);
  793. }
  794. static inline uint64_t pte_get_page_mask(uint64_t oldlevel)
  795. {
  796. return ~((1UL << ((oldlevel * 9) + 3)) - 1);
  797. }
  798. static inline uint64_t amdvi_get_pte_entry(AMDVIState *s, uint64_t pte_addr,
  799. uint16_t devid)
  800. {
  801. uint64_t pte;
  802. if (dma_memory_read(&address_space_memory, pte_addr,
  803. &pte, sizeof(pte), MEMTXATTRS_UNSPECIFIED)) {
  804. trace_amdvi_get_pte_hwerror(pte_addr);
  805. amdvi_log_pagetab_error(s, devid, pte_addr, 0);
  806. pte = 0;
  807. return pte;
  808. }
  809. pte = le64_to_cpu(pte);
  810. return pte;
  811. }
  812. static void amdvi_page_walk(AMDVIAddressSpace *as, uint64_t *dte,
  813. IOMMUTLBEntry *ret, unsigned perms,
  814. hwaddr addr)
  815. {
  816. unsigned level, present, pte_perms, oldlevel;
  817. uint64_t pte = dte[0], pte_addr, page_mask;
  818. /* make sure the DTE has TV = 1 */
  819. if (pte & AMDVI_DEV_TRANSLATION_VALID) {
  820. level = get_pte_translation_mode(pte);
  821. if (level >= 7) {
  822. trace_amdvi_mode_invalid(level, addr);
  823. return;
  824. }
  825. if (level == 0) {
  826. goto no_remap;
  827. }
  828. /* we are at the leaf page table or page table encodes a huge page */
  829. do {
  830. pte_perms = amdvi_get_perms(pte);
  831. present = pte & 1;
  832. if (!present || perms != (perms & pte_perms)) {
  833. amdvi_page_fault(as->iommu_state, as->devfn, addr, perms);
  834. trace_amdvi_page_fault(addr);
  835. return;
  836. }
  837. /* go to the next lower level */
  838. pte_addr = pte & AMDVI_DEV_PT_ROOT_MASK;
  839. /* add offset and load pte */
  840. pte_addr += ((addr >> (3 + 9 * level)) & 0x1FF) << 3;
  841. pte = amdvi_get_pte_entry(as->iommu_state, pte_addr, as->devfn);
  842. if (!pte) {
  843. return;
  844. }
  845. oldlevel = level;
  846. level = get_pte_translation_mode(pte);
  847. } while (level > 0 && level < 7);
  848. if (level == 0x7) {
  849. page_mask = pte_override_page_mask(pte);
  850. } else {
  851. page_mask = pte_get_page_mask(oldlevel);
  852. }
  853. /* get access permissions from pte */
  854. ret->iova = addr & page_mask;
  855. ret->translated_addr = (pte & AMDVI_DEV_PT_ROOT_MASK) & page_mask;
  856. ret->addr_mask = ~page_mask;
  857. ret->perm = amdvi_get_perms(pte);
  858. return;
  859. }
  860. no_remap:
  861. ret->iova = addr & AMDVI_PAGE_MASK_4K;
  862. ret->translated_addr = addr & AMDVI_PAGE_MASK_4K;
  863. ret->addr_mask = ~AMDVI_PAGE_MASK_4K;
  864. ret->perm = amdvi_get_perms(pte);
  865. }
  866. static void amdvi_do_translate(AMDVIAddressSpace *as, hwaddr addr,
  867. bool is_write, IOMMUTLBEntry *ret)
  868. {
  869. AMDVIState *s = as->iommu_state;
  870. uint16_t devid = PCI_BUILD_BDF(as->bus_num, as->devfn);
  871. AMDVIIOTLBEntry *iotlb_entry = amdvi_iotlb_lookup(s, addr, devid);
  872. uint64_t entry[4];
  873. if (iotlb_entry) {
  874. trace_amdvi_iotlb_hit(PCI_BUS_NUM(devid), PCI_SLOT(devid),
  875. PCI_FUNC(devid), addr, iotlb_entry->translated_addr);
  876. ret->iova = addr & ~iotlb_entry->page_mask;
  877. ret->translated_addr = iotlb_entry->translated_addr;
  878. ret->addr_mask = iotlb_entry->page_mask;
  879. ret->perm = iotlb_entry->perms;
  880. return;
  881. }
  882. if (!amdvi_get_dte(s, devid, entry)) {
  883. return;
  884. }
  885. /* devices with V = 0 are not translated */
  886. if (!(entry[0] & AMDVI_DEV_VALID)) {
  887. goto out;
  888. }
  889. amdvi_page_walk(as, entry, ret,
  890. is_write ? AMDVI_PERM_WRITE : AMDVI_PERM_READ, addr);
