sun4m.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493
  1. /*
  2. * QEMU Sun4m & Sun4d & Sun4c System Emulator
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "qapi/error.h"
  27. #include "qemu/datadir.h"
  28. #include "cpu.h"
  29. #include "hw/sysbus.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/sparc/sun4m_iommu.h"
  33. #include "hw/rtc/m48t59.h"
  34. #include "migration/vmstate.h"
  35. #include "hw/sparc/sparc32_dma.h"
  36. #include "hw/block/fdc.h"
  37. #include "sysemu/reset.h"
  38. #include "sysemu/runstate.h"
  39. #include "sysemu/sysemu.h"
  40. #include "net/net.h"
  41. #include "hw/boards.h"
  42. #include "hw/scsi/esp.h"
  43. #include "hw/nvram/sun_nvram.h"
  44. #include "hw/qdev-properties.h"
  45. #include "hw/nvram/chrp_nvram.h"
  46. #include "hw/nvram/fw_cfg.h"
  47. #include "hw/char/escc.h"
  48. #include "hw/misc/empty_slot.h"
  49. #include "hw/misc/unimp.h"
  50. #include "hw/irq.h"
  51. #include "hw/or-irq.h"
  52. #include "hw/loader.h"
  53. #include "elf.h"
  54. #include "trace.h"
  55. #include "qom/object.h"
  56. /*
  57. * Sun4m architecture was used in the following machines:
  58. *
  59. * SPARCserver 6xxMP/xx
  60. * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
  61. * SPARCclassic X (4/10)
  62. * SPARCstation LX/ZX (4/30)
  63. * SPARCstation Voyager
  64. * SPARCstation 10/xx, SPARCserver 10/xx
  65. * SPARCstation 5, SPARCserver 5
  66. * SPARCstation 20/xx, SPARCserver 20
  67. * SPARCstation 4
  68. *
  69. * See for example: http://www.sunhelp.org/faq/sunref1.html
  70. */
  71. #define KERNEL_LOAD_ADDR 0x00004000
  72. #define CMDLINE_ADDR 0x007ff000
  73. #define INITRD_LOAD_ADDR 0x00800000
  74. #define PROM_SIZE_MAX (1 * MiB)
  75. #define PROM_VADDR 0xffd00000
  76. #define PROM_FILENAME "openbios-sparc32"
  77. #define CFG_ADDR 0xd00000510ULL
  78. #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
  79. #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
  80. #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
  81. #define MAX_CPUS 16
  82. #define MAX_PILS 16
  83. #define MAX_VSIMMS 4
  84. #define ESCC_CLOCK 4915200
  85. struct sun4m_hwdef {
  86. hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
  87. hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
  88. hwaddr serial_base, fd_base;
  89. hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
  90. hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
  91. hwaddr bpp_base, dbri_base, sx_base;
  92. struct {
  93. hwaddr reg_base, vram_base;
  94. } vsimm[MAX_VSIMMS];
  95. hwaddr ecc_base;
  96. uint64_t max_mem;
  97. uint32_t ecc_version;
  98. uint32_t iommu_version;
  99. uint16_t machine_id;
  100. uint8_t nvram_machine_id;
  101. };
  102. struct Sun4mMachineClass {
  103. /*< private >*/
  104. MachineClass parent_obj;
  105. /*< public >*/
  106. const struct sun4m_hwdef *hwdef;
  107. };
  108. typedef struct Sun4mMachineClass Sun4mMachineClass;
  109. #define TYPE_SUN4M_MACHINE MACHINE_TYPE_NAME("sun4m-common")
  110. DECLARE_CLASS_CHECKERS(Sun4mMachineClass, SUN4M_MACHINE, TYPE_SUN4M_MACHINE)
  111. const char *fw_cfg_arch_key_name(uint16_t key)
  112. {
  113. static const struct {
  114. uint16_t key;
  115. const char *name;
  116. } fw_cfg_arch_wellknown_keys[] = {
  117. {FW_CFG_SUN4M_DEPTH, "depth"},
  118. {FW_CFG_SUN4M_WIDTH, "width"},
  119. {FW_CFG_SUN4M_HEIGHT, "height"},
  120. };
  121. for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
  122. if (fw_cfg_arch_wellknown_keys[i].key == key) {
  123. return fw_cfg_arch_wellknown_keys[i].name;
  124. }
  125. }
  126. return NULL;
  127. }
  128. static void fw_cfg_boot_set(void *opaque, const char *boot_device,
  129. Error **errp)
  130. {
  131. fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  132. }
  133. static void nvram_init(Nvram *nvram, uint8_t *macaddr,
  134. const char *cmdline, const char *boot_devices,
  135. ram_addr_t RAM_size, uint32_t kernel_size,
  136. int width, int height, int depth,
  137. int nvram_machine_id, const char *arch)
  138. {
  139. unsigned int i;
  140. int sysp_end;
  141. uint8_t image[0x1ff0];
  142. NvramClass *k = NVRAM_GET_CLASS(nvram);
  143. memset(image, '\0', sizeof(image));
  144. /* OpenBIOS nvram variables partition */
  145. sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
  146. /* Free space partition */
  147. chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
  148. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
  149. nvram_machine_id);
  150. for (i = 0; i < sizeof(image); i++) {
  151. (k->write)(nvram, i, image[i]);
  152. }
  153. }
  154. static void cpu_kick_irq(SPARCCPU *cpu)
  155. {
  156. CPUSPARCState *env = &cpu->env;
  157. CPUState *cs = CPU(cpu);
  158. cs->halted = 0;
  159. cpu_check_irqs(env);
  160. qemu_cpu_kick(cs);
  161. }
  162. static void cpu_set_irq(void *opaque, int irq, int level)
  163. {
  164. SPARCCPU *cpu = opaque;
  165. CPUSPARCState *env = &cpu->env;
  166. if (level) {
  167. trace_sun4m_cpu_set_irq_raise(irq);
  168. env->pil_in |= 1 << irq;
  169. cpu_kick_irq(cpu);
  170. } else {
  171. trace_sun4m_cpu_set_irq_lower(irq);
  172. env->pil_in &= ~(1 << irq);
  173. cpu_check_irqs(env);
  174. }
  175. }
  176. static void dummy_cpu_set_irq(void *opaque, int irq, int level)
  177. {
  178. }
  179. static void sun4m_cpu_reset(void *opaque)
  180. {
  181. SPARCCPU *cpu = opaque;
  182. CPUState *cs = CPU(cpu);
