sun4m.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485
  1. /*
  2. * QEMU Sun4m & Sun4d & Sun4c System Emulator
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "qapi/error.h"
  27. #include "qemu/datadir.h"
  28. #include "cpu.h"
  29. #include "hw/sysbus.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/sparc/sun4m_iommu.h"
  33. #include "hw/rtc/m48t59.h"
  34. #include "migration/vmstate.h"
  35. #include "hw/sparc/sparc32_dma.h"
  36. #include "hw/block/fdc.h"
  37. #include "system/reset.h"
  38. #include "system/runstate.h"
  39. #include "system/system.h"
  40. #include "net/net.h"
  41. #include "hw/boards.h"
  42. #include "hw/scsi/esp.h"
  43. #include "hw/nvram/sun_nvram.h"
  44. #include "hw/qdev-properties.h"
  45. #include "hw/nvram/chrp_nvram.h"
  46. #include "hw/nvram/fw_cfg.h"
  47. #include "hw/char/escc.h"
  48. #include "hw/misc/empty_slot.h"
  49. #include "hw/misc/unimp.h"
  50. #include "hw/irq.h"
  51. #include "hw/or-irq.h"
  52. #include "hw/loader.h"
  53. #include "elf.h"
  54. #include "trace.h"
  55. #include "qom/object.h"
  56. /*
  57. * Sun4m architecture was used in the following machines:
  58. *
  59. * SPARCserver 6xxMP/xx
  60. * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
  61. * SPARCclassic X (4/10)
  62. * SPARCstation LX/ZX (4/30)
  63. * SPARCstation Voyager
  64. * SPARCstation 10/xx, SPARCserver 10/xx
  65. * SPARCstation 5, SPARCserver 5
  66. * SPARCstation 20/xx, SPARCserver 20
  67. * SPARCstation 4
  68. *
  69. * See for example: http://www.sunhelp.org/faq/sunref1.html
  70. */
  71. #define KERNEL_LOAD_ADDR 0x00004000
  72. #define CMDLINE_ADDR 0x007ff000
  73. #define INITRD_LOAD_ADDR 0x00800000
  74. #define PROM_SIZE_MAX (1 * MiB)
  75. #define PROM_VADDR 0xffd00000
  76. #define PROM_FILENAME "openbios-sparc32"
  77. #define CFG_ADDR 0xd00000510ULL
  78. #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
  79. #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
  80. #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
  81. #define MAX_CPUS 16
  82. #define MAX_PILS 16
  83. #define MAX_VSIMMS 4
  84. #define ESCC_CLOCK 4915200
  85. struct sun4m_hwdef {
  86. hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
  87. hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
  88. hwaddr serial_base, fd_base;
  89. hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
  90. hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
  91. hwaddr bpp_base, dbri_base, sx_base;
  92. struct {
  93. hwaddr reg_base, vram_base;
  94. } vsimm[MAX_VSIMMS];
  95. hwaddr ecc_base;
  96. uint64_t max_mem;
  97. uint32_t ecc_version;
  98. uint32_t iommu_version;
  99. uint16_t machine_id;
  100. uint8_t nvram_machine_id;
  101. };
  102. struct Sun4mMachineClass {
  103. /*< private >*/
  104. MachineClass parent_obj;
  105. /*< public >*/
  106. const struct sun4m_hwdef *hwdef;
  107. };
  108. typedef struct Sun4mMachineClass Sun4mMachineClass;
  109. #define TYPE_SUN4M_MACHINE MACHINE_TYPE_NAME("sun4m-common")
  110. DECLARE_CLASS_CHECKERS(Sun4mMachineClass, SUN4M_MACHINE, TYPE_SUN4M_MACHINE)
  111. const char *fw_cfg_arch_key_name(uint16_t key)
  112. {
  113. static const struct {
  114. uint16_t key;
  115. const char *name;
  116. } fw_cfg_arch_wellknown_keys[] = {
  117. {FW_CFG_SUN4M_DEPTH, "depth"},
  118. {FW_CFG_SUN4M_WIDTH, "width"},
  119. {FW_CFG_SUN4M_HEIGHT, "height"},
  120. };
  121. for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
  122. if (fw_cfg_arch_wellknown_keys[i].key == key) {
  123. return fw_cfg_arch_wellknown_keys[i].name;
  124. }
  125. }
  126. return NULL;
  127. }
  128. static void fw_cfg_boot_set(void *opaque, const char *boot_device,
  129. Error **errp)
  130. {
  131. fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  132. }
  133. static void nvram_init(Nvram *nvram, uint8_t *macaddr,
  134. const char *cmdline, const char *boot_devices,
  135. ram_addr_t RAM_size, uint32_t kernel_size,
  136. int width, int height, int depth,
  137. int nvram_machine_id, const char *arch)
  138. {
  139. unsigned int i;
  140. int sysp_end;
  141. uint8_t image[0x1ff0];
  142. NvramClass *k = NVRAM_GET_CLASS(nvram);
  143. memset(image, '\0', sizeof(image));
  144. /* OpenBIOS nvram variables partition */
  145. sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
  146. /* Free space partition */
  147. chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
  148. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
  149. nvram_machine_id);
  150. for (i = 0; i < sizeof(image); i++) {
  151. (k->write)(nvram, i, image[i]);
  152. }
  153. }
  154. static void cpu_kick_irq(SPARCCPU *cpu)
  155. {
  156. CPUSPARCState *env = &cpu->env;
  157. CPUState *cs = CPU(cpu);
  158. cs->halted = 0;
  159. cpu_check_irqs(env);
  160. qemu_cpu_kick(cs);
  161. }
  162. static void cpu_set_irq(void *opaque, int irq, int level)
  163. {
  164. SPARCCPU *cpu = opaque;
  165. CPUSPARCState *env = &cpu->env;
  166. if (level) {
  167. trace_sun4m_cpu_set_irq_raise(irq);
  168. env->pil_in |= 1 << irq;
  169. cpu_kick_irq(cpu);
  170. } else {
  171. trace_sun4m_cpu_set_irq_lower(irq);
  172. env->pil_in &= ~(1 << irq);
  173. cpu_check_irqs(env);
  174. }
  175. }
  176. static void dummy_cpu_set_irq(void *opaque, int irq, int level)
  177. {
  178. }
  179. static void sun4m_cpu_reset(void *opaque)
  180. {
  181. SPARCCPU *cpu = opaque;
  182. CPUState *cs = CPU(cpu);
  183. cpu_reset(cs);
  184. }
  185. static void cpu_halt_signal(void *opaque, int irq, int level)
  186. {
  187. if (level && current_cpu) {
  188. cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
  189. }
  190. }
  191. static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
  192. {
  193. return addr - 0xf0000000ULL;
  194. }