  891. amdvi_update_iotlb(s, devid, addr, *ret,
  892. entry[1] & AMDVI_DEV_DOMID_ID_MASK);
  893. return;
  894. out:
  895. ret->iova = addr & AMDVI_PAGE_MASK_4K;
  896. ret->translated_addr = addr & AMDVI_PAGE_MASK_4K;
  897. ret->addr_mask = ~AMDVI_PAGE_MASK_4K;
  898. ret->perm = IOMMU_RW;
  899. }
  900. static inline bool amdvi_is_interrupt_addr(hwaddr addr)
  901. {
  902. return addr >= AMDVI_INT_ADDR_FIRST && addr <= AMDVI_INT_ADDR_LAST;
  903. }
  904. static IOMMUTLBEntry amdvi_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
  905. IOMMUAccessFlags flag, int iommu_idx)
  906. {
  907. AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu);
  908. AMDVIState *s = as->iommu_state;
  909. IOMMUTLBEntry ret = {
  910. .target_as = &address_space_memory,
  911. .iova = addr,
  912. .translated_addr = 0,
  913. .addr_mask = ~(hwaddr)0,
  914. .perm = IOMMU_NONE
  915. };
  916. if (!s->enabled) {
  917. /* AMDVI disabled - corresponds to iommu=off not
  918. * failure to provide any parameter
  919. */
  920. ret.iova = addr & AMDVI_PAGE_MASK_4K;
  921. ret.translated_addr = addr & AMDVI_PAGE_MASK_4K;
  922. ret.addr_mask = ~AMDVI_PAGE_MASK_4K;
  923. ret.perm = IOMMU_RW;
  924. return ret;
  925. } else if (amdvi_is_interrupt_addr(addr)) {
  926. ret.iova = addr & AMDVI_PAGE_MASK_4K;
  927. ret.translated_addr = addr & AMDVI_PAGE_MASK_4K;
  928. ret.addr_mask = ~AMDVI_PAGE_MASK_4K;
  929. ret.perm = IOMMU_WO;
  930. return ret;
  931. }
  932. amdvi_do_translate(as, addr, flag & IOMMU_WO, &ret);
  933. trace_amdvi_translation_result(as->bus_num, PCI_SLOT(as->devfn),
  934. PCI_FUNC(as->devfn), addr, ret.translated_addr);
  935. return ret;
  936. }
  937. static int amdvi_get_irte(AMDVIState *s, MSIMessage *origin, uint64_t *dte,
  938. union irte *irte, uint16_t devid)
  939. {
  940. uint64_t irte_root, offset;
  941. irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK;
  942. offset = (origin->data & AMDVI_IRTE_OFFSET) << 2;
  943. trace_amdvi_ir_irte(irte_root, offset);
  944. if (dma_memory_read(&address_space_memory, irte_root + offset,
  945. irte, sizeof(*irte), MEMTXATTRS_UNSPECIFIED)) {
  946. trace_amdvi_ir_err("failed to get irte");
  947. return -AMDVI_IR_GET_IRTE;
  948. }
  949. trace_amdvi_ir_irte_val(irte->val);
  950. return 0;
  951. }
  952. static int amdvi_int_remap_legacy(AMDVIState *iommu,
  953. MSIMessage *origin,
  954. MSIMessage *translated,
  955. uint64_t *dte,
  956. X86IOMMUIrq *irq,
  957. uint16_t sid)
  958. {
  959. int ret;
  960. union irte irte;
  961. /* get interrupt remapping table */
  962. ret = amdvi_get_irte(iommu, origin, dte, &irte, sid);
  963. if (ret < 0) {
  964. return ret;
  965. }
  966. if (!irte.fields.valid) {
  967. trace_amdvi_ir_target_abort("RemapEn is disabled");
  968. return -AMDVI_IR_TARGET_ABORT;
  969. }
  970. if (irte.fields.guest_mode) {
  971. error_report_once("guest mode is not zero");
  972. return -AMDVI_IR_ERR;
  973. }
  974. if (irte.fields.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) {
  975. error_report_once("reserved int_type");
  976. return -AMDVI_IR_ERR;
  977. }
  978. irq->delivery_mode = irte.fields.int_type;
  979. irq->vector = irte.fields.vector;
  980. irq->dest_mode = irte.fields.dm;
  981. irq->redir_hint = irte.fields.rq_eoi;
  982. irq->dest = irte.fields.destination;
  983. return 0;
  984. }
  985. static int amdvi_get_irte_ga(AMDVIState *s, MSIMessage *origin, uint64_t *dte,
  986. struct irte_ga *irte, uint16_t devid)
  987. {
