123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- /*
- * QEMU VNC display driver: tight encoding
- *
- * From libvncserver/rfb/rfbproto.h
- * Copyright (C) 2005 Rohit Kumar, Johannes E. Schindelin
- * Copyright (C) 2000-2002 Constantin Kaplinsky. All Rights Reserved.
- * Copyright (C) 2000 Tridia Corporation. All Rights Reserved.
- * Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
- *
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
- #ifndef VNC_ENC_TIGHT_H
- #define VNC_ENC_TIGHT_H
- /*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- * Tight Encoding.
- *
- *-- The first byte of each Tight-encoded rectangle is a "compression control
- * byte". Its format is as follows (bit 0 is the least significant one):
- *
- * bit 0: if 1, then compression stream 0 should be reset;
- * bit 1: if 1, then compression stream 1 should be reset;
- * bit 2: if 1, then compression stream 2 should be reset;
- * bit 3: if 1, then compression stream 3 should be reset;
- * bits 7-4: if 1000 (0x08), then the compression type is "fill",
- * if 1001 (0x09), then the compression type is "jpeg",
- * if 1010 (0x0A), then the compression type is "png",
- * if 0xxx, then the compression type is "basic",
- * values greater than 1010 are not valid.
- *
- * If the compression type is "basic", then bits 6..4 of the
- * compression control byte (those xxx in 0xxx) specify the following:
- *
- * bits 5-4: decimal representation is the index of a particular zlib
- * stream which should be used for decompressing the data;
- * bit 6: if 1, then a "filter id" byte is following this byte.
- *
- *-- The data that follows after the compression control byte described
- * above depends on the compression type ("fill", "jpeg", "png" or "basic").
- *
- *-- If the compression type is "fill", then the only pixel value follows, in
- * client pixel format (see NOTE 1). This value applies to all pixels of the
- * rectangle.
- *
- *-- If the compression type is "jpeg" or "png", the following data stream
- * looks like this:
- *
- * 1..3 bytes: data size (N) in compact representation;
- * N bytes: JPEG or PNG image.
- *
- * Data size is compactly represented in one, two or three bytes, according
- * to the following scheme:
- *
- * 0xxxxxxx (for values 0..127)
- * 1xxxxxxx 0yyyyyyy (for values 128..16383)
- * 1xxxxxxx 1yyyyyyy zzzzzzzz (for values 16384..4194303)
- *
- * Here each character denotes one bit, xxxxxxx are the least significant 7
- * bits of the value (bits 0-6), yyyyyyy are bits 7-13, and zzzzzzzz are the
- * most significant 8 bits (bits 14-21). For example, decimal value 10000
- * should be represented as two bytes: binary 10010000 01001110, or
- * hexadecimal 90 4E.
- *
- *-- If the compression type is "basic" and bit 6 of the compression control
- * byte was set to 1, then the next (second) byte specifies "filter id" which
- * tells the decoder what filter type was used by the encoder to pre-process
- * pixel data before the compression. The "filter id" byte can be one of the
- * following:
- *
- * 0: no filter ("copy" filter);
- * 1: "palette" filter;
- * 2: "gradient" filter.
- *
- *-- If bit 6 of the compression control byte is set to 0 (no "filter id"
- * byte), or if the filter id is 0, then raw pixel values in the client
- * format (see NOTE 1) will be compressed. See below details on the
- * compression.
- *
- *-- The "gradient" filter pre-processes pixel data with a simple algorithm
- * which converts each color component to a difference between a "predicted"
- * intensity and the actual intensity. Such a technique does not affect
- * uncompressed data size, but helps to compress photo-like images better.
- * Pseudo-code for converting intensities to differences is the following:
- *
- * P[i,j] := V[i-1,j] + V[i,j-1] - V[i-1,j-1];
- * if (P[i,j] < 0) then P[i,j] := 0;
- * if (P[i,j] > MAX) then P[i,j] := MAX;
- * D[i,j] := V[i,j] - P[i,j];
- *
- * Here V[i,j] is the intensity of a color component for a pixel at
- * coordinates (i,j). MAX is the maximum value of intensity for a color
- * component.