  195. static unsigned long sun4m_load_kernel(const char *kernel_filename,
  196. const char *initrd_filename,
  197. ram_addr_t RAM_size,
  198. uint32_t *initrd_size)
  199. {
  200. int linux_boot;
  201. unsigned int i;
  202. long kernel_size;
  203. uint8_t *ptr;
  204. linux_boot = (kernel_filename != NULL);
  205. kernel_size = 0;
  206. if (linux_boot) {
  207. kernel_size = load_elf(kernel_filename, NULL,
  208. translate_kernel_address, NULL,
  209. NULL, NULL, NULL, NULL,
  210. ELFDATA2MSB, EM_SPARC, 0, 0);
  211. if (kernel_size < 0)
  212. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  213. RAM_size - KERNEL_LOAD_ADDR, true,
  214. TARGET_PAGE_SIZE);
  215. if (kernel_size < 0)
  216. kernel_size = load_image_targphys(kernel_filename,
  217. KERNEL_LOAD_ADDR,
  218. RAM_size - KERNEL_LOAD_ADDR);
  219. if (kernel_size < 0) {
  220. error_report("could not load kernel '%s'", kernel_filename);
  221. exit(1);
  222. }
  223. /* load initrd */
  224. *initrd_size = 0;
  225. if (initrd_filename) {
  226. *initrd_size = load_image_targphys(initrd_filename,
  227. INITRD_LOAD_ADDR,
  228. RAM_size - INITRD_LOAD_ADDR);
  229. if ((int)*initrd_size < 0) {
  230. error_report("could not load initial ram disk '%s'",
  231. initrd_filename);
  232. exit(1);
  233. }
  234. }
  235. if (*initrd_size > 0) {
  236. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  237. ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
  238. if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
  239. stl_p(ptr + 16, INITRD_LOAD_ADDR);
  240. stl_p(ptr + 20, *initrd_size);
  241. break;
  242. }
  243. }
  244. }
  245. }
  246. return kernel_size;
  247. }
  248. static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
  249. {
  250. DeviceState *dev;
  251. SysBusDevice *s;
  252. dev = qdev_new(TYPE_SUN4M_IOMMU);
  253. qdev_prop_set_uint32(dev, "version", version);
  254. s = SYS_BUS_DEVICE(dev);
  255. sysbus_realize_and_unref(s, &error_fatal);
  256. sysbus_connect_irq(s, 0, irq);
  257. sysbus_mmio_map(s, 0, addr);
  258. return s;
  259. }
  260. static void *sparc32_dma_init(hwaddr dma_base,
  261. hwaddr esp_base, qemu_irq espdma_irq,
  262. hwaddr le_base, qemu_irq ledma_irq,
  263. MACAddr *mac)
  264. {
  265. DeviceState *dma;
  266. ESPDMADeviceState *espdma;
  267. LEDMADeviceState *ledma;
  268. SysBusESPState *esp;
  269. SysBusPCNetState *lance;
  270. NICInfo *nd = qemu_find_nic_info("lance", true, NULL);
  271. dma = qdev_new(TYPE_SPARC32_DMA);
  272. espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
  273. OBJECT(dma), "espdma"));
  274. esp = SYSBUS_ESP(object_resolve_path_component(OBJECT(espdma), "esp"));
  275. ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
  276. OBJECT(dma), "ledma"));
  277. lance = SYSBUS_PCNET(object_resolve_path_component(
  278. OBJECT(ledma), "lance"));
  279. if (nd) {
  280. qdev_set_nic_properties(DEVICE(lance), nd);
  281. memcpy(mac->a, nd->macaddr.a, sizeof(mac->a));
  282. } else {
  283. qemu_macaddr_default_if_unset(mac);
  284. qdev_prop_set_macaddr(DEVICE(lance), "mac", mac->a);
  285. }
  286. sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
  287. sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
  288. sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
  289. sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
  290. sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
  291. scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
  292. sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
  293. return dma;
  294. }
  295. static DeviceState *slavio_intctl_init(hwaddr addr,
  296. hwaddr addrg,
  297. qemu_irq **parent_irq)
  298. {
  299. DeviceState *dev;
  300. SysBusDevice *s;
  301. unsigned int i, j;
  302. dev = qdev_new("slavio_intctl");
  303. s = SYS_BUS_DEVICE(dev);
  304. sysbus_realize_and_unref(s, &error_fatal);
  305. for (i = 0; i < MAX_CPUS; i++) {
  306. for (j = 0; j < MAX_PILS; j++) {
  307. sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
  308. }
  309. }
  310. sysbus_mmio_map(s, 0, addrg);
  311. for (i = 0; i < MAX_CPUS; i++) {
  312. sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
  313. }
  314. return dev;
  315. }
  316. #define SYS_TIMER_OFFSET 0x10000ULL
  317. #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
  318. static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
  319. qemu_irq *cpu_irqs, unsigned int num_cpus)
  320. {
  321. DeviceState *dev;
  322. SysBusDevice *s;
  323. unsigned int i;
  324. dev = qdev_new("slavio_timer");
  325. qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
  326. s = SYS_BUS_DEVICE(dev);
  327. sysbus_realize_and_unref(s, &error_fatal);
  328. sysbus_connect_irq(s, 0, master_irq);
  329. sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
  330. for (i = 0; i < MAX_CPUS; i++) {
  331. sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
  332. sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
  333. }
  334. }
  335. static qemu_irq slavio_system_powerdown;
  336. static void slavio_powerdown_req(Notifier *n, void *opaque)
  337. {
  338. qemu_irq_raise(slavio_system_powerdown);
  339. }
  340. static Notifier slavio_system_powerdown_notifier = {
  341. .notify = slavio_powerdown_req
  342. };
  343. #define MISC_LEDS 0x01600000
  344. #define MISC_CFG 0x01800000
  345. #define MISC_DIAG 0x01a00000
  346. #define MISC_MDM 0x01b00000
  347. #define MISC_SYS 0x01f00000
  348. static void slavio_misc_init(hwaddr base,
  349. hwaddr aux1_base,
  350. hwaddr aux2_base, qemu_irq irq,
  351. qemu_irq fdc_tc)
  352. {
  353. DeviceState *dev;
  354. SysBusDevice *s;
  355. dev = qdev_new("slavio_misc");
  356. s = SYS_BUS_DEVICE(dev);
  357. sysbus_realize_and_unref(s, &error_fatal);
  358. if (base) {
  359. /* 8 bit registers */
