1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061 |
- /*
- * QEMU AVR CPU
- *
- * Copyright (c) 2019-2020 Michael Rolnik
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see
- * <http://www.gnu.org/licenses/lgpl-2.1.html>
- */
- #include "qemu/osdep.h"
- #include "qemu/qemu-print.h"
- #include "tcg/tcg.h"
- #include "cpu.h"
- #include "exec/exec-all.h"
- #include "tcg/tcg-op.h"
- #include "exec/cpu_ldst.h"
- #include "exec/helper-proto.h"
- #include "exec/helper-gen.h"
- #include "exec/log.h"
- #include "exec/translator.h"
- #include "exec/gen-icount.h"
- /*
- * Define if you want a BREAK instruction translated to a breakpoint
- * Active debugging connection is assumed
- * This is for
- * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests
- * tests
- */
- #undef BREAKPOINT_ON_BREAK
- static TCGv cpu_pc;
- static TCGv cpu_Cf;
- static TCGv cpu_Zf;
- static TCGv cpu_Nf;
- static TCGv cpu_Vf;
- static TCGv cpu_Sf;
- static TCGv cpu_Hf;
- static TCGv cpu_Tf;
- static TCGv cpu_If;
- static TCGv cpu_rampD;
- static TCGv cpu_rampX;
- static TCGv cpu_rampY;
- static TCGv cpu_rampZ;
- static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS];
- static TCGv cpu_eind;
- static TCGv cpu_sp;
- static TCGv cpu_skip;
- static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
- "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
- "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
- };
- #define REG(x) (cpu_r[x])
- enum {
- DISAS_EXIT = DISAS_TARGET_0, /* We want return to the cpu main loop. */
- DISAS_LOOKUP = DISAS_TARGET_1, /* We have a variable condition exit. */
- DISAS_CHAIN = DISAS_TARGET_2, /* We have a single condition exit. */
- };
- typedef struct DisasContext DisasContext;
- /* This is the state at translation time. */
- struct DisasContext {
- TranslationBlock *tb;
- CPUAVRState *env;
- CPUState *cs;
- target_long npc;
- uint32_t opcode;
- /* Routine used to access memory */
- int memidx;
- int bstate;
- int singlestep;
- /*
- * some AVR instructions can make the following instruction to be skipped
- * Let's name those instructions
- * A - instruction that can skip the next one
- * B - instruction that can be skipped. this depends on execution of A
- * there are two scenarios
- * 1. A and B belong to the same translation block
- * 2. A is the last instruction in the translation block and B is the last
- *
- * following variables are used to simplify the skipping logic, they are
- * used in the following manner (sketch)
- *
- * TCGLabel *skip_label = NULL;
- * if (ctx.skip_cond != TCG_COND_NEVER) {
- * skip_label = gen_new_label();
- * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label);
- * }
- *
- * if (free_skip_var0) {
- * tcg_temp_free(skip_var0);
- * free_skip_var0 = false;
- * }
- *
- * translate(&ctx);
- *
- * if (skip_label) {
- * gen_set_label(skip_label);
- * }
- */
- TCGv skip_var0;
- TCGv skip_var1;
- TCGCond skip_cond;
- bool free_skip_var0;
- };
- void avr_cpu_tcg_init(void)
- {
- int i;
- #define AVR_REG_OFFS(x) offsetof(CPUAVRState, x)
- cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc");
- cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf");
- cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf");
- cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf");
- cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf");
- cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf");
- cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf");
- cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf");
- cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If");
- cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD");
- cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX");
- cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY");
- cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ");
- cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind");
- cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp");
- cpu_skip = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(skip), "skip");
- for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) {
- cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]),
- reg_names[i]);
- }
- #undef AVR_REG_OFFS
- }
- static int to_regs_16_31_by_one(DisasContext *ctx, int indx)
- {
- return 16 + (indx % 16);
- }
- static int to_regs_16_23_by_one(DisasContext *ctx, int indx)
- {
- return 16 + (indx % 8);
- }
- static int to_regs_24_30_by_two(DisasContext *ctx, int indx)
- {
- return 24 + (indx % 4) * 2;
- }
- static int to_regs_00_30_by_two(DisasContext *ctx, int indx)
- {
- return (indx % 16) * 2;
- }
- static uint16_t next_word(DisasContext *ctx)
- {
- return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
- }
- static int append_16(DisasContext *ctx, int x)
- {
- return x << 16 | next_word(ctx);
- }
- static bool avr_have_feature(DisasContext *ctx, int feature)
- {
- if (!avr_feature(ctx->env, feature)) {
- gen_helper_unsupported(cpu_env);
- ctx->bstate = DISAS_NORETURN;
- return false;
- }
- return true;
- }
- static bool decode_insn(DisasContext *ctx, uint16_t insn);
- #include "decode_insn.c.inc"
- /*
- * Arithmetic Instructions
- */
- /*
- * Utility functions for updating status registers:
- *
- * - gen_add_CHf()
- * - gen_add_Vf()
- * - gen_sub_CHf()
- * - gen_sub_Vf()
- * - gen_NSf()
- * - gen_ZNSf()
- *
- */
- static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
- {
- TCGv t1 = tcg_temp_new_i32();
- TCGv t2 = tcg_temp_new_i32();
- TCGv t3 = tcg_temp_new_i32();
- tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
- tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
- tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
- tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
- tcg_gen_or_tl(t1, t1, t3);
- tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
- tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
- tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
- tcg_temp_free_i32(t3);
- tcg_temp_free_i32(t2);
- tcg_temp_free_i32(t1);
- }
- static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
- {
- TCGv t1 = tcg_temp_new_i32();
- TCGv t2 = tcg_temp_new_i32();
- /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */
- /* = (Rd ^ R) & ~(Rd ^ Rr) */
- tcg_gen_xor_tl(t1, Rd, R);
- tcg_gen_xor_tl(t2, Rd, Rr);
- tcg_gen_andc_tl(t1, t1, t2);
- tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
- tcg_temp_free_i32(t2);
- tcg_temp_free_i32(t1);
- }
- static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
- {
- TCGv t1 = tcg_temp_new_i32();
- TCGv t2 = tcg_temp_new_i32();
- TCGv t3 = tcg_temp_new_i32();
- tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
- tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
- tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
- tcg_gen_and_tl(t3, t3, R);
- tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
- tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
- tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
- tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
- tcg_temp_free_i32(t3);
- tcg_temp_free_i32(t2);
- tcg_temp_free_i32(t1);
- }
- static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
- {
- TCGv t1 = tcg_temp_new_i32();
- TCGv t2 = tcg_temp_new_i32();
- /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */
- /* = (Rd ^ R) & (Rd ^ R) */
- tcg_gen_xor_tl(t1, Rd, R);
- tcg_gen_xor_tl(t2, Rd, Rr);
- tcg_gen_and_tl(t1, t1, t2);
- tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
- tcg_temp_free_i32(t2);
- tcg_temp_free_i32(t1);
- }
- static void gen_NSf(TCGv R)
- {
- tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
- tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
- }
- static void gen_ZNSf(TCGv R)
- {
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- /* update status register */
- tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
- tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
- }
- /*
- * Adds two registers without the C Flag and places the result in the
- * destination register Rd.
- */
- static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_add_CHf(R, Rd, Rr);
- gen_add_Vf(R, Rd, Rr);
- gen_ZNSf(R);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Adds two registers and the contents of the C Flag and places the result in
- * the destination register Rd.
- */
- static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
- tcg_gen_add_tl(R, R, cpu_Cf);
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_add_CHf(R, Rd, Rr);
- gen_add_Vf(R, Rd, Rr);
- gen_ZNSf(R);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Adds an immediate value (0 - 63) to a register pair and places the result
- * in the register pair. This instruction operates on the upper four register
- * pairs, and is well suited for operations on the pointer registers. This
- * instruction is not available in all devices. Refer to the device specific
- * instruction set summary.
- */
- static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
- return true;
- }
- TCGv RdL = cpu_r[a->rd];
- TCGv RdH = cpu_r[a->rd + 1];
- int Imm = (a->imm);
- TCGv R = tcg_temp_new_i32();
- TCGv Rd = tcg_temp_new_i32();
- tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
- tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
- tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
- /* update status register */
- tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
- tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
- tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
- tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
- tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
- /* update output registers */
- tcg_gen_andi_tl(RdL, R, 0xff);
- tcg_gen_shri_tl(RdH, R, 8);
- tcg_temp_free_i32(Rd);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Subtracts two registers and places the result in the destination
- * register Rd.