  183. cpu_reset(cs);
  184. }
  185. static void cpu_halt_signal(void *opaque, int irq, int level)
  186. {
  187. if (level && current_cpu) {
  188. cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
  189. }
  190. }
  191. static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
  192. {
  193. return addr - 0xf0000000ULL;
  194. }
  195. static unsigned long sun4m_load_kernel(const char *kernel_filename,
  196. const char *initrd_filename,
  197. ram_addr_t RAM_size,
  198. uint32_t *initrd_size)
  199. {
  200. int linux_boot;
  201. unsigned int i;
  202. long kernel_size;
  203. uint8_t *ptr;
  204. linux_boot = (kernel_filename != NULL);
  205. kernel_size = 0;
  206. if (linux_boot) {
  207. int bswap_needed;
  208. #ifdef BSWAP_NEEDED
  209. bswap_needed = 1;
  210. #else
  211. bswap_needed = 0;
  212. #endif
  213. kernel_size = load_elf(kernel_filename, NULL,
  214. translate_kernel_address, NULL,
  215. NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  216. if (kernel_size < 0)
  217. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  218. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  219. TARGET_PAGE_SIZE);
  220. if (kernel_size < 0)
  221. kernel_size = load_image_targphys(kernel_filename,
  222. KERNEL_LOAD_ADDR,
  223. RAM_size - KERNEL_LOAD_ADDR);
  224. if (kernel_size < 0) {
  225. error_report("could not load kernel '%s'", kernel_filename);
  226. exit(1);
  227. }
  228. /* load initrd */
  229. *initrd_size = 0;
  230. if (initrd_filename) {
  231. *initrd_size = load_image_targphys(initrd_filename,
  232. INITRD_LOAD_ADDR,
  233. RAM_size - INITRD_LOAD_ADDR);
  234. if ((int)*initrd_size < 0) {
  235. error_report("could not load initial ram disk '%s'",
  236. initrd_filename);
  237. exit(1);
  238. }
  239. }
  240. if (*initrd_size > 0) {
  241. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  242. ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
  243. if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
  244. stl_p(ptr + 16, INITRD_LOAD_ADDR);
  245. stl_p(ptr + 20, *initrd_size);
  246. break;
  247. }
  248. }
  249. }
  250. }
  251. return kernel_size;
  252. }
  253. static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
  254. {
  255. DeviceState *dev;
  256. SysBusDevice *s;
  257. dev = qdev_new(TYPE_SUN4M_IOMMU);
  258. qdev_prop_set_uint32(dev, "version", version);
  259. s = SYS_BUS_DEVICE(dev);
  260. sysbus_realize_and_unref(s, &error_fatal);
  261. sysbus_connect_irq(s, 0, irq);
  262. sysbus_mmio_map(s, 0, addr);
  263. return s;
  264. }
  265. static void *sparc32_dma_init(hwaddr dma_base,
  266. hwaddr esp_base, qemu_irq espdma_irq,
  267. hwaddr le_base, qemu_irq ledma_irq, NICInfo *nd)
  268. {
  269. DeviceState *dma;
  270. ESPDMADeviceState *espdma;
  271. LEDMADeviceState *ledma;
  272. SysBusESPState *esp;
  273. SysBusPCNetState *lance;
  274. dma = qdev_new(TYPE_SPARC32_DMA);
  275. espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
  276. OBJECT(dma), "espdma"));
  277. sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
  278. esp = SYSBUS_ESP(object_resolve_path_component(OBJECT(espdma), "esp"));
  279. ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
  280. OBJECT(dma), "ledma"));
  281. sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
  282. lance = SYSBUS_PCNET(object_resolve_path_component(
  283. OBJECT(ledma), "lance"));
  284. qdev_set_nic_properties(DEVICE(lance), nd);
  285. sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
  286. sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
  287. sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
  288. scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
  289. sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
  290. return dma;
  291. }
  292. static DeviceState *slavio_intctl_init(hwaddr addr,
  293. hwaddr addrg,
  294. qemu_irq **parent_irq)
  295. {
  296. DeviceState *dev;
  297. SysBusDevice *s;
  298. unsigned int i, j;
  299. dev = qdev_new("slavio_intctl");
  300. s = SYS_BUS_DEVICE(dev);
  301. sysbus_realize_and_unref(s, &error_fatal);
  302. for (i = 0; i < MAX_CPUS; i++) {
  303. for (j = 0; j < MAX_PILS; j++) {
  304. sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
  305. }
  306. }
  307. sysbus_mmio_map(s, 0, addrg);
  308. for (i = 0; i < MAX_CPUS; i++) {
  309. sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
  310. }
  311. return dev;
  312. }
  313. #define SYS_TIMER_OFFSET 0x10000ULL
  314. #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
  315. static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
  316. qemu_irq *cpu_irqs, unsigned int num_cpus)
  317. {
  318. DeviceState *dev;
  319. SysBusDevice *s;
  320. unsigned int i;
  321. dev = qdev_new("slavio_timer");
  322. qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
  323. s = SYS_BUS_DEVICE(dev);
  324. sysbus_realize_and_unref(s, &error_fatal);
  325. sysbus_connect_irq(s, 0, master_irq);
  326. sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
  327. for (i = 0; i < MAX_CPUS; i++) {
  328. sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
  329. sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
  330. }
  331. }
  332. static qemu_irq slavio_system_powerdown;
  333. static void slavio_powerdown_req(Notifier *n, void *opaque)
  334. {
  335. qemu_irq_raise(slavio_system_powerdown);
  336. }
  337. static Notifier slavio_system_powerdown_notifier = {