  988. uint64_t irte_root, offset;
  989. irte_root = dte[2] & AMDVI_IR_PHYS_ADDR_MASK;
  990. offset = (origin->data & AMDVI_IRTE_OFFSET) << 4;
  991. trace_amdvi_ir_irte(irte_root, offset);
  992. if (dma_memory_read(&address_space_memory, irte_root + offset,
  993. irte, sizeof(*irte), MEMTXATTRS_UNSPECIFIED)) {
  994. trace_amdvi_ir_err("failed to get irte_ga");
  995. return -AMDVI_IR_GET_IRTE;
  996. }
  997. trace_amdvi_ir_irte_ga_val(irte->hi.val, irte->lo.val);
  998. return 0;
  999. }
  1000. static int amdvi_int_remap_ga(AMDVIState *iommu,
  1001. MSIMessage *origin,
  1002. MSIMessage *translated,
  1003. uint64_t *dte,
  1004. X86IOMMUIrq *irq,
  1005. uint16_t sid)
  1006. {
  1007. int ret;
  1008. struct irte_ga irte;
  1009. /* get interrupt remapping table */
  1010. ret = amdvi_get_irte_ga(iommu, origin, dte, &irte, sid);
  1011. if (ret < 0) {
  1012. return ret;
  1013. }
  1014. if (!irte.lo.fields_remap.valid) {
  1015. trace_amdvi_ir_target_abort("RemapEn is disabled");
  1016. return -AMDVI_IR_TARGET_ABORT;
  1017. }
  1018. if (irte.lo.fields_remap.guest_mode) {
  1019. error_report_once("guest mode is not zero");
  1020. return -AMDVI_IR_ERR;
  1021. }
  1022. if (irte.lo.fields_remap.int_type > AMDVI_IOAPIC_INT_TYPE_ARBITRATED) {
  1023. error_report_once("reserved int_type is set");
  1024. return -AMDVI_IR_ERR;
  1025. }
  1026. irq->delivery_mode = irte.lo.fields_remap.int_type;
  1027. irq->vector = irte.hi.fields.vector;
  1028. irq->dest_mode = irte.lo.fields_remap.dm;
  1029. irq->redir_hint = irte.lo.fields_remap.rq_eoi;
  1030. if (iommu->xtsup) {
  1031. irq->dest = irte.lo.fields_remap.destination |
  1032. (irte.hi.fields.destination_hi << 24);
  1033. } else {
  1034. irq->dest = irte.lo.fields_remap.destination & 0xff;
  1035. }
  1036. return 0;
  1037. }
  1038. static int __amdvi_int_remap_msi(AMDVIState *iommu,
  1039. MSIMessage *origin,
  1040. MSIMessage *translated,
  1041. uint64_t *dte,
  1042. X86IOMMUIrq *irq,
  1043. uint16_t sid)
  1044. {
  1045. int ret;
  1046. uint8_t int_ctl;
  1047. int_ctl = (dte[2] >> AMDVI_IR_INTCTL_SHIFT) & 3;
  1048. trace_amdvi_ir_intctl(int_ctl);
  1049. switch (int_ctl) {
  1050. case AMDVI_IR_INTCTL_PASS:
  1051. memcpy(translated, origin, sizeof(*origin));
  1052. return 0;
  1053. case AMDVI_IR_INTCTL_REMAP:
  1054. break;
  1055. case AMDVI_IR_INTCTL_ABORT:
  1056. trace_amdvi_ir_target_abort("int_ctl abort");
  1057. return -AMDVI_IR_TARGET_ABORT;
  1058. default:
  1059. trace_amdvi_ir_err("int_ctl reserved");
  1060. return -AMDVI_IR_ERR;
  1061. }
  1062. if (iommu->ga_enabled) {
  1063. ret = amdvi_int_remap_ga(iommu, origin, translated, dte, irq, sid);
  1064. } else {
  1065. ret = amdvi_int_remap_legacy(iommu, origin, translated, dte, irq, sid);
  1066. }
  1067. return ret;
  1068. }
  1069. /* Interrupt remapping for MSI/MSI-X entry */
  1070. static int amdvi_int_remap_msi(AMDVIState *iommu,
  1071. MSIMessage *origin,
  1072. MSIMessage *translated,
  1073. uint16_t sid)
  1074. {
  1075. int ret = 0;
  1076. uint64_t pass = 0;
  1077. uint64_t dte[4] = { 0 };
  1078. X86IOMMUIrq irq = { 0 };
  1079. uint8_t dest_mode, delivery_mode;
  1080. assert(origin && translated);
  1081. /*
  1082. * When IOMMU is enabled, interrupt remap request will come either from
  1083. * IO-APIC or PCI device. If interrupt is from PCI device then it will
  1084. * have a valid requester id but if the interrupt is from IO-APIC
  1085. * then requester id will be invalid.