  360. /* Slavio control */
  361. sysbus_mmio_map(s, 0, base + MISC_CFG);
  362. /* Diagnostics */
  363. sysbus_mmio_map(s, 1, base + MISC_DIAG);
  364. /* Modem control */
  365. sysbus_mmio_map(s, 2, base + MISC_MDM);
  366. /* 16 bit registers */
  367. /* ss600mp diag LEDs */
  368. sysbus_mmio_map(s, 3, base + MISC_LEDS);
  369. /* 32 bit registers */
  370. /* System control */
  371. sysbus_mmio_map(s, 4, base + MISC_SYS);
  372. }
  373. if (aux1_base) {
  374. /* AUX 1 (Misc System Functions) */
  375. sysbus_mmio_map(s, 5, aux1_base);
  376. }
  377. if (aux2_base) {
  378. /* AUX 2 (Software Powerdown Control) */
  379. sysbus_mmio_map(s, 6, aux2_base);
  380. }
  381. sysbus_connect_irq(s, 0, irq);
  382. sysbus_connect_irq(s, 1, fdc_tc);
  383. slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
  384. qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
  385. }
  386. static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
  387. {
  388. DeviceState *dev;
  389. SysBusDevice *s;
  390. dev = qdev_new("eccmemctl");
  391. qdev_prop_set_uint32(dev, "version", version);
  392. s = SYS_BUS_DEVICE(dev);
  393. sysbus_realize_and_unref(s, &error_fatal);
  394. sysbus_connect_irq(s, 0, irq);
  395. sysbus_mmio_map(s, 0, base);
  396. if (version == 0) { // SS-600MP only
  397. sysbus_mmio_map(s, 1, base + 0x1000);
  398. }
  399. }
  400. static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
  401. {
  402. DeviceState *dev;
  403. SysBusDevice *s;
  404. dev = qdev_new("apc");
  405. s = SYS_BUS_DEVICE(dev);
  406. sysbus_realize_and_unref(s, &error_fatal);
  407. /* Power management (APC) XXX: not a Slavio device */
  408. sysbus_mmio_map(s, 0, power_base);
  409. sysbus_connect_irq(s, 0, cpu_halt);
  410. }
  411. static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  412. int height, int depth)
  413. {
  414. DeviceState *dev;
  415. SysBusDevice *s;
  416. dev = qdev_new("sun-tcx");
  417. qdev_prop_set_uint32(dev, "vram_size", vram_size);
  418. qdev_prop_set_uint16(dev, "width", width);
  419. qdev_prop_set_uint16(dev, "height", height);
  420. qdev_prop_set_uint16(dev, "depth", depth);
  421. s = SYS_BUS_DEVICE(dev);
  422. sysbus_realize_and_unref(s, &error_fatal);
  423. /* 10/ROM : FCode ROM */
  424. sysbus_mmio_map(s, 0, addr);
  425. /* 2/STIP : Stipple */
  426. sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
  427. /* 3/BLIT : Blitter */
  428. sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
  429. /* 5/RSTIP : Raw Stipple */
  430. sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
  431. /* 6/RBLIT : Raw Blitter */
  432. sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
  433. /* 7/TEC : Transform Engine */
  434. sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
  435. /* 8/CMAP : DAC */
  436. sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
  437. /* 9/THC : */
  438. if (depth == 8) {
  439. sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
  440. } else {
  441. sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
  442. }
  443. /* 11/DHC : */
  444. sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
  445. /* 12/ALT : */
  446. sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
  447. /* 0/DFB8 : 8-bit plane */
  448. sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
  449. /* 1/DFB24 : 24bit plane */
  450. sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
  451. /* 4/RDFB32: Raw framebuffer. Control plane */
  452. sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
  453. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  454. if (depth == 8) {
  455. sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
  456. }
  457. sysbus_connect_irq(s, 0, irq);
  458. }
  459. static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  460. int height, int depth)
  461. {
  462. DeviceState *dev;
  463. SysBusDevice *s;
  464. dev = qdev_new("cgthree");
  465. qdev_prop_set_uint32(dev, "vram-size", vram_size);
  466. qdev_prop_set_uint16(dev, "width", width);
  467. qdev_prop_set_uint16(dev, "height", height);
  468. qdev_prop_set_uint16(dev, "depth", depth);
  469. s = SYS_BUS_DEVICE(dev);
  470. sysbus_realize_and_unref(s, &error_fatal);
  471. /* FCode ROM */
  472. sysbus_mmio_map(s, 0, addr);
  473. /* DAC */
  474. sysbus_mmio_map(s, 1, addr + 0x400000ULL);
  475. /* 8-bit plane */
  476. sysbus_mmio_map(s, 2, addr + 0x800000ULL);
  477. sysbus_connect_irq(s, 0, irq);
  478. }
  479. /* NCR89C100/MACIO Internal ID register */
  480. #define TYPE_MACIO_ID_REGISTER "macio_idreg"
  481. static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
  482. static void idreg_init(hwaddr addr)
  483. {
  484. DeviceState *dev;
  485. SysBusDevice *s;
  486. dev = qdev_new(TYPE_MACIO_ID_REGISTER);
  487. s = SYS_BUS_DEVICE(dev);
  488. sysbus_realize_and_unref(s, &error_fatal);
  489. sysbus_mmio_map(s, 0, addr);
  490. address_space_write_rom(&address_space_memory, addr,
  491. MEMTXATTRS_UNSPECIFIED,
  492. idreg_data, sizeof(idreg_data));
  493. }
  494. OBJECT_DECLARE_SIMPLE_TYPE(IDRegState, MACIO_ID_REGISTER)
  495. struct IDRegState {
  496. SysBusDevice parent_obj;
  497. MemoryRegion mem;
  498. };
  499. static void idreg_realize(DeviceState *ds, Error **errp)
  500. {
  501. IDRegState *s = MACIO_ID_REGISTER(ds);
  502. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  503. if (!memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
  504. sizeof(idreg_data), errp)) {
  505. return;
  506. }
  507. vmstate_register_ram_global(&s->mem);
  508. memory_region_set_readonly(&s->mem, true);
  509. sysbus_init_mmio(dev, &s->mem);
  510. }
  511. static void idreg_class_init(ObjectClass *oc, void *data)
  512. {
  513. DeviceClass *dc = DEVICE_CLASS(oc);
  514. dc->realize = idreg_realize;