  338. .notify = slavio_powerdown_req
  339. };
  340. #define MISC_LEDS 0x01600000
  341. #define MISC_CFG 0x01800000
  342. #define MISC_DIAG 0x01a00000
  343. #define MISC_MDM 0x01b00000
  344. #define MISC_SYS 0x01f00000
  345. static void slavio_misc_init(hwaddr base,
  346. hwaddr aux1_base,
  347. hwaddr aux2_base, qemu_irq irq,
  348. qemu_irq fdc_tc)
  349. {
  350. DeviceState *dev;
  351. SysBusDevice *s;
  352. dev = qdev_new("slavio_misc");
  353. s = SYS_BUS_DEVICE(dev);
  354. sysbus_realize_and_unref(s, &error_fatal);
  355. if (base) {
  356. /* 8 bit registers */
  357. /* Slavio control */
  358. sysbus_mmio_map(s, 0, base + MISC_CFG);
  359. /* Diagnostics */
  360. sysbus_mmio_map(s, 1, base + MISC_DIAG);
  361. /* Modem control */
  362. sysbus_mmio_map(s, 2, base + MISC_MDM);
  363. /* 16 bit registers */
  364. /* ss600mp diag LEDs */
  365. sysbus_mmio_map(s, 3, base + MISC_LEDS);
  366. /* 32 bit registers */
  367. /* System control */
  368. sysbus_mmio_map(s, 4, base + MISC_SYS);
  369. }
  370. if (aux1_base) {
  371. /* AUX 1 (Misc System Functions) */
  372. sysbus_mmio_map(s, 5, aux1_base);
  373. }
  374. if (aux2_base) {
  375. /* AUX 2 (Software Powerdown Control) */
  376. sysbus_mmio_map(s, 6, aux2_base);
  377. }
  378. sysbus_connect_irq(s, 0, irq);
  379. sysbus_connect_irq(s, 1, fdc_tc);
  380. slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
  381. qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
  382. }
  383. static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
  384. {
  385. DeviceState *dev;
  386. SysBusDevice *s;
  387. dev = qdev_new("eccmemctl");
  388. qdev_prop_set_uint32(dev, "version", version);
  389. s = SYS_BUS_DEVICE(dev);
  390. sysbus_realize_and_unref(s, &error_fatal);
  391. sysbus_connect_irq(s, 0, irq);
  392. sysbus_mmio_map(s, 0, base);
  393. if (version == 0) { // SS-600MP only
  394. sysbus_mmio_map(s, 1, base + 0x1000);
  395. }
  396. }
  397. static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
  398. {
  399. DeviceState *dev;
  400. SysBusDevice *s;
  401. dev = qdev_new("apc");
  402. s = SYS_BUS_DEVICE(dev);
  403. sysbus_realize_and_unref(s, &error_fatal);
  404. /* Power management (APC) XXX: not a Slavio device */
  405. sysbus_mmio_map(s, 0, power_base);
  406. sysbus_connect_irq(s, 0, cpu_halt);
  407. }
  408. static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  409. int height, int depth)
  410. {
  411. DeviceState *dev;
  412. SysBusDevice *s;
  413. dev = qdev_new("sun-tcx");
  414. qdev_prop_set_uint32(dev, "vram_size", vram_size);
  415. qdev_prop_set_uint16(dev, "width", width);
  416. qdev_prop_set_uint16(dev, "height", height);
  417. qdev_prop_set_uint16(dev, "depth", depth);
  418. s = SYS_BUS_DEVICE(dev);
  419. sysbus_realize_and_unref(s, &error_fatal);
  420. /* 10/ROM : FCode ROM */
  421. sysbus_mmio_map(s, 0, addr);
  422. /* 2/STIP : Stipple */
  423. sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
  424. /* 3/BLIT : Blitter */
  425. sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
  426. /* 5/RSTIP : Raw Stipple */
  427. sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
  428. /* 6/RBLIT : Raw Blitter */
  429. sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
  430. /* 7/TEC : Transform Engine */
  431. sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
  432. /* 8/CMAP : DAC */
  433. sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
  434. /* 9/THC : */
  435. if (depth == 8) {
  436. sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
  437. } else {
  438. sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
  439. }
  440. /* 11/DHC : */
  441. sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
  442. /* 12/ALT : */
  443. sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
  444. /* 0/DFB8 : 8-bit plane */
  445. sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
  446. /* 1/DFB24 : 24bit plane */
  447. sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
  448. /* 4/RDFB32: Raw framebuffer. Control plane */
  449. sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
  450. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  451. if (depth == 8) {
  452. sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
  453. }
  454. sysbus_connect_irq(s, 0, irq);
  455. }
  456. static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  457. int height, int depth)
  458. {
  459. DeviceState *dev;
  460. SysBusDevice *s;
  461. dev = qdev_new("cgthree");
  462. qdev_prop_set_uint32(dev, "vram-size", vram_size);
  463. qdev_prop_set_uint16(dev, "width", width);
  464. qdev_prop_set_uint16(dev, "height", height);
  465. qdev_prop_set_uint16(dev, "depth", depth);
  466. s = SYS_BUS_DEVICE(dev);
  467. sysbus_realize_and_unref(s, &error_fatal);
  468. /* FCode ROM */
  469. sysbus_mmio_map(s, 0, addr);
  470. /* DAC */
  471. sysbus_mmio_map(s, 1, addr + 0x400000ULL);
  472. /* 8-bit plane */
  473. sysbus_mmio_map(s, 2, addr + 0x800000ULL);
  474. sysbus_connect_irq(s, 0, irq);
  475. }
  476. /* NCR89C100/MACIO Internal ID register */
  477. #define TYPE_MACIO_ID_REGISTER "macio_idreg"
  478. static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
  479. static void idreg_init(hwaddr addr)
  480. {
  481. DeviceState *dev;
  482. SysBusDevice *s;
  483. dev = qdev_new(TYPE_MACIO_ID_REGISTER);
  484. s = SYS_BUS_DEVICE(dev);
  485. sysbus_realize_and_unref(s, &error_fatal);