  1086. */
  1087. if (sid == X86_IOMMU_SID_INVALID) {
  1088. sid = AMDVI_IOAPIC_SB_DEVID;
  1089. }
  1090. trace_amdvi_ir_remap_msi_req(origin->address, origin->data, sid);
  1091. /* check if device table entry is set before we go further. */
  1092. if (!iommu || !iommu->devtab_len) {
  1093. memcpy(translated, origin, sizeof(*origin));
  1094. goto out;
  1095. }
  1096. if (!amdvi_get_dte(iommu, sid, dte)) {
  1097. return -AMDVI_IR_ERR;
  1098. }
  1099. /* Check if IR is enabled in DTE */
  1100. if (!(dte[2] & AMDVI_IR_REMAP_ENABLE)) {
  1101. memcpy(translated, origin, sizeof(*origin));
  1102. goto out;
  1103. }
  1104. /* validate that we are configure with intremap=on */
  1105. if (!x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu))) {
  1106. trace_amdvi_err("Interrupt remapping is enabled in the guest but "
  1107. "not in the host. Use intremap=on to enable interrupt "
  1108. "remapping in amd-iommu.");
  1109. return -AMDVI_IR_ERR;
  1110. }
  1111. if (origin->address < AMDVI_INT_ADDR_FIRST ||
  1112. origin->address + sizeof(origin->data) > AMDVI_INT_ADDR_LAST + 1) {
  1113. trace_amdvi_err("MSI is not from IOAPIC.");
  1114. return -AMDVI_IR_ERR;
  1115. }
  1116. /*
  1117. * The MSI data register [10:8] are used to get the upstream interrupt type.
  1118. *
  1119. * See MSI/MSI-X format:
  1120. * https://pdfs.semanticscholar.org/presentation/9420/c279e942eca568157711ef5c92b800c40a79.pdf
  1121. * (page 5)
  1122. */
  1123. delivery_mode = (origin->data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 7;
  1124. switch (delivery_mode) {
  1125. case AMDVI_IOAPIC_INT_TYPE_FIXED:
  1126. case AMDVI_IOAPIC_INT_TYPE_ARBITRATED:
  1127. trace_amdvi_ir_delivery_mode("fixed/arbitrated");
  1128. ret = __amdvi_int_remap_msi(iommu, origin, translated, dte, &irq, sid);
  1129. if (ret < 0) {
  1130. goto remap_fail;
  1131. } else {
  1132. /* Translate IRQ to MSI messages */
  1133. x86_iommu_irq_to_msi_message(&irq, translated);
  1134. goto out;
  1135. }
  1136. break;
  1137. case AMDVI_IOAPIC_INT_TYPE_SMI:
  1138. error_report("SMI is not supported!");
  1139. ret = -AMDVI_IR_ERR;
  1140. break;
  1141. case AMDVI_IOAPIC_INT_TYPE_NMI:
  1142. pass = dte[3] & AMDVI_DEV_NMI_PASS_MASK;
  1143. trace_amdvi_ir_delivery_mode("nmi");
  1144. break;
  1145. case AMDVI_IOAPIC_INT_TYPE_INIT:
  1146. pass = dte[3] & AMDVI_DEV_INT_PASS_MASK;
  1147. trace_amdvi_ir_delivery_mode("init");
  1148. break;
  1149. case AMDVI_IOAPIC_INT_TYPE_EINT:
  1150. pass = dte[3] & AMDVI_DEV_EINT_PASS_MASK;
  1151. trace_amdvi_ir_delivery_mode("eint");
  1152. break;
  1153. default:
  1154. trace_amdvi_ir_delivery_mode("unsupported delivery_mode");
  1155. ret = -AMDVI_IR_ERR;
  1156. break;
  1157. }
  1158. if (ret < 0) {
  1159. goto remap_fail;
  1160. }
  1161. /*
  1162. * The MSI address register bit[2] is used to get the destination
  1163. * mode. The dest_mode 1 is valid for fixed and arbitrated interrupts
  1164. * only.