  515. }
  516. static const TypeInfo idreg_info = {
  517. .name = TYPE_MACIO_ID_REGISTER,
  518. .parent = TYPE_SYS_BUS_DEVICE,
  519. .instance_size = sizeof(IDRegState),
  520. .class_init = idreg_class_init,
  521. };
  522. #define TYPE_TCX_AFX "tcx_afx"
  523. OBJECT_DECLARE_SIMPLE_TYPE(AFXState, TCX_AFX)
  524. struct AFXState {
  525. SysBusDevice parent_obj;
  526. MemoryRegion mem;
  527. };
  528. /* SS-5 TCX AFX register */
  529. static void afx_init(hwaddr addr)
  530. {
  531. DeviceState *dev;
  532. SysBusDevice *s;
  533. dev = qdev_new(TYPE_TCX_AFX);
  534. s = SYS_BUS_DEVICE(dev);
  535. sysbus_realize_and_unref(s, &error_fatal);
  536. sysbus_mmio_map(s, 0, addr);
  537. }
  538. static void afx_realize(DeviceState *ds, Error **errp)
  539. {
  540. AFXState *s = TCX_AFX(ds);
  541. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  542. if (!memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx",
  543. 4, errp)) {
  544. return;
  545. }
  546. vmstate_register_ram_global(&s->mem);
  547. sysbus_init_mmio(dev, &s->mem);
  548. }
  549. static void afx_class_init(ObjectClass *oc, void *data)
  550. {
  551. DeviceClass *dc = DEVICE_CLASS(oc);
  552. dc->realize = afx_realize;
  553. }
  554. static const TypeInfo afx_info = {
  555. .name = TYPE_TCX_AFX,
  556. .parent = TYPE_SYS_BUS_DEVICE,
  557. .instance_size = sizeof(AFXState),
  558. .class_init = afx_class_init,
  559. };
  560. #define TYPE_OPENPROM "openprom"
  561. typedef struct PROMState PROMState;
  562. DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM,
  563. TYPE_OPENPROM)
  564. struct PROMState {
  565. SysBusDevice parent_obj;
  566. MemoryRegion prom;
  567. };
  568. /* Boot PROM (OpenBIOS) */
  569. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  570. {
  571. hwaddr *base_addr = (hwaddr *)opaque;
  572. return addr + *base_addr - PROM_VADDR;
  573. }
  574. static void prom_init(hwaddr addr, const char *bios_name)
  575. {
  576. DeviceState *dev;
  577. SysBusDevice *s;
  578. char *filename;
  579. int ret;
  580. dev = qdev_new(TYPE_OPENPROM);
  581. s = SYS_BUS_DEVICE(dev);
  582. sysbus_realize_and_unref(s, &error_fatal);
  583. sysbus_mmio_map(s, 0, addr);
  584. /* load boot prom */
  585. if (bios_name == NULL) {
  586. bios_name = PROM_FILENAME;
  587. }
  588. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  589. if (filename) {
  590. ret = load_elf(filename, NULL,
  591. translate_prom_address, &addr, NULL,
  592. NULL, NULL, NULL, ELFDATA2MSB, EM_SPARC, 0, 0);
  593. if (ret < 0 || ret > PROM_SIZE_MAX) {
  594. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  595. }
  596. g_free(filename);
  597. } else {
  598. ret = -1;
  599. }
  600. if (ret < 0 || ret > PROM_SIZE_MAX) {
  601. error_report("could not load prom '%s'", bios_name);
  602. exit(1);
  603. }
  604. }
  605. static void prom_realize(DeviceState *ds, Error **errp)
  606. {
  607. PROMState *s = OPENPROM(ds);
  608. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  609. if (!memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
  610. PROM_SIZE_MAX, errp)) {
  611. return;
  612. }
  613. vmstate_register_ram_global(&s->prom);
  614. memory_region_set_readonly(&s->prom, true);
  615. sysbus_init_mmio(dev, &s->prom);
  616. }
  617. static void prom_class_init(ObjectClass *klass, void *data)
  618. {
  619. DeviceClass *dc = DEVICE_CLASS(klass);
  620. dc->realize = prom_realize;
  621. }
  622. static const TypeInfo prom_info = {
  623. .name = TYPE_OPENPROM,
  624. .parent = TYPE_SYS_BUS_DEVICE,
  625. .instance_size = sizeof(PROMState),
  626. .class_init = prom_class_init,
  627. };
  628. #define TYPE_SUN4M_MEMORY "memory"
  629. typedef struct RamDevice RamDevice;
  630. DECLARE_INSTANCE_CHECKER(RamDevice, SUN4M_RAM,
  631. TYPE_SUN4M_MEMORY)
  632. struct RamDevice {
  633. SysBusDevice parent_obj;
  634. HostMemoryBackend *memdev;
  635. };
  636. /* System RAM */
  637. static void ram_realize(DeviceState *dev, Error **errp)
  638. {
  639. RamDevice *d = SUN4M_RAM(dev);
  640. MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
  641. sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
  642. }
  643. static void ram_initfn(Object *obj)
  644. {
  645. RamDevice *d = SUN4M_RAM(obj);
  646. object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
  647. (Object **)&d->memdev,
  648. object_property_allow_set_link,
  649. OBJ_PROP_LINK_STRONG);
  650. object_property_set_description(obj, "memdev", "Set RAM backend"
  651. "Valid value is ID of a hostmem backend");
  652. }
  653. static void ram_class_init(ObjectClass *klass, void *data)
  654. {
  655. DeviceClass *dc = DEVICE_CLASS(klass);
  656. dc->realize = ram_realize;
  657. }
  658. static const TypeInfo ram_info = {
  659. .name = TYPE_SUN4M_MEMORY,
  660. .parent = TYPE_SYS_BUS_DEVICE,
  661. .instance_size = sizeof(RamDevice),
  662. .instance_init = ram_initfn,
  663. .class_init = ram_class_init,
  664. };
  665. static void cpu_devinit(const char *cpu_type, unsigned int id,
  666. uint64_t prom_addr, qemu_irq **cpu_irqs)
  667. {
  668. SPARCCPU *cpu;
  669. CPUSPARCState *env;
  670. cpu = SPARC_CPU(object_new(cpu_type));
  671. env = &cpu->env;
  672. qemu_register_reset(sun4m_cpu_reset, cpu);
  673. object_property_set_bool(OBJECT(cpu), "start-powered-off", id != 0,
  674. &error_abort);
  675. qdev_realize_and_unref(DEVICE(cpu), NULL, &error_fatal);
  676. cpu_sparc_set_id(env, id);
  677. *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
  678. env->prom_addr = prom_addr;
  679. }
  680. static void dummy_fdc_tc(void *opaque, int irq, int level)
  681. {
  682. }
  683. static void sun4m_hw_init(MachineState *machine)
  684. {
  685. const struct sun4m_hwdef *hwdef = SUN4M_MACHINE_GET_CLASS(machine)->hwdef;