- *
- *-- The "palette" filter converts true-color pixel data to indexed colors
- * and a palette which can consist of 2..256 colors. If the number of colors
- * is 2, then each pixel is encoded in 1 bit, otherwise 8 bits is used to
- * encode one pixel. 1-bit encoding is performed such way that the most
- * significant bits correspond to the leftmost pixels, and each raw of pixels
- * is aligned to the byte boundary. When "palette" filter is used, the
- * palette is sent before the pixel data. The palette begins with an unsigned
- * byte which value is the number of colors in the palette minus 1 (i.e. 1
- * means 2 colors, 255 means 256 colors in the palette). Then follows the
- * palette itself which consist of pixel values in client pixel format (see
- * NOTE 1).
- *
- *-- The pixel data is compressed using the zlib library. But if the data
- * size after applying the filter but before the compression is less then 12,
- * then the data is sent as is, uncompressed. Four separate zlib streams
- * (0..3) can be used and the decoder should read the actual stream id from
- * the compression control byte (see NOTE 2).
- *
- * If the compression is not used, then the pixel data is sent as is,
- * otherwise the data stream looks like this:
- *
- * 1..3 bytes: data size (N) in compact representation;
- * N bytes: zlib-compressed data.
- *
- * Data size is compactly represented in one, two or three bytes, just like
- * in the "jpeg" compression method (see above).
- *
- *-- NOTE 1. If the color depth is 24, and all three color components are
- * 8-bit wide, then one pixel in Tight encoding is always represented by
- * three bytes, where the first byte is red component, the second byte is
- * green component, and the third byte is blue component of the pixel color
- * value. This applies to colors in palettes as well.
- *
- *-- NOTE 2. The decoder must reset compression streams' states before
- * decoding the rectangle, if some of bits 0,1,2,3 in the compression control
- * byte are set to 1. Note that the decoder must reset zlib streams even if
- * the compression type is "fill", "jpeg" or "png".
- *
- *-- NOTE 3. The "gradient" filter and "jpeg" compression may be used only
- * when bits-per-pixel value is either 16 or 32, not 8.
- *
- *-- NOTE 4. The width of any Tight-encoded rectangle cannot exceed 2048
- * pixels. If a rectangle is wider, it must be split into several rectangles
- * and each one should be encoded separately.
- *
- */
- #define VNC_TIGHT_EXPLICIT_FILTER 0x04
- #define VNC_TIGHT_FILL 0x08
- #define VNC_TIGHT_JPEG 0x09
- #define VNC_TIGHT_PNG 0x0A
- #define VNC_TIGHT_MAX_SUBENCODING 0x0A
- /* Filters to improve compression efficiency */
- #define VNC_TIGHT_FILTER_COPY 0x00
- #define VNC_TIGHT_FILTER_PALETTE 0x01
- #define VNC_TIGHT_FILTER_GRADIENT 0x02
- /* Note: The following constant should not be changed. */
- #define VNC_TIGHT_MIN_TO_COMPRESS 12
- /* The parameters below may be adjusted. */
- #define VNC_TIGHT_MIN_SPLIT_RECT_SIZE 4096
- #define VNC_TIGHT_MIN_SOLID_SUBRECT_SIZE 2048
- #define VNC_TIGHT_MAX_SPLIT_TILE_SIZE 16
- #define VNC_TIGHT_JPEG_MIN_RECT_SIZE 4096
- #define VNC_TIGHT_DETECT_SUBROW_WIDTH 7
- #define VNC_TIGHT_DETECT_MIN_WIDTH 8
- #define VNC_TIGHT_DETECT_MIN_HEIGHT 8
- #endif /* VNC_ENC_TIGHT_H */
|