  486. sysbus_mmio_map(s, 0, addr);
  487. address_space_write_rom(&address_space_memory, addr,
  488. MEMTXATTRS_UNSPECIFIED,
  489. idreg_data, sizeof(idreg_data));
  490. }
  491. OBJECT_DECLARE_SIMPLE_TYPE(IDRegState, MACIO_ID_REGISTER)
  492. struct IDRegState {
  493. SysBusDevice parent_obj;
  494. MemoryRegion mem;
  495. };
  496. static void idreg_realize(DeviceState *ds, Error **errp)
  497. {
  498. IDRegState *s = MACIO_ID_REGISTER(ds);
  499. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  500. Error *local_err = NULL;
  501. memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
  502. sizeof(idreg_data), &local_err);
  503. if (local_err) {
  504. error_propagate(errp, local_err);
  505. return;
  506. }
  507. vmstate_register_ram_global(&s->mem);
  508. memory_region_set_readonly(&s->mem, true);
  509. sysbus_init_mmio(dev, &s->mem);
  510. }
  511. static void idreg_class_init(ObjectClass *oc, void *data)
  512. {
  513. DeviceClass *dc = DEVICE_CLASS(oc);
  514. dc->realize = idreg_realize;
  515. }
  516. static const TypeInfo idreg_info = {
  517. .name = TYPE_MACIO_ID_REGISTER,
  518. .parent = TYPE_SYS_BUS_DEVICE,
  519. .instance_size = sizeof(IDRegState),
  520. .class_init = idreg_class_init,
  521. };
  522. #define TYPE_TCX_AFX "tcx_afx"
  523. OBJECT_DECLARE_SIMPLE_TYPE(AFXState, TCX_AFX)
  524. struct AFXState {
  525. SysBusDevice parent_obj;
  526. MemoryRegion mem;
  527. };
  528. /* SS-5 TCX AFX register */
  529. static void afx_init(hwaddr addr)
  530. {
  531. DeviceState *dev;
  532. SysBusDevice *s;
  533. dev = qdev_new(TYPE_TCX_AFX);
  534. s = SYS_BUS_DEVICE(dev);
  535. sysbus_realize_and_unref(s, &error_fatal);
  536. sysbus_mmio_map(s, 0, addr);
  537. }
  538. static void afx_realize(DeviceState *ds, Error **errp)
  539. {
  540. AFXState *s = TCX_AFX(ds);
  541. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  542. Error *local_err = NULL;
  543. memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
  544. &local_err);
  545. if (local_err) {
  546. error_propagate(errp, local_err);
  547. return;
  548. }
  549. vmstate_register_ram_global(&s->mem);
  550. sysbus_init_mmio(dev, &s->mem);
  551. }
  552. static void afx_class_init(ObjectClass *oc, void *data)
  553. {
  554. DeviceClass *dc = DEVICE_CLASS(oc);
  555. dc->realize = afx_realize;
  556. }
  557. static const TypeInfo afx_info = {
  558. .name = TYPE_TCX_AFX,
  559. .parent = TYPE_SYS_BUS_DEVICE,
  560. .instance_size = sizeof(AFXState),
  561. .class_init = afx_class_init,
  562. };
  563. #define TYPE_OPENPROM "openprom"
  564. typedef struct PROMState PROMState;
  565. DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM,
  566. TYPE_OPENPROM)
  567. struct PROMState {
  568. SysBusDevice parent_obj;
  569. MemoryRegion prom;
  570. };
  571. /* Boot PROM (OpenBIOS) */
  572. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  573. {
  574. hwaddr *base_addr = (hwaddr *)opaque;
  575. return addr + *base_addr - PROM_VADDR;
  576. }
  577. static void prom_init(hwaddr addr, const char *bios_name)
  578. {
  579. DeviceState *dev;
  580. SysBusDevice *s;
  581. char *filename;
  582. int ret;
  583. dev = qdev_new(TYPE_OPENPROM);
  584. s = SYS_BUS_DEVICE(dev);
  585. sysbus_realize_and_unref(s, &error_fatal);
  586. sysbus_mmio_map(s, 0, addr);
  587. /* load boot prom */
  588. if (bios_name == NULL) {
  589. bios_name = PROM_FILENAME;
  590. }
  591. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  592. if (filename) {
  593. ret = load_elf(filename, NULL,
  594. translate_prom_address, &addr, NULL,
  595. NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  596. if (ret < 0 || ret > PROM_SIZE_MAX) {
  597. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  598. }
  599. g_free(filename);
  600. } else {
  601. ret = -1;
  602. }
  603. if (ret < 0 || ret > PROM_SIZE_MAX) {
  604. error_report("could not load prom '%s'", bios_name);
  605. exit(1);
  606. }
  607. }
  608. static void prom_realize(DeviceState *ds, Error **errp)
  609. {
  610. PROMState *s = OPENPROM(ds);
  611. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  612. Error *local_err = NULL;
  613. memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
  614. PROM_SIZE_MAX, &local_err);
  615. if (local_err) {
  616. error_propagate(errp, local_err);
  617. return;
  618. }
  619. vmstate_register_ram_global(&s->prom);
  620. memory_region_set_readonly(&s->prom, true);
  621. sysbus_init_mmio(dev, &s->prom);
  622. }
  623. static Property prom_properties[] = {
  624. {/* end of property list */},
  625. };
  626. static void prom_class_init(ObjectClass *klass, void *data)
  627. {
  628. DeviceClass *dc = DEVICE_CLASS(klass);
  629. device_class_set_props(dc, prom_properties);
  630. dc->realize = prom_realize;
  631. }
  632. static const TypeInfo prom_info = {
  633. .name = TYPE_OPENPROM,
  634. .parent = TYPE_SYS_BUS_DEVICE,
  635. .instance_size = sizeof(PROMState),
  636. .class_init = prom_class_init,
  637. };
  638. #define TYPE_SUN4M_MEMORY "memory"
  639. typedef struct RamDevice RamDevice;
  640. DECLARE_INSTANCE_CHECKER(RamDevice, SUN4M_RAM,
  641. TYPE_SUN4M_MEMORY)
  642. struct RamDevice {
  643. SysBusDevice parent_obj;
  644. HostMemoryBackend *memdev;
  645. };
  646. /* System RAM */
  647. static void ram_realize(DeviceState *dev, Error **errp)
  648. {
  649. RamDevice *d = SUN4M_RAM(dev);