  686. DeviceState *slavio_intctl;
  687. unsigned int i;
  688. Nvram *nvram;
  689. qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
  690. qemu_irq fdc_tc;
  691. unsigned long kernel_size;
  692. uint32_t initrd_size;
  693. DriveInfo *fd[MAX_FD];
  694. FWCfgState *fw_cfg;
  695. DeviceState *dev, *ms_kb_orgate, *serial_orgate;
  696. SysBusDevice *s;
  697. unsigned int smp_cpus = machine->smp.cpus;
  698. unsigned int max_cpus = machine->smp.max_cpus;
  699. HostMemoryBackend *ram_memdev = machine->memdev;
  700. MACAddr hostid;
  701. if (machine->ram_size > hwdef->max_mem) {
  702. error_report("Too much memory for this machine: %" PRId64 ","
  703. " maximum %" PRId64,
  704. machine->ram_size / MiB, hwdef->max_mem / MiB);
  705. exit(1);
  706. }
  707. /* init CPUs */
  708. for(i = 0; i < smp_cpus; i++) {
  709. cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
  710. }
  711. for (i = smp_cpus; i < MAX_CPUS; i++)
  712. cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
  713. /* Create and map RAM frontend */
  714. dev = qdev_new("memory");
  715. object_property_set_link(OBJECT(dev), "memdev", OBJECT(ram_memdev), &error_fatal);
  716. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  717. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
  718. /* models without ECC don't trap when missing ram is accessed */
  719. if (!hwdef->ecc_base) {
  720. empty_slot_init("ecc", machine->ram_size,
  721. hwdef->max_mem - machine->ram_size);
  722. }
  723. prom_init(hwdef->slavio_base, machine->firmware);
  724. slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
  725. hwdef->intctl_base + 0x10000ULL,
  726. cpu_irqs);
  727. for (i = 0; i < 32; i++) {
  728. slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
  729. }
  730. for (i = 0; i < MAX_CPUS; i++) {
  731. slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
  732. }
  733. if (hwdef->idreg_base) {
  734. idreg_init(hwdef->idreg_base);
  735. }
  736. if (hwdef->afx_base) {
  737. afx_init(hwdef->afx_base);
  738. }
  739. iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
  740. if (hwdef->iommu_pad_base) {
  741. /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
  742. Software shouldn't use aliased addresses, neither should it crash
  743. when does. Using empty_slot instead of aliasing can help with
  744. debugging such accesses */
  745. empty_slot_init("iommu.alias",
  746. hwdef->iommu_pad_base, hwdef->iommu_pad_len);
  747. }
  748. sparc32_dma_init(hwdef->dma_base,
  749. hwdef->esp_base, slavio_irq[18],
  750. hwdef->le_base, slavio_irq[16], &hostid);
  751. if (graphic_depth != 8 && graphic_depth != 24) {
  752. error_report("Unsupported depth: %d", graphic_depth);
  753. exit (1);
  754. }
  755. if (vga_interface_type != VGA_NONE) {
  756. if (vga_interface_type == VGA_CG3) {
  757. if (graphic_depth != 8) {
  758. error_report("Unsupported depth: %d", graphic_depth);
  759. exit(1);
  760. }
  761. if (!(graphic_width == 1024 && graphic_height == 768) &&
  762. !(graphic_width == 1152 && graphic_height == 900)) {
  763. error_report("Unsupported resolution: %d x %d", graphic_width,
  764. graphic_height);
  765. exit(1);
  766. }
  767. /* sbus irq 5 */
  768. cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  769. graphic_width, graphic_height, graphic_depth);
  770. vga_interface_created = true;
  771. } else {
  772. /* If no display specified, default to TCX */
  773. if (graphic_depth != 8 && graphic_depth != 24) {
  774. error_report("Unsupported depth: %d", graphic_depth);
  775. exit(1);
  776. }
  777. if (!(graphic_width == 1024 && graphic_height == 768)) {
  778. error_report("Unsupported resolution: %d x %d",
  779. graphic_width, graphic_height);
  780. exit(1);
  781. }
  782. tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  783. graphic_width, graphic_height, graphic_depth);
  784. vga_interface_created = true;
  785. }
  786. }
  787. for (i = 0; i < MAX_VSIMMS; i++) {
  788. /* vsimm registers probed by OBP */
  789. if (hwdef->vsimm[i].reg_base) {
  790. char *name = g_strdup_printf("vsimm[%d]", i);
  791. empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
  792. g_free(name);
  793. }
  794. }
  795. if (hwdef->sx_base) {
  796. create_unimplemented_device("sun-sx", hwdef->sx_base, 0x2000);
  797. }
  798. dev = qdev_new("sysbus-m48t08");
  799. qdev_prop_set_int32(dev, "base-year", 1968);
  800. s = SYS_BUS_DEVICE(dev);
  801. sysbus_realize_and_unref(s, &error_fatal);
  802. sysbus_connect_irq(s, 0, slavio_irq[0]);
  803. sysbus_mmio_map(s, 0, hwdef->nvram_base);
  804. nvram = NVRAM(dev);
  805. slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
  806. /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
  807. Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
  808. dev = qdev_new(TYPE_ESCC);
  809. qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
  810. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  811. qdev_prop_set_uint32(dev, "it_shift", 1);
  812. qdev_prop_set_chr(dev, "chrB", NULL);
  813. qdev_prop_set_chr(dev, "chrA", NULL);
  814. qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
  815. qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
  816. s = SYS_BUS_DEVICE(dev);
  817. sysbus_realize_and_unref(s, &error_fatal);
  818. sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
  819. /* Logically OR both its IRQs together */
  820. ms_kb_orgate = qdev_new(TYPE_OR_IRQ);
  821. object_property_set_int(OBJECT(ms_kb_orgate), "num-lines", 2, &error_fatal);
  822. qdev_realize_and_unref(ms_kb_orgate, NULL, &error_fatal);
  823. sysbus_connect_irq(s, 0, qdev_get_gpio_in(ms_kb_orgate, 0));
  824. sysbus_connect_irq(s, 1, qdev_get_gpio_in(ms_kb_orgate, 1));
  825. qdev_connect_gpio_out(ms_kb_orgate, 0, slavio_irq[14]);