  1165. */
  1166. dest_mode = (origin->address >> MSI_ADDR_DEST_MODE_SHIFT) & 1;
  1167. if (dest_mode) {
  1168. trace_amdvi_ir_err("invalid dest_mode");
  1169. ret = -AMDVI_IR_ERR;
  1170. goto remap_fail;
  1171. }
  1172. if (pass) {
  1173. memcpy(translated, origin, sizeof(*origin));
  1174. } else {
  1175. trace_amdvi_ir_err("passthrough is not enabled");
  1176. ret = -AMDVI_IR_ERR;
  1177. goto remap_fail;
  1178. }
  1179. out:
  1180. trace_amdvi_ir_remap_msi(origin->address, origin->data,
  1181. translated->address, translated->data);
  1182. return 0;
  1183. remap_fail:
  1184. return ret;
  1185. }
  1186. static int amdvi_int_remap(X86IOMMUState *iommu,
  1187. MSIMessage *origin,
  1188. MSIMessage *translated,
  1189. uint16_t sid)
  1190. {
  1191. return amdvi_int_remap_msi(AMD_IOMMU_DEVICE(iommu), origin,
  1192. translated, sid);
  1193. }
  1194. static MemTxResult amdvi_mem_ir_write(void *opaque, hwaddr addr,
  1195. uint64_t value, unsigned size,
  1196. MemTxAttrs attrs)
  1197. {
  1198. int ret;
  1199. MSIMessage from = { 0, 0 }, to = { 0, 0 };
  1200. uint16_t sid = AMDVI_IOAPIC_SB_DEVID;
  1201. from.address = (uint64_t) addr + AMDVI_INT_ADDR_FIRST;
  1202. from.data = (uint32_t) value;
  1203. trace_amdvi_mem_ir_write_req(addr, value, size);
  1204. if (!attrs.unspecified) {
  1205. /* We have explicit Source ID */
  1206. sid = attrs.requester_id;
  1207. }
  1208. ret = amdvi_int_remap_msi(opaque, &from, &to, sid);
  1209. if (ret < 0) {
  1210. /* TODO: log the event using IOMMU log event interface */
  1211. error_report_once("failed to remap interrupt from devid 0x%x", sid);
  1212. return MEMTX_ERROR;
  1213. }
  1214. apic_get_class(NULL)->send_msi(&to);
  1215. trace_amdvi_mem_ir_write(to.address, to.data);
  1216. return MEMTX_OK;
  1217. }
  1218. static MemTxResult amdvi_mem_ir_read(void *opaque, hwaddr addr,
  1219. uint64_t *data, unsigned size,
  1220. MemTxAttrs attrs)
  1221. {
  1222. return MEMTX_OK;
  1223. }
  1224. static const MemoryRegionOps amdvi_ir_ops = {
  1225. .read_with_attrs = amdvi_mem_ir_read,
  1226. .write_with_attrs = amdvi_mem_ir_write,
  1227. .endianness = DEVICE_LITTLE_ENDIAN,
  1228. .impl = {
  1229. .min_access_size = 4,
  1230. .max_access_size = 4,
  1231. },
  1232. .valid = {
  1233. .min_access_size = 4,
  1234. .max_access_size = 4,
  1235. }
  1236. };
  1237. static AddressSpace *amdvi_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
  1238. {
  1239. char name[128];
  1240. AMDVIState *s = opaque;
  1241. AMDVIAddressSpace **iommu_as, *amdvi_dev_as;
  1242. int bus_num = pci_bus_num(bus);
  1243. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  1244. iommu_as = s->address_spaces[bus_num];
  1245. /* allocate memory during the first run */
  1246. if (!iommu_as) {
  1247. iommu_as = g_new0(AMDVIAddressSpace *, PCI_DEVFN_MAX);
  1248. s->address_spaces[bus_num] = iommu_as;
  1249. }
  1250. /* set up AMD-Vi region */
  1251. if (!iommu_as[devfn]) {
  1252. snprintf(name, sizeof(name), "amd_iommu_devfn_%d", devfn);
  1253. iommu_as[devfn] = g_new0(AMDVIAddressSpace, 1);
  1254. iommu_as[devfn]->bus_num = (uint8_t)bus_num;
  1255. iommu_as[devfn]->devfn = (uint8_t)devfn;
  1256. iommu_as[devfn]->iommu_state = s;
  1257. amdvi_dev_as = iommu_as[devfn];
  1258. /*
  1259. * Memory region relationships looks like (Address range shows