  650. MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
  651. sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
  652. }
  653. static void ram_initfn(Object *obj)
  654. {
  655. RamDevice *d = SUN4M_RAM(obj);
  656. object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
  657. (Object **)&d->memdev,
  658. object_property_allow_set_link,
  659. OBJ_PROP_LINK_STRONG);
  660. object_property_set_description(obj, "memdev", "Set RAM backend"
  661. "Valid value is ID of a hostmem backend");
  662. }
  663. static void ram_class_init(ObjectClass *klass, void *data)
  664. {
  665. DeviceClass *dc = DEVICE_CLASS(klass);
  666. dc->realize = ram_realize;
  667. }
  668. static const TypeInfo ram_info = {
  669. .name = TYPE_SUN4M_MEMORY,
  670. .parent = TYPE_SYS_BUS_DEVICE,
  671. .instance_size = sizeof(RamDevice),
  672. .instance_init = ram_initfn,
  673. .class_init = ram_class_init,
  674. };
  675. static void cpu_devinit(const char *cpu_type, unsigned int id,
  676. uint64_t prom_addr, qemu_irq **cpu_irqs)
  677. {
  678. SPARCCPU *cpu;
  679. CPUSPARCState *env;
  680. cpu = SPARC_CPU(object_new(cpu_type));
  681. env = &cpu->env;
  682. qemu_register_reset(sun4m_cpu_reset, cpu);
  683. object_property_set_bool(OBJECT(cpu), "start-powered-off", id != 0,
  684. &error_fatal);
  685. qdev_realize_and_unref(DEVICE(cpu), NULL, &error_fatal);
  686. cpu_sparc_set_id(env, id);
  687. *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
  688. env->prom_addr = prom_addr;
  689. }
  690. static void dummy_fdc_tc(void *opaque, int irq, int level)
  691. {
  692. }
  693. static void sun4m_hw_init(MachineState *machine)
  694. {
  695. const struct sun4m_hwdef *hwdef = SUN4M_MACHINE_GET_CLASS(machine)->hwdef;
  696. DeviceState *slavio_intctl;
  697. unsigned int i;
  698. Nvram *nvram;
  699. qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
  700. qemu_irq fdc_tc;
  701. unsigned long kernel_size;
  702. uint32_t initrd_size;
  703. DriveInfo *fd[MAX_FD];
  704. FWCfgState *fw_cfg;
  705. DeviceState *dev, *ms_kb_orgate, *serial_orgate;
  706. SysBusDevice *s;
  707. unsigned int smp_cpus = machine->smp.cpus;
  708. unsigned int max_cpus = machine->smp.max_cpus;
  709. Object *ram_memdev = object_resolve_path_type(machine->ram_memdev_id,
  710. TYPE_MEMORY_BACKEND, NULL);
  711. NICInfo *nd = &nd_table[0];
  712. if (machine->ram_size > hwdef->max_mem) {
  713. error_report("Too much memory for this machine: %" PRId64 ","
  714. " maximum %" PRId64,
  715. machine->ram_size / MiB, hwdef->max_mem / MiB);
  716. exit(1);
  717. }
  718. /* init CPUs */
  719. for(i = 0; i < smp_cpus; i++) {
  720. cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
  721. }
  722. for (i = smp_cpus; i < MAX_CPUS; i++)
  723. cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
  724. /* Create and map RAM frontend */
  725. dev = qdev_new("memory");
  726. object_property_set_link(OBJECT(dev), "memdev", ram_memdev, &error_fatal);
  727. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  728. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
  729. /* models without ECC don't trap when missing ram is accessed */
  730. if (!hwdef->ecc_base) {
  731. empty_slot_init("ecc", machine->ram_size,
  732. hwdef->max_mem - machine->ram_size);
  733. }
  734. prom_init(hwdef->slavio_base, machine->firmware);
  735. slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
  736. hwdef->intctl_base + 0x10000ULL,
  737. cpu_irqs);
  738. for (i = 0; i < 32; i++) {
  739. slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
  740. }
  741. for (i = 0; i < MAX_CPUS; i++) {
  742. slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
  743. }
  744. if (hwdef->idreg_base) {
  745. idreg_init(hwdef->idreg_base);
  746. }
  747. if (hwdef->afx_base) {
  748. afx_init(hwdef->afx_base);
  749. }
  750. iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
  751. if (hwdef->iommu_pad_base) {
  752. /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
  753. Software shouldn't use aliased addresses, neither should it crash
  754. when does. Using empty_slot instead of aliasing can help with
  755. debugging such accesses */
  756. empty_slot_init("iommu.alias",
  757. hwdef->iommu_pad_base, hwdef->iommu_pad_len);
  758. }
  759. qemu_check_nic_model(nd, TYPE_LANCE);
  760. sparc32_dma_init(hwdef->dma_base,
  761. hwdef->esp_base, slavio_irq[18],
  762. hwdef->le_base, slavio_irq[16], nd);
  763. if (graphic_depth != 8 && graphic_depth != 24) {
  764. error_report("Unsupported depth: %d", graphic_depth);
  765. exit (1);
  766. }
  767. if (vga_interface_type != VGA_NONE) {
  768. if (vga_interface_type == VGA_CG3) {
  769. if (graphic_depth != 8) {
  770. error_report("Unsupported depth: %d", graphic_depth);
  771. exit(1);
  772. }
  773. if (!(graphic_width == 1024 && graphic_height == 768) &&
  774. !(graphic_width == 1152 && graphic_height == 900)) {
  775. error_report("Unsupported resolution: %d x %d", graphic_width,
  776. graphic_height);
  777. exit(1);
  778. }
  779. /* sbus irq 5 */
  780. cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  781. graphic_width, graphic_height, graphic_depth);
  782. } else {
  783. /* If no display specified, default to TCX */
  784. if (graphic_depth != 8 && graphic_depth != 24) {
  785. error_report("Unsupported depth: %d", graphic_depth);
  786. exit(1);
  787. }
  788. if (!(graphic_width == 1024 && graphic_height == 768)) {