  826. dev = qdev_new(TYPE_ESCC);
  827. qdev_prop_set_uint32(dev, "disabled", 0);
  828. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  829. qdev_prop_set_uint32(dev, "it_shift", 1);
  830. qdev_prop_set_chr(dev, "chrB", serial_hd(1));
  831. qdev_prop_set_chr(dev, "chrA", serial_hd(0));
  832. qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
  833. qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
  834. s = SYS_BUS_DEVICE(dev);
  835. sysbus_realize_and_unref(s, &error_fatal);
  836. sysbus_mmio_map(s, 0, hwdef->serial_base);
  837. /* Logically OR both its IRQs together */
  838. serial_orgate = qdev_new(TYPE_OR_IRQ);
  839. object_property_set_int(OBJECT(serial_orgate), "num-lines", 2,
  840. &error_fatal);
  841. qdev_realize_and_unref(serial_orgate, NULL, &error_fatal);
  842. sysbus_connect_irq(s, 0, qdev_get_gpio_in(serial_orgate, 0));
  843. sysbus_connect_irq(s, 1, qdev_get_gpio_in(serial_orgate, 1));
  844. qdev_connect_gpio_out(serial_orgate, 0, slavio_irq[15]);
  845. if (hwdef->apc_base) {
  846. apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
  847. }
  848. if (hwdef->fd_base) {
  849. /* there is zero or one floppy drive */
  850. memset(fd, 0, sizeof(fd));
  851. fd[0] = drive_get(IF_FLOPPY, 0, 0);
  852. sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
  853. &fdc_tc);
  854. } else {
  855. fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
  856. }
  857. slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
  858. slavio_irq[30], fdc_tc);
  859. if (hwdef->cs_base) {
  860. sysbus_create_simple("sun-CS4231", hwdef->cs_base,
  861. slavio_irq[5]);
  862. }
  863. if (hwdef->dbri_base) {
  864. /* ISDN chip with attached CS4215 audio codec */
  865. /* prom space */
  866. create_unimplemented_device("sun-DBRI.prom",
  867. hwdef->dbri_base + 0x1000, 0x30);
  868. /* reg space */
  869. create_unimplemented_device("sun-DBRI",
  870. hwdef->dbri_base + 0x10000, 0x100);
  871. }
  872. if (hwdef->bpp_base) {
  873. /* parallel port */
  874. create_unimplemented_device("sun-bpp", hwdef->bpp_base, 0x20);
  875. }
  876. initrd_size = 0;
  877. kernel_size = sun4m_load_kernel(machine->kernel_filename,
  878. machine->initrd_filename,
  879. machine->ram_size, &initrd_size);
  880. nvram_init(nvram, hostid.a, machine->kernel_cmdline,
  881. machine->boot_config.order, machine->ram_size, kernel_size,
  882. graphic_width, graphic_height, graphic_depth,
  883. hwdef->nvram_machine_id, "Sun4m");
  884. if (hwdef->ecc_base)
  885. ecc_init(hwdef->ecc_base, slavio_irq[28],
  886. hwdef->ecc_version);
  887. dev = qdev_new(TYPE_FW_CFG_MEM);
  888. fw_cfg = FW_CFG(dev);
  889. qdev_prop_set_uint32(dev, "data_width", 1);
  890. qdev_prop_set_bit(dev, "dma_enabled", false);
  891. object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
  892. OBJECT(fw_cfg));
  893. s = SYS_BUS_DEVICE(dev);
  894. sysbus_realize_and_unref(s, &error_fatal);
  895. sysbus_mmio_map(s, 0, CFG_ADDR);
  896. sysbus_mmio_map(s, 1, CFG_ADDR + 2);
  897. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
  898. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
  899. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
  900. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  901. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
  902. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
  903. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
  904. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
  905. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  906. if (machine->kernel_cmdline) {
  907. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
  908. pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
  909. machine->kernel_cmdline);
  910. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
  911. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  912. strlen(machine->kernel_cmdline) + 1);
  913. } else {
  914. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
  915. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  916. }
  917. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
  918. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  919. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_config.order[0]);
  920. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  921. }
  922. enum {
  923. ss5_id = 32,
  924. vger_id,
  925. lx_id,
  926. ss4_id,
  927. scls_id,
  928. sbook_id,
  929. ss10_id = 64,
  930. ss20_id,
  931. ss600mp_id,
  932. };
  933. static void sun4m_machine_class_init(ObjectClass *oc, void *data)
  934. {
  935. MachineClass *mc = MACHINE_CLASS(oc);
  936. mc->init = sun4m_hw_init;
  937. mc->block_default_type = IF_SCSI;
  938. mc->default_boot_order = "c";
  939. mc->default_display = "tcx";
  940. mc->default_ram_id = "sun4m.ram";
  941. }
  942. static void ss5_class_init(ObjectClass *oc, void *data)
  943. {
  944. MachineClass *mc = MACHINE_CLASS(oc);
  945. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  946. static const struct sun4m_hwdef ss5_hwdef = {
  947. .iommu_base = 0x10000000,
  948. .iommu_pad_base = 0x10004000,
  949. .iommu_pad_len = 0x0fffb000,
  950. .tcx_base = 0x50000000,
  951. .cs_base = 0x6c000000,
  952. .slavio_base = 0x70000000,
  953. .ms_kb_base = 0x71000000,
  954. .serial_base = 0x71100000,
  955. .nvram_base = 0x71200000,
  956. .fd_base = 0x71400000,
  957. .counter_base = 0x71d00000,
  958. .intctl_base = 0x71e00000,
  959. .idreg_base = 0x78000000,
  960. .dma_base = 0x78400000,
  961. .esp_base = 0x78800000,
  962. .le_base = 0x78c00000,
  963. .apc_base = 0x6a000000,
  964. .afx_base = 0x6e000000,
  965. .aux1_base = 0x71900000,
  966. .aux2_base = 0x71910000,
  967. .nvram_machine_id = 0x80,
  968. .machine_id = ss5_id,
  969. .iommu_version = 0x05000000,
  970. .max_mem = 0x10000000,