- */
- static bool trans_SUB(DisasContext *ctx, arg_SUB *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
- gen_sub_CHf(R, Rd, Rr);
- gen_sub_Vf(R, Rd, Rr);
- gen_ZNSf(R);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Subtracts a register and a constant and places the result in the
- * destination register Rd. This instruction is working on Register R16 to R31
- * and is very well suited for operations on the X, Y, and Z-pointers.
- */
- static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = tcg_const_i32(a->imm);
- TCGv R = tcg_temp_new_i32();
- tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_sub_CHf(R, Rd, Rr);
- gen_sub_Vf(R, Rd, Rr);
- gen_ZNSf(R);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(R);
- tcg_temp_free_i32(Rr);
- return true;
- }
- /*
- * Subtracts two registers and subtracts with the C Flag and places the
- * result in the destination register Rd.
- */
- static bool trans_SBC(DisasContext *ctx, arg_SBC *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- TCGv zero = tcg_const_i32(0);
- tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
- tcg_gen_sub_tl(R, R, cpu_Cf);
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_sub_CHf(R, Rd, Rr);
- gen_sub_Vf(R, Rd, Rr);
- gen_NSf(R);
- /*
- * Previous value remains unchanged when the result is zero;
- * cleared otherwise.
- */
- tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(zero);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * SBCI -- Subtract Immediate with Carry
- */
- static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = tcg_const_i32(a->imm);
- TCGv R = tcg_temp_new_i32();
- TCGv zero = tcg_const_i32(0);
- tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
- tcg_gen_sub_tl(R, R, cpu_Cf);
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_sub_CHf(R, Rd, Rr);
- gen_sub_Vf(R, Rd, Rr);
- gen_NSf(R);
- /*
- * Previous value remains unchanged when the result is zero;
- * cleared otherwise.
- */
- tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(zero);
- tcg_temp_free_i32(R);
- tcg_temp_free_i32(Rr);
- return true;
- }
- /*
- * Subtracts an immediate value (0-63) from a register pair and places the
- * result in the register pair. This instruction operates on the upper four
- * register pairs, and is well suited for operations on the Pointer Registers.
- * This instruction is not available in all devices. Refer to the device
- * specific instruction set summary.
- */
- static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
- return true;
- }
- TCGv RdL = cpu_r[a->rd];
- TCGv RdH = cpu_r[a->rd + 1];
- int Imm = (a->imm);
- TCGv R = tcg_temp_new_i32();
- TCGv Rd = tcg_temp_new_i32();
- tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
- tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
- tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
- /* update status register */
- tcg_gen_andc_tl(cpu_Cf, R, Rd);
- tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
- tcg_gen_andc_tl(cpu_Vf, Rd, R);
- tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
- tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
- /* update output registers */
- tcg_gen_andi_tl(RdL, R, 0xff);
- tcg_gen_shri_tl(RdH, R, 8);
- tcg_temp_free_i32(Rd);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Performs the logical AND between the contents of register Rd and register
- * Rr and places the result in the destination register Rd.
- */
- static bool trans_AND(DisasContext *ctx, arg_AND *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
- /* update status register */
- tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- gen_ZNSf(R);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Performs the logical AND between the contents of register Rd and a constant
- * and places the result in the destination register Rd.
- */
- static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
- {
- TCGv Rd = cpu_r[a->rd];
- int Imm = (a->imm);
- tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
- /* update status register */
- tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
- gen_ZNSf(Rd);
- return true;
- }
- /*
- * Performs the logical OR between the contents of register Rd and register
- * Rr and places the result in the destination register Rd.
- */
- static bool trans_OR(DisasContext *ctx, arg_OR *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_or_tl(R, Rd, Rr);
- /* update status register */
- tcg_gen_movi_tl(cpu_Vf, 0);
- gen_ZNSf(R);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Performs the logical OR between the contents of register Rd and a
- * constant and places the result in the destination register Rd.
- */
- static bool trans_ORI(DisasContext *ctx, arg_ORI *a)
- {
- TCGv Rd = cpu_r[a->rd];
- int Imm = (a->imm);
- tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
- /* update status register */
- tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
- gen_ZNSf(Rd);
- return true;
- }
- /*
- * Performs the logical EOR between the contents of register Rd and
- * register Rr and places the result in the destination register Rd.
- */
- static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- tcg_gen_xor_tl(Rd, Rd, Rr);
- /* update status register */
- tcg_gen_movi_tl(cpu_Vf, 0);
- gen_ZNSf(Rd);
- return true;
- }
- /*
- * Clears the specified bits in register Rd. Performs the logical AND
- * between the contents of register Rd and the complement of the constant mask
- * K. The result will be placed in register Rd.
- */
- static bool trans_COM(DisasContext *ctx, arg_COM *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_xori_tl(Rd, Rd, 0xff);
- /* update status register */
- tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
- tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
- gen_ZNSf(Rd);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Replaces the contents of register Rd with its two's complement; the
- * value $80 is left unchanged.
- */
- static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv t0 = tcg_const_i32(0);
- TCGv R = tcg_temp_new_i32();
- tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_sub_CHf(R, t0, Rd);
- gen_sub_Vf(R, t0, Rd);
- gen_ZNSf(R);
- /* update output registers */
- tcg_gen_mov_tl(Rd, R);
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * Adds one -1- to the contents of register Rd and places the result in the
- * destination register Rd. The C Flag in SREG is not affected by the
- * operation, thus allowing the INC instruction to be used on a loop counter in
- * multiple-precision computations. When operating on unsigned numbers, only
- * BREQ and BRNE branches can be expected to perform consistently. When
- * operating on two's complement values, all signed branches are available.
- */
- static bool trans_INC(DisasContext *ctx, arg_INC *a)
- {
- TCGv Rd = cpu_r[a->rd];
- tcg_gen_addi_tl(Rd, Rd, 1);
- tcg_gen_andi_tl(Rd, Rd, 0xff);
- /* update status register */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */
- gen_ZNSf(Rd);
- return true;
- }
- /*
- * Subtracts one -1- from the contents of register Rd and places the result
- * in the destination register Rd. The C Flag in SREG is not affected by the
- * operation, thus allowing the DEC instruction to be used on a loop counter in
- * multiple-precision computations. When operating on unsigned values, only
- * BREQ and BRNE branches can be expected to perform consistently. When
- * operating on two's complement values, all signed branches are available.
- */
- static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
- {
- TCGv Rd = cpu_r[a->rd];
- tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
- tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
- /* update status register */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */
- gen_ZNSf(Rd);
- return true;
- }
- /*
- * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
- */
- static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
- return true;
- }
- TCGv R0 = cpu_r[0];
- TCGv R1 = cpu_r[1];
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
- tcg_gen_andi_tl(R0, R, 0xff);
- tcg_gen_shri_tl(R1, R, 8);
- /* update status register */
- tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
- */
- static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
- return true;
- }
- TCGv R0 = cpu_r[0];
- TCGv R1 = cpu_r[1];
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- TCGv t0 = tcg_temp_new_i32();
- TCGv t1 = tcg_temp_new_i32();
- tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
- tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
- tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
- tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
- tcg_gen_andi_tl(R0, R, 0xff);
- tcg_gen_shri_tl(R1, R, 8);
- /* update status register */
- tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- tcg_temp_free_i32(t1);
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
- * signed and an unsigned number.
- */
- static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
- return true;
- }
- TCGv R0 = cpu_r[0];
- TCGv R1 = cpu_r[1];
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- TCGv t0 = tcg_temp_new_i32();
- tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
- tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
- tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */
- tcg_gen_andi_tl(R0, R, 0xff);
- tcg_gen_shri_tl(R1, R, 8);
- /* update status register */
- tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * This instruction performs 8-bit x 8-bit -> 16-bit unsigned
- * multiplication and shifts the result one bit left.
- */
- static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
- return true;
- }
- TCGv R0 = cpu_r[0];
- TCGv R1 = cpu_r[1];
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
- /* update status register */
- tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- /* update output registers */
- tcg_gen_shli_tl(R, R, 1);
- tcg_gen_andi_tl(R0, R, 0xff);
- tcg_gen_shri_tl(R1, R, 8);
- tcg_gen_andi_tl(R1, R1, 0xff);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
- * and shifts the result one bit left.
- */
- static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
- return true;
- }
- TCGv R0 = cpu_r[0];
- TCGv R1 = cpu_r[1];
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- TCGv t0 = tcg_temp_new_i32();
- TCGv t1 = tcg_temp_new_i32();
- tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
- tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
- tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
- tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
- /* update status register */
- tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- /* update output registers */
- tcg_gen_shli_tl(R, R, 1);
- tcg_gen_andi_tl(R0, R, 0xff);
- tcg_gen_shri_tl(R1, R, 8);
- tcg_gen_andi_tl(R1, R1, 0xff);
- tcg_temp_free_i32(t1);
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
- * and shifts the result one bit left.