  789. error_report("Unsupported resolution: %d x %d",
  790. graphic_width, graphic_height);
  791. exit(1);
  792. }
  793. tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  794. graphic_width, graphic_height, graphic_depth);
  795. }
  796. }
  797. for (i = 0; i < MAX_VSIMMS; i++) {
  798. /* vsimm registers probed by OBP */
  799. if (hwdef->vsimm[i].reg_base) {
  800. char *name = g_strdup_printf("vsimm[%d]", i);
  801. empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
  802. g_free(name);
  803. }
  804. }
  805. if (hwdef->sx_base) {
  806. create_unimplemented_device("sun-sx", hwdef->sx_base, 0x2000);
  807. }
  808. dev = qdev_new("sysbus-m48t08");
  809. qdev_prop_set_int32(dev, "base-year", 1968);
  810. s = SYS_BUS_DEVICE(dev);
  811. sysbus_realize_and_unref(s, &error_fatal);
  812. sysbus_connect_irq(s, 0, slavio_irq[0]);
  813. sysbus_mmio_map(s, 0, hwdef->nvram_base);
  814. nvram = NVRAM(dev);
  815. slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
  816. /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
  817. Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
  818. dev = qdev_new(TYPE_ESCC);
  819. qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
  820. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  821. qdev_prop_set_uint32(dev, "it_shift", 1);
  822. qdev_prop_set_chr(dev, "chrB", NULL);
  823. qdev_prop_set_chr(dev, "chrA", NULL);
  824. qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
  825. qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
  826. s = SYS_BUS_DEVICE(dev);
  827. sysbus_realize_and_unref(s, &error_fatal);
  828. sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
  829. /* Logically OR both its IRQs together */
  830. ms_kb_orgate = DEVICE(object_new(TYPE_OR_IRQ));
  831. object_property_set_int(OBJECT(ms_kb_orgate), "num-lines", 2, &error_fatal);
  832. qdev_realize_and_unref(ms_kb_orgate, NULL, &error_fatal);
  833. sysbus_connect_irq(s, 0, qdev_get_gpio_in(ms_kb_orgate, 0));
  834. sysbus_connect_irq(s, 1, qdev_get_gpio_in(ms_kb_orgate, 1));
  835. qdev_connect_gpio_out(DEVICE(ms_kb_orgate), 0, slavio_irq[14]);
  836. dev = qdev_new(TYPE_ESCC);
  837. qdev_prop_set_uint32(dev, "disabled", 0);
  838. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  839. qdev_prop_set_uint32(dev, "it_shift", 1);
  840. qdev_prop_set_chr(dev, "chrB", serial_hd(1));
  841. qdev_prop_set_chr(dev, "chrA", serial_hd(0));
  842. qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
  843. qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
  844. s = SYS_BUS_DEVICE(dev);
  845. sysbus_realize_and_unref(s, &error_fatal);
  846. sysbus_mmio_map(s, 0, hwdef->serial_base);
  847. /* Logically OR both its IRQs together */
  848. serial_orgate = DEVICE(object_new(TYPE_OR_IRQ));
  849. object_property_set_int(OBJECT(serial_orgate), "num-lines", 2,
  850. &error_fatal);
  851. qdev_realize_and_unref(serial_orgate, NULL, &error_fatal);
  852. sysbus_connect_irq(s, 0, qdev_get_gpio_in(serial_orgate, 0));
  853. sysbus_connect_irq(s, 1, qdev_get_gpio_in(serial_orgate, 1));
  854. qdev_connect_gpio_out(DEVICE(serial_orgate), 0, slavio_irq[15]);
  855. if (hwdef->apc_base) {
  856. apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
  857. }
  858. if (hwdef->fd_base) {
  859. /* there is zero or one floppy drive */
  860. memset(fd, 0, sizeof(fd));
  861. fd[0] = drive_get(IF_FLOPPY, 0, 0);
  862. sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
  863. &fdc_tc);
  864. } else {
  865. fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
  866. }
  867. slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
  868. slavio_irq[30], fdc_tc);
  869. if (hwdef->cs_base) {
  870. sysbus_create_simple("sun-CS4231", hwdef->cs_base,
  871. slavio_irq[5]);
  872. }
  873. if (hwdef->dbri_base) {
  874. /* ISDN chip with attached CS4215 audio codec */
  875. /* prom space */
  876. create_unimplemented_device("sun-DBRI.prom",
  877. hwdef->dbri_base + 0x1000, 0x30);
  878. /* reg space */
  879. create_unimplemented_device("sun-DBRI",
  880. hwdef->dbri_base + 0x10000, 0x100);
  881. }
  882. if (hwdef->bpp_base) {
  883. /* parallel port */
  884. create_unimplemented_device("sun-bpp", hwdef->bpp_base, 0x20);
  885. }
  886. initrd_size = 0;
  887. kernel_size = sun4m_load_kernel(machine->kernel_filename,
  888. machine->initrd_filename,
  889. machine->ram_size, &initrd_size);
  890. nvram_init(nvram, (uint8_t *)&nd->macaddr, machine->kernel_cmdline,
  891. machine->boot_order, machine->ram_size, kernel_size,
  892. graphic_width, graphic_height, graphic_depth,
  893. hwdef->nvram_machine_id, "Sun4m");
  894. if (hwdef->ecc_base)
  895. ecc_init(hwdef->ecc_base, slavio_irq[28],
  896. hwdef->ecc_version);
  897. dev = qdev_new(TYPE_FW_CFG_MEM);
  898. fw_cfg = FW_CFG(dev);
  899. qdev_prop_set_uint32(dev, "data_width", 1);
  900. qdev_prop_set_bit(dev, "dma_enabled", false);
  901. object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
  902. OBJECT(fw_cfg));
  903. s = SYS_BUS_DEVICE(dev);
  904. sysbus_realize_and_unref(s, &error_fatal);
  905. sysbus_mmio_map(s, 0, CFG_ADDR);
  906. sysbus_mmio_map(s, 1, CFG_ADDR + 2);
  907. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
  908. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
  909. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
  910. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  911. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