  1260. * only lower 32 bits to make it short in length...):
  1261. *
  1262. * |--------------------+-------------------+----------|
  1263. * | Name | Address range | Priority |
  1264. * |--------------------+-------------------+----------+
  1265. * | amdvi-root | 00000000-ffffffff | 0 |
  1266. * | amdvi-iommu_nodma | 00000000-ffffffff | 0 |
  1267. * | amdvi-iommu_ir | fee00000-feefffff | 1 |
  1268. * |--------------------+-------------------+----------|
  1269. */
  1270. memory_region_init_iommu(&amdvi_dev_as->iommu,
  1271. sizeof(amdvi_dev_as->iommu),
  1272. TYPE_AMD_IOMMU_MEMORY_REGION,
  1273. OBJECT(s),
  1274. "amd_iommu", UINT64_MAX);
  1275. memory_region_init(&amdvi_dev_as->root, OBJECT(s),
  1276. "amdvi_root", UINT64_MAX);
  1277. address_space_init(&amdvi_dev_as->as, &amdvi_dev_as->root, name);
  1278. memory_region_add_subregion_overlap(&amdvi_dev_as->root, 0,
  1279. MEMORY_REGION(&amdvi_dev_as->iommu),
  1280. 0);
  1281. /* Build the DMA Disabled alias to shared memory */
  1282. memory_region_init_alias(&amdvi_dev_as->iommu_nodma, OBJECT(s),
  1283. "amdvi-sys", &s->mr_sys, 0,
  1284. memory_region_size(&s->mr_sys));
  1285. memory_region_add_subregion_overlap(&amdvi_dev_as->root, 0,
  1286. &amdvi_dev_as->iommu_nodma,
  1287. 0);
  1288. /* Build the Interrupt Remapping alias to shared memory */
  1289. memory_region_init_alias(&amdvi_dev_as->iommu_ir, OBJECT(s),
  1290. "amdvi-ir", &s->mr_ir, 0,
  1291. memory_region_size(&s->mr_ir));
  1292. memory_region_add_subregion_overlap(MEMORY_REGION(&amdvi_dev_as->iommu),
  1293. AMDVI_INT_ADDR_FIRST,
  1294. &amdvi_dev_as->iommu_ir, 1);
  1295. if (!x86_iommu->pt_supported) {
  1296. memory_region_set_enabled(&amdvi_dev_as->iommu_nodma, false);
  1297. memory_region_set_enabled(MEMORY_REGION(&amdvi_dev_as->iommu),
  1298. true);
  1299. } else {
  1300. memory_region_set_enabled(MEMORY_REGION(&amdvi_dev_as->iommu),
  1301. false);
  1302. memory_region_set_enabled(&amdvi_dev_as->iommu_nodma, true);
  1303. }
  1304. }
  1305. return &iommu_as[devfn]->as;
  1306. }
  1307. static const PCIIOMMUOps amdvi_iommu_ops = {
  1308. .get_address_space = amdvi_host_dma_iommu,
  1309. };
  1310. static const MemoryRegionOps mmio_mem_ops = {
  1311. .read = amdvi_mmio_read,
  1312. .write = amdvi_mmio_write,
  1313. .endianness = DEVICE_LITTLE_ENDIAN,
  1314. .impl = {
  1315. .min_access_size = 1,
  1316. .max_access_size = 8,
  1317. .unaligned = false,
  1318. },
  1319. .valid = {
  1320. .min_access_size = 1,
  1321. .max_access_size = 8,
  1322. }
  1323. };
  1324. static int amdvi_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
  1325. IOMMUNotifierFlag old,
  1326. IOMMUNotifierFlag new,
  1327. Error **errp)
  1328. {
  1329. AMDVIAddressSpace *as = container_of(iommu, AMDVIAddressSpace, iommu);
  1330. if (new & IOMMU_NOTIFIER_MAP) {
  1331. error_setg(errp,
  1332. "device %02x.%02x.%x requires iommu notifier which is not "
  1333. "currently supported", as->bus_num, PCI_SLOT(as->devfn),
  1334. PCI_FUNC(as->devfn));
  1335. return -EINVAL;
  1336. }
  1337. return 0;
  1338. }
  1339. static void amdvi_init(AMDVIState *s)
  1340. {
  1341. amdvi_iotlb_reset(s);
  1342. s->devtab_len = 0;
  1343. s->cmdbuf_len = 0;
  1344. s->cmdbuf_head = 0;
  1345. s->cmdbuf_tail = 0;
  1346. s->evtlog_head = 0;
  1347. s->evtlog_tail = 0;
  1348. s->excl_enabled = false;
  1349. s->excl_allow = false;