- */
- static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
- return true;
- }
- TCGv R0 = cpu_r[0];
- TCGv R1 = cpu_r[1];
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- TCGv t0 = tcg_temp_new_i32();
- tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
- tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
- tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
- /* update status register */
- tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- /* update output registers */
- tcg_gen_shli_tl(R, R, 1);
- tcg_gen_andi_tl(R0, R, 0xff);
- tcg_gen_shri_tl(R1, R, 8);
- tcg_gen_andi_tl(R1, R1, 0xff);
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * The module is an instruction set extension to the AVR CPU, performing
- * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
- * the CPU register file, registers R0-R7, where LSB of data is placed in LSB
- * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
- * parity bits) is placed in registers R8- R15, organized in the register file
- * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
- * instruction performs one round in the DES algorithm. Sixteen rounds must be
- * executed in increasing order to form the correct DES ciphertext or
- * plaintext. Intermediate results are stored in the register file (R0-R15)
- * after each DES instruction. The instruction's operand (K) determines which
- * round is executed, and the half carry flag (H) determines whether encryption
- * or decryption is performed. The DES algorithm is described in
- * "Specifications for the Data Encryption Standard" (Federal Information
- * Processing Standards Publication 46). Intermediate results in this
- * implementation differ from the standard because the initial permutation and
- * the inverse initial permutation are performed each iteration. This does not
- * affect the result in the final ciphertext or plaintext, but reduces
- * execution time.
- */
- static bool trans_DES(DisasContext *ctx, arg_DES *a)
- {
- /* TODO */
- if (!avr_have_feature(ctx, AVR_FEATURE_DES)) {
- return true;
- }
- qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
- return true;
- }
- /*
- * Branch Instructions
- */
- static void gen_jmp_ez(DisasContext *ctx)
- {
- tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
- tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
- ctx->bstate = DISAS_LOOKUP;
- }
- static void gen_jmp_z(DisasContext *ctx)
- {
- tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
- ctx->bstate = DISAS_LOOKUP;
- }
- static void gen_push_ret(DisasContext *ctx, int ret)
- {
- if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
- TCGv t0 = tcg_const_i32((ret & 0x0000ff));
- tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
- tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
- tcg_temp_free_i32(t0);
- } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
- TCGv t0 = tcg_const_i32((ret & 0x00ffff));
- tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
- tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
- tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
- tcg_temp_free_i32(t0);
- } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
- TCGv lo = tcg_const_i32((ret & 0x0000ff));
- TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
- tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
- tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
- tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
- tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
- tcg_temp_free_i32(lo);
- tcg_temp_free_i32(hi);
- }
- }
- static void gen_pop_ret(DisasContext *ctx, TCGv ret)
- {
- if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
- tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
- tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
- } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
- tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
- tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
- tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
- } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
- TCGv lo = tcg_temp_new_i32();
- TCGv hi = tcg_temp_new_i32();
- tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
- tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
- tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
- tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
- tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
- tcg_temp_free_i32(lo);
- tcg_temp_free_i32(hi);
- }
- }
- static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
- {
- TranslationBlock *tb = ctx->tb;
- if (ctx->singlestep == 0) {
- tcg_gen_goto_tb(n);
- tcg_gen_movi_i32(cpu_pc, dest);
- tcg_gen_exit_tb(tb, n);
- } else {
- tcg_gen_movi_i32(cpu_pc, dest);
- gen_helper_debug(cpu_env);
- tcg_gen_exit_tb(NULL, 0);
- }
- ctx->bstate = DISAS_NORETURN;
- }
- /*
- * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
- * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
- * instruction can address the entire memory from every address location. See
- * also JMP.
- */
- static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a)
- {
- int dst = ctx->npc + a->imm;
- gen_goto_tb(ctx, 0, dst);
- return true;
- }
- /*
- * Indirect jump to the address pointed to by the Z (16 bits) Pointer
- * Register in the Register File. The Z-pointer Register is 16 bits wide and
- * allows jump within the lowest 64K words (128KB) section of Program memory.
- * This instruction is not available in all devices. Refer to the device
- * specific instruction set summary.
- */
- static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
- return true;
- }
- gen_jmp_z(ctx);
- return true;
- }
- /*
- * Indirect jump to the address pointed to by the Z (16 bits) Pointer
- * Register in the Register File and the EIND Register in the I/O space. This
- * instruction allows for indirect jumps to the entire 4M (words) Program
- * memory space. See also IJMP. This instruction is not available in all
- * devices. Refer to the device specific instruction set summary.
- */
- static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
- return true;
- }
- gen_jmp_ez(ctx);
- return true;
- }
- /*
- * Jump to an address within the entire 4M (words) Program memory. See also
- * RJMP. This instruction is not available in all devices. Refer to the device
- * specific instruction set summary.0
- */
- static bool trans_JMP(DisasContext *ctx, arg_JMP *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
- return true;
- }
- gen_goto_tb(ctx, 0, a->imm);
- return true;
- }
- /*
- * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
- * return address (the instruction after the RCALL) is stored onto the Stack.
- * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
- * words (8KB) this instruction can address the entire memory from every
- * address location. The Stack Pointer uses a post-decrement scheme during
- * RCALL.
- */
- static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a)
- {
- int ret = ctx->npc;
- int dst = ctx->npc + a->imm;
- gen_push_ret(ctx, ret);
- gen_goto_tb(ctx, 0, dst);
- return true;
- }
- /*
- * Calls to a subroutine within the entire 4M (words) Program memory. The
- * return address (to the instruction after the CALL) will be stored onto the
- * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
- * CALL. This instruction is not available in all devices. Refer to the device
- * specific instruction set summary.
- */
- static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
- return true;
- }
- int ret = ctx->npc;
- gen_push_ret(ctx, ret);
- gen_jmp_z(ctx);
- return true;
- }
- /*
- * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
- * Register in the Register File and the EIND Register in the I/O space. This
- * instruction allows for indirect calls to the entire 4M (words) Program
- * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
- * during EICALL. This instruction is not available in all devices. Refer to
- * the device specific instruction set summary.
- */
- static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
- return true;
- }
- int ret = ctx->npc;
- gen_push_ret(ctx, ret);
- gen_jmp_ez(ctx);
- return true;
- }
- /*
- * Calls to a subroutine within the entire Program memory. The return
- * address (to the instruction after the CALL) will be stored onto the Stack.
- * (See also RCALL). The Stack Pointer uses a post-decrement scheme during
- * CALL. This instruction is not available in all devices. Refer to the device
- * specific instruction set summary.
- */
- static bool trans_CALL(DisasContext *ctx, arg_CALL *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
- return true;
- }
- int Imm = a->imm;
- int ret = ctx->npc;
- gen_push_ret(ctx, ret);
- gen_goto_tb(ctx, 0, Imm);
- return true;
- }
- /*
- * Returns from subroutine. The return address is loaded from the STACK.
- * The Stack Pointer uses a preincrement scheme during RET.
- */
- static bool trans_RET(DisasContext *ctx, arg_RET *a)
- {
- gen_pop_ret(ctx, cpu_pc);
- ctx->bstate = DISAS_LOOKUP;
- return true;
- }
- /*
- * Returns from interrupt. The return address is loaded from the STACK and
- * the Global Interrupt Flag is set. Note that the Status Register is not
- * automatically stored when entering an interrupt routine, and it is not
- * restored when returning from an interrupt routine. This must be handled by
- * the application program. The Stack Pointer uses a pre-increment scheme
- * during RETI.
- */
- static bool trans_RETI(DisasContext *ctx, arg_RETI *a)
- {
- gen_pop_ret(ctx, cpu_pc);
- tcg_gen_movi_tl(cpu_If, 1);
- /* Need to return to main loop to re-evaluate interrupts. */
- ctx->bstate = DISAS_EXIT;
- return true;
- }
- /*
- * This instruction performs a compare between two registers Rd and Rr, and
- * skips the next instruction if Rd = Rr.
- */
- static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a)
- {
- ctx->skip_cond = TCG_COND_EQ;
- ctx->skip_var0 = cpu_r[a->rd];
- ctx->skip_var1 = cpu_r[a->rr];
- return true;
- }
- /*
- * This instruction performs a compare between two registers Rd and Rr.
- * None of the registers are changed. All conditional branches can be used
- * after this instruction.