  912. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
  913. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
  914. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
  915. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  916. if (machine->kernel_cmdline) {
  917. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
  918. pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
  919. machine->kernel_cmdline);
  920. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
  921. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  922. strlen(machine->kernel_cmdline) + 1);
  923. } else {
  924. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
  925. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  926. }
  927. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
  928. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  929. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
  930. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  931. }
  932. enum {
  933. ss5_id = 32,
  934. vger_id,
  935. lx_id,
  936. ss4_id,
  937. scls_id,
  938. sbook_id,
  939. ss10_id = 64,
  940. ss20_id,
  941. ss600mp_id,
  942. };
  943. static void sun4m_machine_class_init(ObjectClass *oc, void *data)
  944. {
  945. MachineClass *mc = MACHINE_CLASS(oc);
  946. mc->init = sun4m_hw_init;
  947. mc->block_default_type = IF_SCSI;
  948. mc->default_boot_order = "c";
  949. mc->default_display = "tcx";
  950. mc->default_ram_id = "sun4m.ram";
  951. }
  952. static void ss5_class_init(ObjectClass *oc, void *data)
  953. {
  954. MachineClass *mc = MACHINE_CLASS(oc);
  955. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  956. static const struct sun4m_hwdef ss5_hwdef = {
  957. .iommu_base = 0x10000000,
  958. .iommu_pad_base = 0x10004000,
  959. .iommu_pad_len = 0x0fffb000,
  960. .tcx_base = 0x50000000,
  961. .cs_base = 0x6c000000,
  962. .slavio_base = 0x70000000,
  963. .ms_kb_base = 0x71000000,
  964. .serial_base = 0x71100000,
  965. .nvram_base = 0x71200000,
  966. .fd_base = 0x71400000,
  967. .counter_base = 0x71d00000,
  968. .intctl_base = 0x71e00000,
  969. .idreg_base = 0x78000000,
  970. .dma_base = 0x78400000,
  971. .esp_base = 0x78800000,
  972. .le_base = 0x78c00000,
  973. .apc_base = 0x6a000000,
  974. .afx_base = 0x6e000000,
  975. .aux1_base = 0x71900000,
  976. .aux2_base = 0x71910000,
  977. .nvram_machine_id = 0x80,
  978. .machine_id = ss5_id,
  979. .iommu_version = 0x05000000,
  980. .max_mem = 0x10000000,
  981. };
  982. mc->desc = "Sun4m platform, SPARCstation 5";
  983. mc->is_default = true;
  984. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  985. smc->hwdef = &ss5_hwdef;
  986. }
  987. static void ss10_class_init(ObjectClass *oc, void *data)
  988. {
  989. MachineClass *mc = MACHINE_CLASS(oc);
  990. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  991. static const struct sun4m_hwdef ss10_hwdef = {
  992. .iommu_base = 0xfe0000000ULL,
  993. .tcx_base = 0xe20000000ULL,
  994. .slavio_base = 0xff0000000ULL,
  995. .ms_kb_base = 0xff1000000ULL,
  996. .serial_base = 0xff1100000ULL,
  997. .nvram_base = 0xff1200000ULL,
  998. .fd_base = 0xff1700000ULL,
  999. .counter_base = 0xff1300000ULL,
  1000. .intctl_base = 0xff1400000ULL,
  1001. .idreg_base = 0xef0000000ULL,
  1002. .dma_base = 0xef0400000ULL,
  1003. .esp_base = 0xef0800000ULL,
  1004. .le_base = 0xef0c00000ULL,
  1005. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1006. .aux1_base = 0xff1800000ULL,
  1007. .aux2_base = 0xff1a01000ULL,
  1008. .ecc_base = 0xf00000000ULL,
  1009. .ecc_version = 0x10000000, /* version 0, implementation 1 */
  1010. .nvram_machine_id = 0x72,
  1011. .machine_id = ss10_id,
  1012. .iommu_version = 0x03000000,
  1013. .max_mem = 0xf00000000ULL,
  1014. };
  1015. mc->desc = "Sun4m platform, SPARCstation 10";
  1016. mc->max_cpus = 4;
  1017. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1018. smc->hwdef = &ss10_hwdef;
  1019. }
  1020. static void ss600mp_class_init(ObjectClass *oc, void *data)
  1021. {
  1022. MachineClass *mc = MACHINE_CLASS(oc);
  1023. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1024. static const struct sun4m_hwdef ss600mp_hwdef = {
  1025. .iommu_base = 0xfe0000000ULL,
  1026. .tcx_base = 0xe20000000ULL,
  1027. .slavio_base = 0xff0000000ULL,
  1028. .ms_kb_base = 0xff1000000ULL,
  1029. .serial_base = 0xff1100000ULL,
  1030. .nvram_base = 0xff1200000ULL,
  1031. .counter_base = 0xff1300000ULL,
  1032. .intctl_base = 0xff1400000ULL,
  1033. .dma_base = 0xef0081000ULL,
  1034. .esp_base = 0xef0080000ULL,
  1035. .le_base = 0xef0060000ULL,
  1036. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1037. .aux1_base = 0xff1800000ULL,
  1038. .aux2_base = 0xff1a01000ULL, /* XXX should not exist */
  1039. .ecc_base = 0xf00000000ULL,
  1040. .ecc_version = 0x00000000, /* version 0, implementation 0 */
  1041. .nvram_machine_id = 0x71,
  1042. .machine_id = ss600mp_id,
  1043. .iommu_version = 0x01000000,
  1044. .max_mem = 0xf00000000ULL,
  1045. };
  1046. mc->desc = "Sun4m platform, SPARCserver 600MP";
  1047. mc->max_cpus = 4;
  1048. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1049. smc->hwdef = &ss600mp_hwdef;
  1050. }
  1051. static void ss20_class_init(ObjectClass *oc, void *data)
  1052. {
  1053. MachineClass *mc = MACHINE_CLASS(oc);
  1054. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1055. static const struct sun4m_hwdef ss20_hwdef = {