  1350. s->mmio_enabled = false;
  1351. s->enabled = false;
  1352. s->ats_enabled = false;
  1353. s->cmdbuf_enabled = false;
  1354. /* reset MMIO */
  1355. memset(s->mmior, 0, AMDVI_MMIO_SIZE);
  1356. amdvi_set_quad(s, AMDVI_MMIO_EXT_FEATURES,
  1357. amdvi_extended_feature_register(s),
  1358. 0xffffffffffffffef, 0);
  1359. amdvi_set_quad(s, AMDVI_MMIO_STATUS, 0, 0x98, 0x67);
  1360. }
  1361. static void amdvi_pci_realize(PCIDevice *pdev, Error **errp)
  1362. {
  1363. AMDVIPCIState *s = AMD_IOMMU_PCI(pdev);
  1364. int ret;
  1365. ret = pci_add_capability(pdev, AMDVI_CAPAB_ID_SEC, 0,
  1366. AMDVI_CAPAB_SIZE, errp);
  1367. if (ret < 0) {
  1368. return;
  1369. }
  1370. s->capab_offset = ret;
  1371. ret = pci_add_capability(pdev, PCI_CAP_ID_MSI, 0,
  1372. AMDVI_CAPAB_REG_SIZE, errp);
  1373. if (ret < 0) {
  1374. return;
  1375. }
  1376. ret = pci_add_capability(pdev, PCI_CAP_ID_HT, 0,
  1377. AMDVI_CAPAB_REG_SIZE, errp);
  1378. if (ret < 0) {
  1379. return;
  1380. }
  1381. if (msi_init(pdev, 0, 1, true, false, errp) < 0) {
  1382. return;
  1383. }
  1384. /* reset device ident */
  1385. pci_config_set_prog_interface(pdev->config, 0);
  1386. /* reset AMDVI specific capabilities, all r/o */
  1387. pci_set_long(pdev->config + s->capab_offset, AMDVI_CAPAB_FEATURES);
  1388. pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_BAR_LOW,
  1389. AMDVI_BASE_ADDR & ~(0xffff0000));
  1390. pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_BAR_HIGH,
  1391. (AMDVI_BASE_ADDR & ~(0xffff)) >> 16);
  1392. pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_RANGE,
  1393. 0xff000000);
  1394. pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_MISC, 0);
  1395. pci_set_long(pdev->config + s->capab_offset + AMDVI_CAPAB_MISC,
  1396. AMDVI_MAX_PH_ADDR | AMDVI_MAX_GVA_ADDR | AMDVI_MAX_VA_ADDR);
  1397. }
  1398. static void amdvi_sysbus_reset(DeviceState *dev)
  1399. {
  1400. AMDVIState *s = AMD_IOMMU_DEVICE(dev);
  1401. msi_reset(&s->pci.dev);
  1402. amdvi_init(s);
  1403. }
  1404. static void amdvi_sysbus_realize(DeviceState *dev, Error **errp)
  1405. {
  1406. AMDVIState *s = AMD_IOMMU_DEVICE(dev);
  1407. MachineState *ms = MACHINE(qdev_get_machine());
  1408. PCMachineState *pcms = PC_MACHINE(ms);
  1409. X86MachineState *x86ms = X86_MACHINE(ms);
  1410. PCIBus *bus = pcms->pcibus;
  1411. s->iotlb = g_hash_table_new_full(amdvi_uint64_hash,
  1412. amdvi_uint64_equal, g_free, g_free);
  1413. /* This device should take care of IOMMU PCI properties */
  1414. if (!qdev_realize(DEVICE(&s->pci), &bus->qbus, errp)) {
  1415. return;
  1416. }
  1417. /* Pseudo address space under root PCI bus. */
  1418. x86ms->ioapic_as = amdvi_host_dma_iommu(bus, s, AMDVI_IOAPIC_SB_DEVID);
  1419. /* set up MMIO */
  1420. memory_region_init_io(&s->mr_mmio, OBJECT(s), &mmio_mem_ops, s,
  1421. "amdvi-mmio", AMDVI_MMIO_SIZE);
  1422. memory_region_add_subregion(get_system_memory(), AMDVI_BASE_ADDR,
  1423. &s->mr_mmio);
  1424. /* Create the share memory regions by all devices */
  1425. memory_region_init(&s->mr_sys, OBJECT(s), "amdvi-sys", UINT64_MAX);
  1426. /* set up the DMA disabled memory region */
  1427. memory_region_init_alias(&s->mr_nodma, OBJECT(s),
  1428. "amdvi-nodma", get_system_memory(), 0,
  1429. memory_region_size(get_system_memory()));
  1430. memory_region_add_subregion_overlap(&s->mr_sys, 0,
  1431. &s->mr_nodma, 0);