- */
- static bool trans_CP(DisasContext *ctx, arg_CP *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_sub_CHf(R, Rd, Rr);
- gen_sub_Vf(R, Rd, Rr);
- gen_ZNSf(R);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * This instruction performs a compare between two registers Rd and Rr and
- * also takes into account the previous carry. None of the registers are
- * changed. All conditional branches can be used after this instruction.
- */
- static bool trans_CPC(DisasContext *ctx, arg_CPC *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- TCGv R = tcg_temp_new_i32();
- TCGv zero = tcg_const_i32(0);
- tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
- tcg_gen_sub_tl(R, R, cpu_Cf);
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_sub_CHf(R, Rd, Rr);
- gen_sub_Vf(R, Rd, Rr);
- gen_NSf(R);
- /*
- * Previous value remains unchanged when the result is zero;
- * cleared otherwise.
- */
- tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
- tcg_temp_free_i32(zero);
- tcg_temp_free_i32(R);
- return true;
- }
- /*
- * This instruction performs a compare between register Rd and a constant.
- * The register is not changed. All conditional branches can be used after this
- * instruction.
- */
- static bool trans_CPI(DisasContext *ctx, arg_CPI *a)
- {
- TCGv Rd = cpu_r[a->rd];
- int Imm = a->imm;
- TCGv Rr = tcg_const_i32(Imm);
- TCGv R = tcg_temp_new_i32();
- tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
- tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
- /* update status register */
- gen_sub_CHf(R, Rd, Rr);
- gen_sub_Vf(R, Rd, Rr);
- gen_ZNSf(R);
- tcg_temp_free_i32(R);
- tcg_temp_free_i32(Rr);
- return true;
- }
- /*
- * This instruction tests a single bit in a register and skips the next
- * instruction if the bit is cleared.
- */
- static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a)
- {
- TCGv Rr = cpu_r[a->rr];
- ctx->skip_cond = TCG_COND_EQ;
- ctx->skip_var0 = tcg_temp_new();
- ctx->free_skip_var0 = true;
- tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit);
- return true;
- }
- /*
- * This instruction tests a single bit in a register and skips the next
- * instruction if the bit is set.
- */
- static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a)
- {
- TCGv Rr = cpu_r[a->rr];
- ctx->skip_cond = TCG_COND_NE;
- ctx->skip_var0 = tcg_temp_new();
- ctx->free_skip_var0 = true;
- tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit);
- return true;
- }
- /*
- * This instruction tests a single bit in an I/O Register and skips the
- * next instruction if the bit is cleared. This instruction operates on the
- * lower 32 I/O Registers -- addresses 0-31.
- */
- static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
- {
- TCGv temp = tcg_const_i32(a->reg);
- gen_helper_inb(temp, cpu_env, temp);
- tcg_gen_andi_tl(temp, temp, 1 << a->bit);
- ctx->skip_cond = TCG_COND_EQ;
- ctx->skip_var0 = temp;
- ctx->free_skip_var0 = true;
- return true;
- }
- /*
- * This instruction tests a single bit in an I/O Register and skips the
- * next instruction if the bit is set. This instruction operates on the lower
- * 32 I/O Registers -- addresses 0-31.
- */
- static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a)
- {
- TCGv temp = tcg_const_i32(a->reg);
- gen_helper_inb(temp, cpu_env, temp);
- tcg_gen_andi_tl(temp, temp, 1 << a->bit);
- ctx->skip_cond = TCG_COND_NE;
- ctx->skip_var0 = temp;
- ctx->free_skip_var0 = true;
- return true;
- }
- /*
- * Conditional relative branch. Tests a single bit in SREG and branches
- * relatively to PC if the bit is cleared. This instruction branches relatively
- * to PC in either direction (PC - 63 < = destination <= PC + 64). The
- * parameter k is the offset from PC and is represented in two's complement
- * form.
- */
- static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a)
- {
- TCGLabel *not_taken = gen_new_label();
- TCGv var;
- switch (a->bit) {
- case 0x00:
- var = cpu_Cf;
- break;
- case 0x01:
- var = cpu_Zf;
- break;
- case 0x02:
- var = cpu_Nf;
- break;
- case 0x03:
- var = cpu_Vf;
- break;
- case 0x04:
- var = cpu_Sf;
- break;
- case 0x05:
- var = cpu_Hf;
- break;
- case 0x06:
- var = cpu_Tf;
- break;
- case 0x07:
- var = cpu_If;
- break;
- default:
- g_assert_not_reached();
- }
- tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken);
- gen_goto_tb(ctx, 0, ctx->npc + a->imm);
- gen_set_label(not_taken);
- ctx->bstate = DISAS_CHAIN;
- return true;
- }
- /*
- * Conditional relative branch. Tests a single bit in SREG and branches
- * relatively to PC if the bit is set. This instruction branches relatively to
- * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
- * is the offset from PC and is represented in two's complement form.
- */
- static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
- {
- TCGLabel *not_taken = gen_new_label();
- TCGv var;
- switch (a->bit) {
- case 0x00:
- var = cpu_Cf;
- break;
- case 0x01:
- var = cpu_Zf;
- break;
- case 0x02:
- var = cpu_Nf;
- break;
- case 0x03:
- var = cpu_Vf;
- break;
- case 0x04:
- var = cpu_Sf;
- break;
- case 0x05:
- var = cpu_Hf;
- break;
- case 0x06:
- var = cpu_Tf;
- break;
- case 0x07:
- var = cpu_If;
- break;
- default:
- g_assert_not_reached();
- }
- tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken);
- gen_goto_tb(ctx, 0, ctx->npc + a->imm);
- gen_set_label(not_taken);
- ctx->bstate = DISAS_CHAIN;
- return true;
- }
- /*
- * Data Transfer Instructions
- */
- /*
- * in the gen_set_addr & gen_get_addr functions
- * H assumed to be in 0x00ff0000 format
- * M assumed to be in 0x000000ff format
- * L assumed to be in 0x000000ff format
- */
- static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
- {
- tcg_gen_andi_tl(L, addr, 0x000000ff);
- tcg_gen_andi_tl(M, addr, 0x0000ff00);
- tcg_gen_shri_tl(M, M, 8);
- tcg_gen_andi_tl(H, addr, 0x00ff0000);
- }
- static void gen_set_xaddr(TCGv addr)
- {
- gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
- }
- static void gen_set_yaddr(TCGv addr)
- {
- gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
- }
- static void gen_set_zaddr(TCGv addr)
- {
- gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
- }
- static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
- {
- TCGv addr = tcg_temp_new_i32();
- tcg_gen_deposit_tl(addr, M, H, 8, 8);
- tcg_gen_deposit_tl(addr, L, addr, 8, 16);
- return addr;
- }
- static TCGv gen_get_xaddr(void)
- {
- return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
- }
- static TCGv gen_get_yaddr(void)
- {
- return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
- }
- static TCGv gen_get_zaddr(void)
- {
- return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
- }
- /*
- * Load one byte indirect from data space to register and stores an clear
- * the bits in data space specified by the register. The instruction can only
- * be used towards internal SRAM. The data location is pointed to by the Z (16
- * bits) Pointer Register in the Register File. Memory access is limited to the
- * current data segment of 64KB. To access another data segment in devices with
- * more than 64KB data space, the RAMPZ in register in the I/O area has to be
- * changed. The Z-pointer Register is left unchanged by the operation. This
- * instruction is especially suited for clearing status bits stored in SRAM.
- */
- static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
- {
- if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
- gen_helper_fullwr(cpu_env, data, addr);
- } else {
- tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
- }
- }
- static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
- {
- if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
- gen_helper_fullrd(data, cpu_env, addr);
- } else {
- tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
- }
- }
- /*
- * This instruction makes a copy of one register into another. The source
- * register Rr is left unchanged, while the destination register Rd is loaded
- * with a copy of Rr.
- */
- static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv Rr = cpu_r[a->rr];
- tcg_gen_mov_tl(Rd, Rr);
- return true;
- }
- /*
- * This instruction makes a copy of one register pair into another register
- * pair. The source register pair Rr+1:Rr is left unchanged, while the
- * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This
- * instruction is not available in all devices. Refer to the device specific
- * instruction set summary.
- */
- static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
- return true;
- }
- TCGv RdL = cpu_r[a->rd];
- TCGv RdH = cpu_r[a->rd + 1];
- TCGv RrL = cpu_r[a->rr];
- TCGv RrH = cpu_r[a->rr + 1];
- tcg_gen_mov_tl(RdH, RrH);
- tcg_gen_mov_tl(RdL, RrL);
- return true;
- }
- /*
- * Loads an 8 bit constant directly to register 16 to 31.