  971. };
  972. mc->desc = "Sun4m platform, SPARCstation 5";
  973. mc->is_default = true;
  974. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  975. smc->hwdef = &ss5_hwdef;
  976. }
  977. static void ss10_class_init(ObjectClass *oc, void *data)
  978. {
  979. MachineClass *mc = MACHINE_CLASS(oc);
  980. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  981. static const struct sun4m_hwdef ss10_hwdef = {
  982. .iommu_base = 0xfe0000000ULL,
  983. .tcx_base = 0xe20000000ULL,
  984. .slavio_base = 0xff0000000ULL,
  985. .ms_kb_base = 0xff1000000ULL,
  986. .serial_base = 0xff1100000ULL,
  987. .nvram_base = 0xff1200000ULL,
  988. .fd_base = 0xff1700000ULL,
  989. .counter_base = 0xff1300000ULL,
  990. .intctl_base = 0xff1400000ULL,
  991. .idreg_base = 0xef0000000ULL,
  992. .dma_base = 0xef0400000ULL,
  993. .esp_base = 0xef0800000ULL,
  994. .le_base = 0xef0c00000ULL,
  995. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  996. .aux1_base = 0xff1800000ULL,
  997. .aux2_base = 0xff1a01000ULL,
  998. .ecc_base = 0xf00000000ULL,
  999. .ecc_version = 0x10000000, /* version 0, implementation 1 */
  1000. .nvram_machine_id = 0x72,
  1001. .machine_id = ss10_id,
  1002. .iommu_version = 0x03000000,
  1003. .max_mem = 0xf00000000ULL,
  1004. };
  1005. mc->desc = "Sun4m platform, SPARCstation 10";
  1006. mc->max_cpus = 4;
  1007. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1008. smc->hwdef = &ss10_hwdef;
  1009. }
  1010. static void ss600mp_class_init(ObjectClass *oc, void *data)
  1011. {
  1012. MachineClass *mc = MACHINE_CLASS(oc);
  1013. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1014. static const struct sun4m_hwdef ss600mp_hwdef = {
  1015. .iommu_base = 0xfe0000000ULL,
  1016. .tcx_base = 0xe20000000ULL,
  1017. .slavio_base = 0xff0000000ULL,
  1018. .ms_kb_base = 0xff1000000ULL,
  1019. .serial_base = 0xff1100000ULL,
  1020. .nvram_base = 0xff1200000ULL,
  1021. .counter_base = 0xff1300000ULL,
  1022. .intctl_base = 0xff1400000ULL,
  1023. .dma_base = 0xef0081000ULL,
  1024. .esp_base = 0xef0080000ULL,
  1025. .le_base = 0xef0060000ULL,
  1026. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1027. .aux1_base = 0xff1800000ULL,
  1028. .aux2_base = 0xff1a01000ULL, /* XXX should not exist */
  1029. .ecc_base = 0xf00000000ULL,
  1030. .ecc_version = 0x00000000, /* version 0, implementation 0 */
  1031. .nvram_machine_id = 0x71,
  1032. .machine_id = ss600mp_id,
  1033. .iommu_version = 0x01000000,
  1034. .max_mem = 0xf00000000ULL,
  1035. };
  1036. mc->desc = "Sun4m platform, SPARCserver 600MP";
  1037. mc->max_cpus = 4;
  1038. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1039. smc->hwdef = &ss600mp_hwdef;
  1040. }
  1041. static void ss20_class_init(ObjectClass *oc, void *data)
  1042. {
  1043. MachineClass *mc = MACHINE_CLASS(oc);
  1044. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1045. static const struct sun4m_hwdef ss20_hwdef = {
  1046. .iommu_base = 0xfe0000000ULL,
  1047. .tcx_base = 0xe20000000ULL,
  1048. .slavio_base = 0xff0000000ULL,
  1049. .ms_kb_base = 0xff1000000ULL,
  1050. .serial_base = 0xff1100000ULL,
  1051. .nvram_base = 0xff1200000ULL,
  1052. .fd_base = 0xff1700000ULL,
  1053. .counter_base = 0xff1300000ULL,
  1054. .intctl_base = 0xff1400000ULL,
  1055. .idreg_base = 0xef0000000ULL,
  1056. .dma_base = 0xef0400000ULL,
  1057. .esp_base = 0xef0800000ULL,
  1058. .le_base = 0xef0c00000ULL,
  1059. .bpp_base = 0xef4800000ULL,
  1060. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1061. .aux1_base = 0xff1800000ULL,
  1062. .aux2_base = 0xff1a01000ULL,
  1063. .dbri_base = 0xee0000000ULL,
  1064. .sx_base = 0xf80000000ULL,
  1065. .vsimm = {
  1066. {
  1067. .reg_base = 0x9c000000ULL,
  1068. .vram_base = 0xfc000000ULL
  1069. }, {
  1070. .reg_base = 0x90000000ULL,
  1071. .vram_base = 0xf0000000ULL
  1072. }, {
  1073. .reg_base = 0x94000000ULL
  1074. }, {
  1075. .reg_base = 0x98000000ULL
  1076. }
  1077. },
  1078. .ecc_base = 0xf00000000ULL,
  1079. .ecc_version = 0x20000000, /* version 0, implementation 2 */
  1080. .nvram_machine_id = 0x72,
  1081. .machine_id = ss20_id,
  1082. .iommu_version = 0x13000000,
  1083. .max_mem = 0xf00000000ULL,
  1084. };
  1085. mc->desc = "Sun4m platform, SPARCstation 20";
  1086. mc->max_cpus = 4;
  1087. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1088. smc->hwdef = &ss20_hwdef;
  1089. }
  1090. static void voyager_class_init(ObjectClass *oc, void *data)
  1091. {
  1092. MachineClass *mc = MACHINE_CLASS(oc);
  1093. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1094. static const struct sun4m_hwdef voyager_hwdef = {
  1095. .iommu_base = 0x10000000,
  1096. .tcx_base = 0x50000000,
  1097. .slavio_base = 0x70000000,
  1098. .ms_kb_base = 0x71000000,
  1099. .serial_base = 0x71100000,
  1100. .nvram_base = 0x71200000,
  1101. .fd_base = 0x71400000,
  1102. .counter_base = 0x71d00000,
  1103. .intctl_base = 0x71e00000,
  1104. .idreg_base = 0x78000000,
  1105. .dma_base = 0x78400000,
  1106. .esp_base = 0x78800000,
  1107. .le_base = 0x78c00000,
  1108. .apc_base = 0x71300000, /* pmc */
  1109. .aux1_base = 0x71900000,
  1110. .aux2_base = 0x71910000,
  1111. .nvram_machine_id = 0x80,
  1112. .machine_id = vger_id,
  1113. .iommu_version = 0x05000000,
  1114. .max_mem = 0x10000000,
  1115. };
  1116. mc->desc = "Sun4m platform, SPARCstation Voyager";
  1117. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1118. smc->hwdef = &voyager_hwdef;
  1119. }
  1120. static void ss_lx_class_init(ObjectClass *oc, void *data)
  1121. {
  1122. MachineClass *mc = MACHINE_CLASS(oc);
  1123. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1124. static const struct sun4m_hwdef ss_lx_hwdef = {
  1125. .iommu_base = 0x10000000,
  1126. .iommu_pad_base = 0x10004000,
  1127. .iommu_pad_len = 0x0fffb000,