  1432. /* set up the Interrupt Remapping memory region */
  1433. memory_region_init_io(&s->mr_ir, OBJECT(s), &amdvi_ir_ops,
  1434. s, "amdvi-ir", AMDVI_INT_ADDR_SIZE);
  1435. memory_region_add_subregion_overlap(&s->mr_sys, AMDVI_INT_ADDR_FIRST,
  1436. &s->mr_ir, 1);
  1437. if (kvm_enabled() && x86ms->apic_id_limit > 255 && !s->xtsup) {
  1438. error_report("AMD IOMMU with x2APIC configuration requires xtsup=on");
  1439. exit(EXIT_FAILURE);
  1440. }
  1441. pci_setup_iommu(bus, &amdvi_iommu_ops, s);
  1442. amdvi_init(s);
  1443. }
  1444. static const Property amdvi_properties[] = {
  1445. DEFINE_PROP_BOOL("xtsup", AMDVIState, xtsup, false),
  1446. };
  1447. static const VMStateDescription vmstate_amdvi_sysbus = {
  1448. .name = "amd-iommu",
  1449. .unmigratable = 1
  1450. };
  1451. static void amdvi_sysbus_instance_init(Object *klass)
  1452. {
  1453. AMDVIState *s = AMD_IOMMU_DEVICE(klass);
  1454. object_initialize(&s->pci, sizeof(s->pci), TYPE_AMD_IOMMU_PCI);
  1455. }
  1456. static void amdvi_sysbus_class_init(ObjectClass *klass, void *data)
  1457. {
  1458. DeviceClass *dc = DEVICE_CLASS(klass);
  1459. X86IOMMUClass *dc_class = X86_IOMMU_DEVICE_CLASS(klass);
  1460. device_class_set_legacy_reset(dc, amdvi_sysbus_reset);
  1461. dc->vmsd = &vmstate_amdvi_sysbus;
  1462. dc->hotpluggable = false;
  1463. dc_class->realize = amdvi_sysbus_realize;
  1464. dc_class->int_remap = amdvi_int_remap;
  1465. set_bit(DEVICE_CATEGORY_MISC, dc->categories);
  1466. dc->desc = "AMD IOMMU (AMD-Vi) DMA Remapping device";
  1467. device_class_set_props(dc, amdvi_properties);
  1468. }
  1469. static const TypeInfo amdvi_sysbus = {
  1470. .name = TYPE_AMD_IOMMU_DEVICE,
  1471. .parent = TYPE_X86_IOMMU_DEVICE,
  1472. .instance_size = sizeof(AMDVIState),
  1473. .instance_init = amdvi_sysbus_instance_init,
  1474. .class_init = amdvi_sysbus_class_init
  1475. };
  1476. static void amdvi_pci_class_init(ObjectClass *klass, void *data)
  1477. {
  1478. DeviceClass *dc = DEVICE_CLASS(klass);
  1479. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1480. k->vendor_id = PCI_VENDOR_ID_AMD;
  1481. k->class_id = 0x0806;
  1482. k->realize = amdvi_pci_realize;
  1483. set_bit(DEVICE_CATEGORY_MISC, dc->categories);
  1484. dc->desc = "AMD IOMMU (AMD-Vi) DMA Remapping device";
  1485. }
  1486. static const TypeInfo amdvi_pci = {
  1487. .name = TYPE_AMD_IOMMU_PCI,
  1488. .parent = TYPE_PCI_DEVICE,
  1489. .instance_size = sizeof(AMDVIPCIState),
  1490. .class_init = amdvi_pci_class_init,
  1491. .interfaces = (InterfaceInfo[]) {
  1492. { INTERFACE_CONVENTIONAL_PCI_DEVICE },
  1493. { },
  1494. },
  1495. };
  1496. static void amdvi_iommu_memory_region_class_init(ObjectClass *klass, void *data)
  1497. {
  1498. IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
  1499. imrc->translate = amdvi_translate;
  1500. imrc->notify_flag_changed = amdvi_iommu_notify_flag_changed;
  1501. }
  1502. static const TypeInfo amdvi_iommu_memory_region_info = {
  1503. .parent = TYPE_IOMMU_MEMORY_REGION,
  1504. .name = TYPE_AMD_IOMMU_MEMORY_REGION,
  1505. .class_init = amdvi_iommu_memory_region_class_init,
  1506. };
  1507. static void amdvi_register_types(void)
  1508. {
  1509. type_register_static(&amdvi_pci);
  1510. type_register_static(&amdvi_sysbus);
  1511. type_register_static(&amdvi_iommu_memory_region_info);
  1512. }
  1513. type_init(amdvi_register_types);