- */
- static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
- {
- TCGv Rd = cpu_r[a->rd];
- int imm = a->imm;
- tcg_gen_movi_tl(Rd, imm);
- return true;
- }
- /*
- * Loads one byte from the data space to a register. For parts with SRAM,
- * the data space consists of the Register File, I/O memory and internal SRAM
- * (and external SRAM if applicable). For parts without SRAM, the data space
- * consists of the register file only. The EEPROM has a separate address space.
- * A 16-bit address must be supplied. Memory access is limited to the current
- * data segment of 64KB. The LDS instruction uses the RAMPD Register to access
- * memory above 64KB. To access another data segment in devices with more than
- * 64KB data space, the RAMPD in register in the I/O area has to be changed.
- * This instruction is not available in all devices. Refer to the device
- * specific instruction set summary.
- */
- static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = tcg_temp_new_i32();
- TCGv H = cpu_rampD;
- a->imm = next_word(ctx);
- tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
- tcg_gen_shli_tl(addr, addr, 16);
- tcg_gen_ori_tl(addr, addr, a->imm);
- gen_data_load(ctx, Rd, addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Loads one byte indirect from the data space to a register. For parts
- * with SRAM, the data space consists of the Register File, I/O memory and
- * internal SRAM (and external SRAM if applicable). For parts without SRAM, the
- * data space consists of the Register File only. In some parts the Flash
- * Memory has been mapped to the data space and can be read using this command.
- * The EEPROM has a separate address space. The data location is pointed to by
- * the X (16 bits) Pointer Register in the Register File. Memory access is
- * limited to the current data segment of 64KB. To access another data segment
- * in devices with more than 64KB data space, the RAMPX in register in the I/O
- * area has to be changed. The X-pointer Register can either be left unchanged
- * by the operation, or it can be post-incremented or predecremented. These
- * features are especially suited for accessing arrays, tables, and Stack
- * Pointer usage of the X-pointer Register. Note that only the low byte of the
- * X-pointer is updated in devices with no more than 256 bytes data space. For
- * such devices, the high byte of the pointer is not used by this instruction
- * and can be used for other purposes. The RAMPX Register in the I/O area is
- * updated in parts with more than 64KB data space or more than 64KB Program
- * memory, and the increment/decrement is added to the entire 24-bit address on
- * such devices. Not all variants of this instruction is available in all
- * devices. Refer to the device specific instruction set summary. In the
- * Reduced Core tinyAVR the LD instruction can be used to achieve the same
- * operation as LPM since the program memory is mapped to the data memory
- * space.
- */
- static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_xaddr();
- gen_data_load(ctx, Rd, addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_xaddr();
- gen_data_load(ctx, Rd, addr);
- tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
- gen_set_xaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_xaddr();
- tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
- gen_data_load(ctx, Rd, addr);
- gen_set_xaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Loads one byte indirect with or without displacement from the data space
- * to a register. For parts with SRAM, the data space consists of the Register
- * File, I/O memory and internal SRAM (and external SRAM if applicable). For
- * parts without SRAM, the data space consists of the Register File only. In
- * some parts the Flash Memory has been mapped to the data space and can be
- * read using this command. The EEPROM has a separate address space. The data
- * location is pointed to by the Y (16 bits) Pointer Register in the Register
- * File. Memory access is limited to the current data segment of 64KB. To
- * access another data segment in devices with more than 64KB data space, the
- * RAMPY in register in the I/O area has to be changed. The Y-pointer Register
- * can either be left unchanged by the operation, or it can be post-incremented
- * or predecremented. These features are especially suited for accessing
- * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
- * only the low byte of the Y-pointer is updated in devices with no more than
- * 256 bytes data space. For such devices, the high byte of the pointer is not
- * used by this instruction and can be used for other purposes. The RAMPY
- * Register in the I/O area is updated in parts with more than 64KB data space
- * or more than 64KB Program memory, and the increment/decrement/displacement
- * is added to the entire 24-bit address on such devices. Not all variants of
- * this instruction is available in all devices. Refer to the device specific
- * instruction set summary. In the Reduced Core tinyAVR the LD instruction can
- * be used to achieve the same operation as LPM since the program memory is
- * mapped to the data memory space.
- */
- static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_yaddr();
- gen_data_load(ctx, Rd, addr);
- tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
- gen_set_yaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_yaddr();
- tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
- gen_data_load(ctx, Rd, addr);
- gen_set_yaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_yaddr();
- tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
- gen_data_load(ctx, Rd, addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Loads one byte indirect with or without displacement from the data space
- * to a register. For parts with SRAM, the data space consists of the Register
- * File, I/O memory and internal SRAM (and external SRAM if applicable). For
- * parts without SRAM, the data space consists of the Register File only. In
- * some parts the Flash Memory has been mapped to the data space and can be
- * read using this command. The EEPROM has a separate address space. The data
- * location is pointed to by the Z (16 bits) Pointer Register in the Register
- * File. Memory access is limited to the current data segment of 64KB. To
- * access another data segment in devices with more than 64KB data space, the
- * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
- * can either be left unchanged by the operation, or it can be post-incremented
- * or predecremented. These features are especially suited for Stack Pointer
- * usage of the Z-pointer Register, however because the Z-pointer Register can
- * be used for indirect subroutine calls, indirect jumps and table lookup, it
- * is often more convenient to use the X or Y-pointer as a dedicated Stack
- * Pointer. Note that only the low byte of the Z-pointer is updated in devices
- * with no more than 256 bytes data space. For such devices, the high byte of
- * the pointer is not used by this instruction and can be used for other
- * purposes. The RAMPZ Register in the I/O area is updated in parts with more
- * than 64KB data space or more than 64KB Program memory, and the
- * increment/decrement/displacement is added to the entire 24-bit address on
- * such devices. Not all variants of this instruction is available in all
- * devices. Refer to the device specific instruction set summary. In the
- * Reduced Core tinyAVR the LD instruction can be used to achieve the same
- * operation as LPM since the program memory is mapped to the data memory
- * space. For using the Z-pointer for table lookup in Program memory see the
- * LPM and ELPM instructions.
- */
- static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- gen_data_load(ctx, Rd, addr);
- tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
- gen_set_zaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
- gen_data_load(ctx, Rd, addr);
- gen_set_zaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
- gen_data_load(ctx, Rd, addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Stores one byte from a Register to the data space. For parts with SRAM,
- * the data space consists of the Register File, I/O memory and internal SRAM
- * (and external SRAM if applicable). For parts without SRAM, the data space
- * consists of the Register File only. The EEPROM has a separate address space.
- * A 16-bit address must be supplied. Memory access is limited to the current
- * data segment of 64KB. The STS instruction uses the RAMPD Register to access
- * memory above 64KB. To access another data segment in devices with more than
- * 64KB data space, the RAMPD in register in the I/O area has to be changed.
- * This instruction is not available in all devices. Refer to the device
- * specific instruction set summary.
- */
- static bool trans_STS(DisasContext *ctx, arg_STS *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = tcg_temp_new_i32();
- TCGv H = cpu_rampD;
- a->imm = next_word(ctx);
- tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
- tcg_gen_shli_tl(addr, addr, 16);
- tcg_gen_ori_tl(addr, addr, a->imm);
- gen_data_store(ctx, Rd, addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Stores one byte indirect from a register to data space. For parts with SRAM,
- * the data space consists of the Register File, I/O memory, and internal SRAM
- * (and external SRAM if applicable). For parts without SRAM, the data space
- * consists of the Register File only. The EEPROM has a separate address space.
- *
- * The data location is pointed to by the X (16 bits) Pointer Register in the
- * Register File. Memory access is limited to the current data segment of 64KB.
- * To access another data segment in devices with more than 64KB data space, the
- * RAMPX in register in the I/O area has to be changed.
- *
- * The X-pointer Register can either be left unchanged by the operation, or it
- * can be post-incremented or pre-decremented. These features are especially
- * suited for accessing arrays, tables, and Stack Pointer usage of the
- * X-pointer Register. Note that only the low byte of the X-pointer is updated
- * in devices with no more than 256 bytes data space. For such devices, the high
- * byte of the pointer is not used by this instruction and can be used for other
- * purposes. The RAMPX Register in the I/O area is updated in parts with more
- * than 64KB data space or more than 64KB Program memory, and the increment /
- * decrement is added to the entire 24-bit address on such devices.