  1128. .tcx_base = 0x50000000,
  1129. .slavio_base = 0x70000000,
  1130. .ms_kb_base = 0x71000000,
  1131. .serial_base = 0x71100000,
  1132. .nvram_base = 0x71200000,
  1133. .fd_base = 0x71400000,
  1134. .counter_base = 0x71d00000,
  1135. .intctl_base = 0x71e00000,
  1136. .idreg_base = 0x78000000,
  1137. .dma_base = 0x78400000,
  1138. .esp_base = 0x78800000,
  1139. .le_base = 0x78c00000,
  1140. .aux1_base = 0x71900000,
  1141. .aux2_base = 0x71910000,
  1142. .nvram_machine_id = 0x80,
  1143. .machine_id = lx_id,
  1144. .iommu_version = 0x04000000,
  1145. .max_mem = 0x10000000,
  1146. };
  1147. mc->desc = "Sun4m platform, SPARCstation LX";
  1148. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1149. smc->hwdef = &ss_lx_hwdef;
  1150. }
  1151. static void ss4_class_init(ObjectClass *oc, void *data)
  1152. {
  1153. MachineClass *mc = MACHINE_CLASS(oc);
  1154. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1155. static const struct sun4m_hwdef ss4_hwdef = {
  1156. .iommu_base = 0x10000000,
  1157. .tcx_base = 0x50000000,
  1158. .cs_base = 0x6c000000,
  1159. .slavio_base = 0x70000000,
  1160. .ms_kb_base = 0x71000000,
  1161. .serial_base = 0x71100000,
  1162. .nvram_base = 0x71200000,
  1163. .fd_base = 0x71400000,
  1164. .counter_base = 0x71d00000,
  1165. .intctl_base = 0x71e00000,
  1166. .idreg_base = 0x78000000,
  1167. .dma_base = 0x78400000,
  1168. .esp_base = 0x78800000,
  1169. .le_base = 0x78c00000,
  1170. .apc_base = 0x6a000000,
  1171. .aux1_base = 0x71900000,
  1172. .aux2_base = 0x71910000,
  1173. .nvram_machine_id = 0x80,
  1174. .machine_id = ss4_id,
  1175. .iommu_version = 0x05000000,
  1176. .max_mem = 0x10000000,
  1177. };
  1178. mc->desc = "Sun4m platform, SPARCstation 4";
  1179. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1180. smc->hwdef = &ss4_hwdef;
  1181. }
  1182. static void scls_class_init(ObjectClass *oc, void *data)
  1183. {
  1184. MachineClass *mc = MACHINE_CLASS(oc);
  1185. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1186. static const struct sun4m_hwdef scls_hwdef = {
  1187. .iommu_base = 0x10000000,
  1188. .tcx_base = 0x50000000,
  1189. .slavio_base = 0x70000000,
  1190. .ms_kb_base = 0x71000000,
  1191. .serial_base = 0x71100000,
  1192. .nvram_base = 0x71200000,
  1193. .fd_base = 0x71400000,
  1194. .counter_base = 0x71d00000,
  1195. .intctl_base = 0x71e00000,
  1196. .idreg_base = 0x78000000,
  1197. .dma_base = 0x78400000,
  1198. .esp_base = 0x78800000,
  1199. .le_base = 0x78c00000,
  1200. .apc_base = 0x6a000000,
  1201. .aux1_base = 0x71900000,
  1202. .aux2_base = 0x71910000,
  1203. .nvram_machine_id = 0x80,
  1204. .machine_id = scls_id,
  1205. .iommu_version = 0x05000000,
  1206. .max_mem = 0x10000000,
  1207. };
  1208. mc->desc = "Sun4m platform, SPARCClassic";
  1209. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1210. smc->hwdef = &scls_hwdef;
  1211. }
  1212. static void sbook_class_init(ObjectClass *oc, void *data)
  1213. {
  1214. MachineClass *mc = MACHINE_CLASS(oc);
  1215. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1216. static const struct sun4m_hwdef sbook_hwdef = {
  1217. .iommu_base = 0x10000000,
  1218. .tcx_base = 0x50000000, /* XXX */
  1219. .slavio_base = 0x70000000,
  1220. .ms_kb_base = 0x71000000,
  1221. .serial_base = 0x71100000,
  1222. .nvram_base = 0x71200000,
  1223. .fd_base = 0x71400000,
  1224. .counter_base = 0x71d00000,
  1225. .intctl_base = 0x71e00000,
  1226. .idreg_base = 0x78000000,
  1227. .dma_base = 0x78400000,
  1228. .esp_base = 0x78800000,
  1229. .le_base = 0x78c00000,
  1230. .apc_base = 0x6a000000,
  1231. .aux1_base = 0x71900000,
  1232. .aux2_base = 0x71910000,
  1233. .nvram_machine_id = 0x80,
  1234. .machine_id = sbook_id,
  1235. .iommu_version = 0x05000000,
  1236. .max_mem = 0x10000000,
  1237. };
  1238. mc->desc = "Sun4m platform, SPARCbook";
  1239. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1240. smc->hwdef = &sbook_hwdef;
  1241. }
  1242. static const TypeInfo sun4m_machine_types[] = {
  1243. {
  1244. .name = MACHINE_TYPE_NAME("SS-5"),
  1245. .parent = TYPE_SUN4M_MACHINE,
  1246. .class_init = ss5_class_init,
  1247. }, {
  1248. .name = MACHINE_TYPE_NAME("SS-10"),
  1249. .parent = TYPE_SUN4M_MACHINE,
  1250. .class_init = ss10_class_init,
  1251. }, {
  1252. .name = MACHINE_TYPE_NAME("SS-600MP"),
  1253. .parent = TYPE_SUN4M_MACHINE,
  1254. .class_init = ss600mp_class_init,
  1255. }, {
  1256. .name = MACHINE_TYPE_NAME("SS-20"),
  1257. .parent = TYPE_SUN4M_MACHINE,
  1258. .class_init = ss20_class_init,
  1259. }, {
  1260. .name = MACHINE_TYPE_NAME("Voyager"),
  1261. .parent = TYPE_SUN4M_MACHINE,
  1262. .class_init = voyager_class_init,
  1263. }, {
  1264. .name = MACHINE_TYPE_NAME("LX"),
  1265. .parent = TYPE_SUN4M_MACHINE,
  1266. .class_init = ss_lx_class_init,
  1267. }, {
  1268. .name = MACHINE_TYPE_NAME("SS-4"),
  1269. .parent = TYPE_SUN4M_MACHINE,
  1270. .class_init = ss4_class_init,
  1271. }, {
  1272. .name = MACHINE_TYPE_NAME("SPARCClassic"),
  1273. .parent = TYPE_SUN4M_MACHINE,
  1274. .class_init = scls_class_init,
  1275. }, {
  1276. .name = MACHINE_TYPE_NAME("SPARCbook"),
  1277. .parent = TYPE_SUN4M_MACHINE,
  1278. .class_init = sbook_class_init,
  1279. }, {
  1280. .name = TYPE_SUN4M_MACHINE,
  1281. .parent = TYPE_MACHINE,
  1282. .class_size = sizeof(Sun4mMachineClass),
  1283. .class_init = sun4m_machine_class_init,
  1284. .abstract = true,
  1285. }
  1286. };
  1287. DEFINE_TYPES(sun4m_machine_types)
  1288. static void sun4m_register_types(void)
  1289. {
  1290. type_register_static(&idreg_info);
  1291. type_register_static(&afx_info);
  1292. type_register_static(&prom_info);
  1293. type_register_static(&ram_info);
  1294. }
  1295. type_init(sun4m_register_types)