- */
- static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
- {
- TCGv Rd = cpu_r[a->rr];
- TCGv addr = gen_get_xaddr();
- gen_data_store(ctx, Rd, addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
- {
- TCGv Rd = cpu_r[a->rr];
- TCGv addr = gen_get_xaddr();
- gen_data_store(ctx, Rd, addr);
- tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
- gen_set_xaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
- {
- TCGv Rd = cpu_r[a->rr];
- TCGv addr = gen_get_xaddr();
- tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
- gen_data_store(ctx, Rd, addr);
- gen_set_xaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Stores one byte indirect with or without displacement from a register to data
- * space. For parts with SRAM, the data space consists of the Register File, I/O
- * memory, and internal SRAM (and external SRAM if applicable). For parts
- * without SRAM, the data space consists of the Register File only. The EEPROM
- * has a separate address space.
- *
- * The data location is pointed to by the Y (16 bits) Pointer Register in the
- * Register File. Memory access is limited to the current data segment of 64KB.
- * To access another data segment in devices with more than 64KB data space, the
- * RAMPY in register in the I/O area has to be changed.
- *
- * The Y-pointer Register can either be left unchanged by the operation, or it
- * can be post-incremented or pre-decremented. These features are especially
- * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
- * Register. Note that only the low byte of the Y-pointer is updated in devices
- * with no more than 256 bytes data space. For such devices, the high byte of
- * the pointer is not used by this instruction and can be used for other
- * purposes. The RAMPY Register in the I/O area is updated in parts with more
- * than 64KB data space or more than 64KB Program memory, and the increment /
- * decrement / displacement is added to the entire 24-bit address on such
- * devices.
- */
- static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_yaddr();
- gen_data_store(ctx, Rd, addr);
- tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
- gen_set_yaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_yaddr();
- tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
- gen_data_store(ctx, Rd, addr);
- gen_set_yaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_yaddr();
- tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
- gen_data_store(ctx, Rd, addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Stores one byte indirect with or without displacement from a register to data
- * space. For parts with SRAM, the data space consists of the Register File, I/O
- * memory, and internal SRAM (and external SRAM if applicable). For parts
- * without SRAM, the data space consists of the Register File only. The EEPROM
- * has a separate address space.
- *
- * The data location is pointed to by the Y (16 bits) Pointer Register in the
- * Register File. Memory access is limited to the current data segment of 64KB.
- * To access another data segment in devices with more than 64KB data space, the
- * RAMPY in register in the I/O area has to be changed.
- *
- * The Y-pointer Register can either be left unchanged by the operation, or it
- * can be post-incremented or pre-decremented. These features are especially
- * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
- * Register. Note that only the low byte of the Y-pointer is updated in devices
- * with no more than 256 bytes data space. For such devices, the high byte of
- * the pointer is not used by this instruction and can be used for other
- * purposes. The RAMPY Register in the I/O area is updated in parts with more
- * than 64KB data space or more than 64KB Program memory, and the increment /
- * decrement / displacement is added to the entire 24-bit address on such
- * devices.
- */
- static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- gen_data_store(ctx, Rd, addr);
- tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
- gen_set_zaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
- gen_data_store(ctx, Rd, addr);
- gen_set_zaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
- gen_data_store(ctx, Rd, addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Loads one byte pointed to by the Z-register into the destination
- * register Rd. This instruction features a 100% space effective constant
- * initialization or constant data fetch. The Program memory is organized in
- * 16-bit words while the Z-pointer is a byte address. Thus, the least
- * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
- * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
- * Program memory. The Zpointer Register can either be left unchanged by the
- * operation, or it can be incremented. The incrementation does not apply to
- * the RAMPZ Register.
- *
- * Devices with Self-Programming capability can use the LPM instruction to read
- * the Fuse and Lock bit values.
- */
- static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
- return true;
- }
- TCGv Rd = cpu_r[0];
- TCGv addr = tcg_temp_new_i32();
- TCGv H = cpu_r[31];
- TCGv L = cpu_r[30];
- tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
- tcg_gen_or_tl(addr, addr, L);
- tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
- return true;
- }
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = tcg_temp_new_i32();
- TCGv H = cpu_r[31];
- TCGv L = cpu_r[30];
- tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
- tcg_gen_or_tl(addr, addr, L);
- tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
- return true;
- }
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = tcg_temp_new_i32();
- TCGv H = cpu_r[31];
- TCGv L = cpu_r[30];
- tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
- tcg_gen_or_tl(addr, addr, L);
- tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
- tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
- tcg_gen_andi_tl(L, addr, 0xff);
- tcg_gen_shri_tl(addr, addr, 8);
- tcg_gen_andi_tl(H, addr, 0xff);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Loads one byte pointed to by the Z-register and the RAMPZ Register in
- * the I/O space, and places this byte in the destination register Rd. This
- * instruction features a 100% space effective constant initialization or
- * constant data fetch. The Program memory is organized in 16-bit words while
- * the Z-pointer is a byte address. Thus, the least significant bit of the
- * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
- * instruction can address the entire Program memory space. The Z-pointer
- * Register can either be left unchanged by the operation, or it can be
- * incremented. The incrementation applies to the entire 24-bit concatenation
- * of the RAMPZ and Z-pointer Registers.
- *
- * Devices with Self-Programming capability can use the ELPM instruction to
- * read the Fuse and Lock bit value.
- */
- static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
- return true;
- }
- TCGv Rd = cpu_r[0];
- TCGv addr = gen_get_zaddr();
- tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
- return true;
- }
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
- tcg_temp_free_i32(addr);
- return true;
- }
- static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
- return true;
- }
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
- tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
- gen_set_zaddr(addr);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * SPM can be used to erase a page in the Program memory, to write a page
- * in the Program memory (that is already erased), and to set Boot Loader Lock
- * bits. In some devices, the Program memory can be written one word at a time,
- * in other devices an entire page can be programmed simultaneously after first
- * filling a temporary page buffer. In all cases, the Program memory must be
- * erased one page at a time. When erasing the Program memory, the RAMPZ and
- * Z-register are used as page address. When writing the Program memory, the
- * RAMPZ and Z-register are used as page or word address, and the R1:R0
- * register pair is used as data(1). When setting the Boot Loader Lock bits,
- * the R1:R0 register pair is used as data. Refer to the device documentation
- * for detailed description of SPM usage. This instruction can address the
- * entire Program memory.
- *
- * The SPM instruction is not available in all devices. Refer to the device
- * specific instruction set summary.
- *
- * Note: 1. R1 determines the instruction high byte, and R0 determines the
- * instruction low byte.
- */
- static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
- {
- /* TODO */
- if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
- return true;
- }
- return true;
- }
- static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
- {
- /* TODO */
- if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
- return true;
- }
- return true;
- }
- /*
- * Loads data from the I/O Space (Ports, Timers, Configuration Registers,
- * etc.) into register Rd in the Register File.
- */
- static bool trans_IN(DisasContext *ctx, arg_IN *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv port = tcg_const_i32(a->imm);
- gen_helper_inb(Rd, cpu_env, port);
- tcg_temp_free_i32(port);
- return true;
- }
- /*
- * Stores data from register Rr in the Register File to I/O Space (Ports,
- * Timers, Configuration Registers, etc.).
- */
- static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv port = tcg_const_i32(a->imm);
- gen_helper_outb(cpu_env, port, Rd);
- tcg_temp_free_i32(port);
- return true;
- }
- /*
- * This instruction stores the contents of register Rr on the STACK. The
- * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is
- * not available in all devices. Refer to the device specific instruction set
- * summary.
- */
- static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
- {
- TCGv Rd = cpu_r[a->rd];
- gen_data_store(ctx, Rd, cpu_sp);
- tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
- return true;
- }
- /*
- * This instruction loads register Rd with a byte from the STACK. The Stack
- * Pointer is pre-incremented by 1 before the POP. This instruction is not
- * available in all devices. Refer to the device specific instruction set
- * summary.
- */
- static bool trans_POP(DisasContext *ctx, arg_POP *a)
- {
- /*
- * Using a temp to work around some strange behaviour:
- * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
- * gen_data_load(ctx, Rd, cpu_sp);
- * seems to cause the add to happen twice.
- * This doesn't happen if either the add or the load is removed.
- */
- TCGv t1 = tcg_temp_new_i32();
- TCGv Rd = cpu_r[a->rd];
- tcg_gen_addi_tl(t1, cpu_sp, 1);
- gen_data_load(ctx, Rd, t1);
- tcg_gen_mov_tl(cpu_sp, t1);
- return true;
- }
- /*
- * Exchanges one byte indirect between register and data space. The data
- * location is pointed to by the Z (16 bits) Pointer Register in the Register
- * File. Memory access is limited to the current data segment of 64KB. To
- * access another data segment in devices with more than 64KB data space, the
- * RAMPZ in register in the I/O area has to be changed.
- *
- * The Z-pointer Register is left unchanged by the operation. This instruction
- * is especially suited for writing/reading status bits stored in SRAM.
- */
- static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
- return true;
- }
- TCGv Rd = cpu_r[a->rd];
- TCGv t0 = tcg_temp_new_i32();
- TCGv addr = gen_get_zaddr();
- gen_data_load(ctx, t0, addr);
- gen_data_store(ctx, Rd, addr);
- tcg_gen_mov_tl(Rd, t0);
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Load one byte indirect from data space to register and set bits in data
- * space specified by the register. The instruction can only be used towards
- * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer
- * Register in the Register File. Memory access is limited to the current data
- * segment of 64KB. To access another data segment in devices with more than
- * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
- *
- * The Z-pointer Register is left unchanged by the operation. This instruction
- * is especially suited for setting status bits stored in SRAM.
- */
- static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
- return true;
- }
- TCGv Rr = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- TCGv t0 = tcg_temp_new_i32();
- TCGv t1 = tcg_temp_new_i32();
- gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
- tcg_gen_or_tl(t1, t0, Rr);
- tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
- gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
- tcg_temp_free_i32(t1);
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Load one byte indirect from data space to register and stores and clear
- * the bits in data space specified by the register. The instruction can
- * only be used towards internal SRAM. The data location is pointed to by
- * the Z (16 bits) Pointer Register in the Register File. Memory access is
- * limited to the current data segment of 64KB. To access another data
- * segment in devices with more than 64KB data space, the RAMPZ in register
- * in the I/O area has to be changed.
- *
- * The Z-pointer Register is left unchanged by the operation. This instruction
- * is especially suited for clearing status bits stored in SRAM.
- */
- static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
- return true;
- }
- TCGv Rr = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- TCGv t0 = tcg_temp_new_i32();
- TCGv t1 = tcg_temp_new_i32();
- gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
- tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */
- tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
- gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
- tcg_temp_free_i32(t1);
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Load one byte indirect from data space to register and toggles bits in
- * the data space specified by the register. The instruction can only be used
- * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer
- * Register in the Register File. Memory access is limited to the current data
- * segment of 64KB. To access another data segment in devices with more than
- * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
- *
- * The Z-pointer Register is left unchanged by the operation. This instruction
- * is especially suited for changing status bits stored in SRAM.
- */
- static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
- return true;
- }
- TCGv Rd = cpu_r[a->rd];
- TCGv addr = gen_get_zaddr();
- TCGv t0 = tcg_temp_new_i32();
- TCGv t1 = tcg_temp_new_i32();
- gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
- tcg_gen_xor_tl(t1, t0, Rd);
- tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
- gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
- tcg_temp_free_i32(t1);
- tcg_temp_free_i32(t0);
- tcg_temp_free_i32(addr);
- return true;
- }
- /*
- * Bit and Bit-test Instructions
- */
- static void gen_rshift_ZNVSf(TCGv R)
- {
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
- tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
- tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
- tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
- }
- /*
- * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
- * loaded into the C Flag of the SREG. This operation effectively divides an
- * unsigned value by two. The C Flag can be used to round the result.
- */
- static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
- {
- TCGv Rd = cpu_r[a->rd];
- tcg_gen_andi_tl(cpu_Cf, Rd, 1);
- tcg_gen_shri_tl(Rd, Rd, 1);
- /* update status register */
- tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
- tcg_gen_movi_tl(cpu_Nf, 0);
- tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
- tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
- return true;
- }
- /*
- * Shifts all bits in Rd one place to the right. The C Flag is shifted into
- * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined
- * with ASR, effectively divides multi-byte signed values by two. Combined with
- * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
- * can be used to round the result.
- */
- static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv t0 = tcg_temp_new_i32();
- tcg_gen_shli_tl(t0, cpu_Cf, 7);
- /* update status register */
- tcg_gen_andi_tl(cpu_Cf, Rd, 1);
- /* update output register */
- tcg_gen_shri_tl(Rd, Rd, 1);
- tcg_gen_or_tl(Rd, Rd, t0);
- /* update status register */
- gen_rshift_ZNVSf(Rd);
- tcg_temp_free_i32(t0);
- return true;
- }
- /*
- * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
- * is loaded into the C Flag of the SREG. This operation effectively divides a
- * signed value by two without changing its sign. The Carry Flag can be used to
- * round the result.
- */
- static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv t0 = tcg_temp_new_i32();
- /* update status register */
- tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
- /* update output register */
- tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
- tcg_gen_shri_tl(Rd, Rd, 1);
- tcg_gen_or_tl(Rd, Rd, t0);
- /* update status register */
- gen_rshift_ZNVSf(Rd);
- tcg_temp_free_i32(t0);
- return true;
- }
- /*
- * Swaps high and low nibbles in a register.
- */
- static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv t0 = tcg_temp_new_i32();
- TCGv t1 = tcg_temp_new_i32();
- tcg_gen_andi_tl(t0, Rd, 0x0f);
- tcg_gen_shli_tl(t0, t0, 4);
- tcg_gen_andi_tl(t1, Rd, 0xf0);
- tcg_gen_shri_tl(t1, t1, 4);
- tcg_gen_or_tl(Rd, t0, t1);
- tcg_temp_free_i32(t1);
- tcg_temp_free_i32(t0);
- return true;
- }
- /*
- * Sets a specified bit in an I/O Register. This instruction operates on
- * the lower 32 I/O Registers -- addresses 0-31.
- */
- static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
- {
- TCGv data = tcg_temp_new_i32();
- TCGv port = tcg_const_i32(a->reg);
- gen_helper_inb(data, cpu_env, port);
- tcg_gen_ori_tl(data, data, 1 << a->bit);
- gen_helper_outb(cpu_env, port, data);
- tcg_temp_free_i32(port);
- tcg_temp_free_i32(data);
- return true;
- }
- /*
- * Clears a specified bit in an I/O Register. This instruction operates on
- * the lower 32 I/O Registers -- addresses 0-31.
- */
- static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
- {
- TCGv data = tcg_temp_new_i32();
- TCGv port = tcg_const_i32(a->reg);
- gen_helper_inb(data, cpu_env, port);
- tcg_gen_andi_tl(data, data, ~(1 << a->bit));
- gen_helper_outb(cpu_env, port, data);
- tcg_temp_free_i32(data);
- tcg_temp_free_i32(port);
- return true;
- }
- /*
- * Stores bit b from Rd to the T Flag in SREG (Status Register).
- */
- static bool trans_BST(DisasContext *ctx, arg_BST *a)
- {
- TCGv Rd = cpu_r[a->rd];
- tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
- tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
- return true;
- }
- /*
- * Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
- */
- static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
- {
- TCGv Rd = cpu_r[a->rd];
- TCGv t1 = tcg_temp_new_i32();
- tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
- tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
- tcg_gen_or_tl(Rd, Rd, t1);
- tcg_temp_free_i32(t1);
- return true;
- }
- /*
- * Sets a single Flag or bit in SREG.
- */
- static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
- {
- switch (a->bit) {
- case 0x00:
- tcg_gen_movi_tl(cpu_Cf, 0x01);
- break;
- case 0x01:
- tcg_gen_movi_tl(cpu_Zf, 0x01);
- break;
- case 0x02:
- tcg_gen_movi_tl(cpu_Nf, 0x01);
- break;
- case 0x03:
- tcg_gen_movi_tl(cpu_Vf, 0x01);
- break;
- case 0x04:
- tcg_gen_movi_tl(cpu_Sf, 0x01);
- break;
- case 0x05:
- tcg_gen_movi_tl(cpu_Hf, 0x01);
- break;
- case 0x06:
- tcg_gen_movi_tl(cpu_Tf, 0x01);
- break;
- case 0x07:
- tcg_gen_movi_tl(cpu_If, 0x01);
- break;
- }
- return true;
- }
- /*
- * Clears a single Flag in SREG.
- */
- static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
- {
- switch (a->bit) {
- case 0x00:
- tcg_gen_movi_tl(cpu_Cf, 0x00);
- break;
- case 0x01:
- tcg_gen_movi_tl(cpu_Zf, 0x00);
- break;
- case 0x02:
- tcg_gen_movi_tl(cpu_Nf, 0x00);
- break;
- case 0x03:
- tcg_gen_movi_tl(cpu_Vf, 0x00);
- break;
- case 0x04:
- tcg_gen_movi_tl(cpu_Sf, 0x00);
- break;
- case 0x05:
- tcg_gen_movi_tl(cpu_Hf, 0x00);
- break;
- case 0x06:
- tcg_gen_movi_tl(cpu_Tf, 0x00);
- break;
- case 0x07:
- tcg_gen_movi_tl(cpu_If, 0x00);
- break;
- }
- return true;
- }
- /*
- * MCU Control Instructions
- */
- /*
- * The BREAK instruction is used by the On-chip Debug system, and is
- * normally not used in the application software. When the BREAK instruction is
- * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
- * Debugger access to internal resources. If any Lock bits are set, or either
- * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
- * instruction as a NOP and will not enter the Stopped mode. This instruction
- * is not available in all devices. Refer to the device specific instruction
- * set summary.
- */
- static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a)
- {
- if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) {
- return true;
- }
- #ifdef BREAKPOINT_ON_BREAK
- tcg_gen_movi_tl(cpu_pc, ctx->npc - 1);
- gen_helper_debug(cpu_env);
- ctx->bstate = DISAS_EXIT;
- #else
- /* NOP */
- #endif
- return true;
- }
- /*
- * This instruction performs a single cycle No Operation.
- */
- static bool trans_NOP(DisasContext *ctx, arg_NOP *a)
- {
- /* NOP */
- return true;
- }
- /*
- * This instruction sets the circuit in sleep mode defined by the MCU
- * Control Register.
- */
- static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a)
- {
- gen_helper_sleep(cpu_env);
- ctx->bstate = DISAS_NORETURN;
- return true;
- }
- /*
- * This instruction resets the Watchdog Timer. This instruction must be
- * executed within a limited time given by the WD prescaler. See the Watchdog
- * Timer hardware specification.
- */
- static bool trans_WDR(DisasContext *ctx, arg_WDR *a)
- {
- gen_helper_wdr(cpu_env);
- return true;
- }
- /*
- * Core translation mechanism functions:
- *
- * - translate()
- * - canonicalize_skip()
- * - gen_intermediate_code()
- * - restore_state_to_opc()
- *
- */
- static void translate(DisasContext *ctx)
- {
- uint32_t opcode = next_word(ctx);
- if (!decode_insn(ctx, opcode)) {
- gen_helper_unsupported(cpu_env);
- ctx->bstate = DISAS_NORETURN;
- }
- }
- /* Standardize the cpu_skip condition to NE. */
- static bool canonicalize_skip(DisasContext *ctx)
- {
- switch (ctx->skip_cond) {
- case TCG_COND_NEVER:
- /* Normal case: cpu_skip is known to be false. */
- return false;
- case TCG_COND_ALWAYS:
- /*
- * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP.
- * The breakpoint is on the instruction being skipped, at the start
- * of the TranslationBlock. No need to update.
- */
- return false;
- case TCG_COND_NE:
- if (ctx->skip_var1 == NULL) {
- tcg_gen_mov_tl(cpu_skip, ctx->skip_var0);
- } else {
- tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1);
- ctx->skip_var1 = NULL;
- }
- break;
- default:
- /* Convert to a NE condition vs 0. */
- if (ctx->skip_var1 == NULL) {
- tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0);
- } else {
- tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip,
- ctx->skip_var0, ctx->skip_var1);
- ctx->skip_var1 = NULL;
- }
- ctx->skip_cond = TCG_COND_NE;
- break;
- }
- if (ctx->free_skip_var0) {
- tcg_temp_free(ctx->skip_var0);
- ctx->free_skip_var0 = false;
- }
- ctx->skip_var0 = cpu_skip;
- return true;
- }
- void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
- {
- CPUAVRState *env = cs->env_ptr;
- DisasContext ctx = {
- .tb = tb,
- .cs = cs,
- .env = env,
- .memidx = 0,
- .bstate = DISAS_NEXT,
- .skip_cond = TCG_COND_NEVER,
- .singlestep = cs->singlestep_enabled,
- };
- target_ulong pc_start = tb->pc / 2;
- int num_insns = 0;
- if (tb->flags & TB_FLAGS_FULL_ACCESS) {
- /*
- * This flag is set by ST/LD instruction we will regenerate it ONLY
- * with mem/cpu memory access instead of mem access
- */
- max_insns = 1;
- }
- if (ctx.singlestep) {
- max_insns = 1;
- }
- gen_tb_start(tb);
- ctx.npc = pc_start;
- if (tb->flags & TB_FLAGS_SKIP) {
- ctx.skip_cond = TCG_COND_ALWAYS;
- ctx.skip_var0 = cpu_skip;
- }
- do {
- TCGLabel *skip_label = NULL;
- /* translate current instruction */
- tcg_gen_insn_start(ctx.npc);
- num_insns++;
- /*
- * this is due to some strange GDB behavior
- * let's assume main has address 0x100
- * b main - sets breakpoint at address 0x00000100 (code)
- * b *0x100 - sets breakpoint at address 0x00800100 (data)
- */
- if (unlikely(!ctx.singlestep &&
- (cpu_breakpoint_test(cs, OFFSET_CODE + ctx.npc * 2, BP_ANY) ||
- cpu_breakpoint_test(cs, OFFSET_DATA + ctx.npc * 2, BP_ANY)))) {
- canonicalize_skip(&ctx);
- tcg_gen_movi_tl(cpu_pc, ctx.npc);
- gen_helper_debug(cpu_env);
- goto done_generating;
- }
- /* Conditionally skip the next instruction, if indicated. */
- if (ctx.skip_cond != TCG_COND_NEVER) {
- skip_label = gen_new_label();
- if (ctx.skip_var0 == cpu_skip) {
- /*
- * Copy cpu_skip so that we may zero it before the branch.
- * This ensures that cpu_skip is non-zero after the label
- * if and only if the skipped insn itself sets a skip.
- */
- ctx.free_skip_var0 = true;
- ctx.skip_var0 = tcg_temp_new();
- tcg_gen_mov_tl(ctx.skip_var0, cpu_skip);
- tcg_gen_movi_tl(cpu_skip, 0);
- }
- if (ctx.skip_var1 == NULL) {
- tcg_gen_brcondi_tl(ctx.skip_cond, ctx.skip_var0, 0, skip_label);
- } else {
- tcg_gen_brcond_tl(ctx.skip_cond, ctx.skip_var0,
- ctx.skip_var1, skip_label);
- ctx.skip_var1 = NULL;
- }
- if (ctx.free_skip_var0) {
- tcg_temp_free(ctx.skip_var0);
- ctx.free_skip_var0 = false;
- }
- ctx.skip_cond = TCG_COND_NEVER;
- ctx.skip_var0 = NULL;
- }
- translate(&ctx);
- if (skip_label) {
- canonicalize_skip(&ctx);
- gen_set_label(skip_label);
- if (ctx.bstate == DISAS_NORETURN) {
- ctx.bstate = DISAS_CHAIN;
- }
- }
- } while (ctx.bstate == DISAS_NEXT
- && num_insns < max_insns
- && (ctx.npc - pc_start) * 2 < TARGET_PAGE_SIZE - 4
- && !tcg_op_buf_full());
- if (tb->cflags & CF_LAST_IO) {
- gen_io_end();
- }
- bool nonconst_skip = canonicalize_skip(&ctx);
- switch (ctx.bstate) {
- case DISAS_NORETURN:
- assert(!nonconst_skip);
- break;
- case DISAS_NEXT:
- case DISAS_TOO_MANY:
- case DISAS_CHAIN:
- if (!nonconst_skip) {
- /* Note gen_goto_tb checks singlestep. */
- gen_goto_tb(&ctx, 1, ctx.npc);
- break;
- }
- tcg_gen_movi_tl(cpu_pc, ctx.npc);
- /* fall through */
- case DISAS_LOOKUP:
- if (!ctx.singlestep) {
- tcg_gen_lookup_and_goto_ptr();
- break;
- }
- /* fall through */
- case DISAS_EXIT:
- if (ctx.singlestep) {
- gen_helper_debug(cpu_env);
- } else {
- tcg_gen_exit_tb(NULL, 0);
- }
- break;
- default:
- g_assert_not_reached();
- }
- done_generating:
- gen_tb_end(tb, num_insns);
- tb->size = (ctx.npc - pc_start) * 2;
- tb->icount = num_insns;
- #ifdef DEBUG_DISAS
- if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)
- && qemu_log_in_addr_range(tb->pc)) {
- FILE *fd;
- fd = qemu_log_lock();
- qemu_log("IN: %s\n", lookup_symbol(tb->pc));
- log_target_disas(cs, tb->pc, tb->size);
- qemu_log("\n");
- qemu_log_unlock(fd);
- }
- #endif
- }
- void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb,
- target_ulong *data)
- {
- env->pc_w = data[0];
- }
|