  1056. .iommu_base = 0xfe0000000ULL,
  1057. .tcx_base = 0xe20000000ULL,
  1058. .slavio_base = 0xff0000000ULL,
  1059. .ms_kb_base = 0xff1000000ULL,
  1060. .serial_base = 0xff1100000ULL,
  1061. .nvram_base = 0xff1200000ULL,
  1062. .fd_base = 0xff1700000ULL,
  1063. .counter_base = 0xff1300000ULL,
  1064. .intctl_base = 0xff1400000ULL,
  1065. .idreg_base = 0xef0000000ULL,
  1066. .dma_base = 0xef0400000ULL,
  1067. .esp_base = 0xef0800000ULL,
  1068. .le_base = 0xef0c00000ULL,
  1069. .bpp_base = 0xef4800000ULL,
  1070. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1071. .aux1_base = 0xff1800000ULL,
  1072. .aux2_base = 0xff1a01000ULL,
  1073. .dbri_base = 0xee0000000ULL,
  1074. .sx_base = 0xf80000000ULL,
  1075. .vsimm = {
  1076. {
  1077. .reg_base = 0x9c000000ULL,
  1078. .vram_base = 0xfc000000ULL
  1079. }, {
  1080. .reg_base = 0x90000000ULL,
  1081. .vram_base = 0xf0000000ULL
  1082. }, {
  1083. .reg_base = 0x94000000ULL
  1084. }, {
  1085. .reg_base = 0x98000000ULL
  1086. }
  1087. },
  1088. .ecc_base = 0xf00000000ULL,
  1089. .ecc_version = 0x20000000, /* version 0, implementation 2 */
  1090. .nvram_machine_id = 0x72,
  1091. .machine_id = ss20_id,
  1092. .iommu_version = 0x13000000,
  1093. .max_mem = 0xf00000000ULL,
  1094. };
  1095. mc->desc = "Sun4m platform, SPARCstation 20";
  1096. mc->max_cpus = 4;
  1097. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1098. smc->hwdef = &ss20_hwdef;
  1099. }
  1100. static void voyager_class_init(ObjectClass *oc, void *data)
  1101. {
  1102. MachineClass *mc = MACHINE_CLASS(oc);
  1103. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1104. static const struct sun4m_hwdef voyager_hwdef = {
  1105. .iommu_base = 0x10000000,
  1106. .tcx_base = 0x50000000,
  1107. .slavio_base = 0x70000000,
  1108. .ms_kb_base = 0x71000000,
  1109. .serial_base = 0x71100000,
  1110. .nvram_base = 0x71200000,
  1111. .fd_base = 0x71400000,
  1112. .counter_base = 0x71d00000,
  1113. .intctl_base = 0x71e00000,
  1114. .idreg_base = 0x78000000,
  1115. .dma_base = 0x78400000,
  1116. .esp_base = 0x78800000,
  1117. .le_base = 0x78c00000,
  1118. .apc_base = 0x71300000, /* pmc */
  1119. .aux1_base = 0x71900000,
  1120. .aux2_base = 0x71910000,
  1121. .nvram_machine_id = 0x80,
  1122. .machine_id = vger_id,
  1123. .iommu_version = 0x05000000,
  1124. .max_mem = 0x10000000,
  1125. };
  1126. mc->desc = "Sun4m platform, SPARCstation Voyager";
  1127. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1128. smc->hwdef = &voyager_hwdef;
  1129. }
  1130. static void ss_lx_class_init(ObjectClass *oc, void *data)
  1131. {
  1132. MachineClass *mc = MACHINE_CLASS(oc);
  1133. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1134. static const struct sun4m_hwdef ss_lx_hwdef = {
  1135. .iommu_base = 0x10000000,
  1136. .iommu_pad_base = 0x10004000,
  1137. .iommu_pad_len = 0x0fffb000,
  1138. .tcx_base = 0x50000000,
  1139. .slavio_base = 0x70000000,
  1140. .ms_kb_base = 0x71000000,
  1141. .serial_base = 0x71100000,
  1142. .nvram_base = 0x71200000,
  1143. .fd_base = 0x71400000,
  1144. .counter_base = 0x71d00000,
  1145. .intctl_base = 0x71e00000,
  1146. .idreg_base = 0x78000000,
  1147. .dma_base = 0x78400000,
  1148. .esp_base = 0x78800000,
  1149. .le_base = 0x78c00000,
  1150. .aux1_base = 0x71900000,
  1151. .aux2_base = 0x71910000,
  1152. .nvram_machine_id = 0x80,
  1153. .machine_id = lx_id,
  1154. .iommu_version = 0x04000000,
  1155. .max_mem = 0x10000000,
  1156. };
  1157. mc->desc = "Sun4m platform, SPARCstation LX";
  1158. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1159. smc->hwdef = &ss_lx_hwdef;
  1160. }
  1161. static void ss4_class_init(ObjectClass *oc, void *data)
  1162. {
  1163. MachineClass *mc = MACHINE_CLASS(oc);
  1164. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1165. static const struct sun4m_hwdef ss4_hwdef = {
  1166. .iommu_base = 0x10000000,
  1167. .tcx_base = 0x50000000,
  1168. .cs_base = 0x6c000000,
  1169. .slavio_base = 0x70000000,
  1170. .ms_kb_base = 0x71000000,
  1171. .serial_base = 0x71100000,
  1172. .nvram_base = 0x71200000,
  1173. .fd_base = 0x71400000,
  1174. .counter_base = 0x71d00000,
  1175. .intctl_base = 0x71e00000,
  1176. .idreg_base = 0x78000000,
  1177. .dma_base = 0x78400000,
  1178. .esp_base = 0x78800000,
  1179. .le_base = 0x78c00000,
  1180. .apc_base = 0x6a000000,
  1181. .aux1_base = 0x71900000,
  1182. .aux2_base = 0x71910000,
  1183. .nvram_machine_id = 0x80,
  1184. .machine_id = ss4_id,
  1185. .iommu_version = 0x05000000,
  1186. .max_mem = 0x10000000,
  1187. };
  1188. mc->desc = "Sun4m platform, SPARCstation 4";
  1189. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1190. smc->hwdef = &ss4_hwdef;
  1191. }
  1192. static void scls_class_init(ObjectClass *oc, void *data)
  1193. {
  1194. MachineClass *mc = MACHINE_CLASS(oc);
  1195. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1196. static const struct sun4m_hwdef scls_hwdef = {
  1197. .iommu_base = 0x10000000,
  1198. .tcx_base = 0x50000000,
  1199. .slavio_base = 0x70000000,
  1200. .ms_kb_base = 0x71000000,
  1201. .serial_base = 0x71100000,
  1202. .nvram_base = 0x71200000,
  1203. .fd_base = 0x71400000,
  1204. .counter_base = 0x71d00000,
  1205. .intctl_base = 0x71e00000,
  1206. .idreg_base = 0x78000000,
  1207. .dma_base = 0x78400000,
  1208. .esp_base = 0x78800000,
  1209. .le_base = 0x78c00000,
  1210. .apc_base = 0x6a000000,
  1211. .aux1_base = 0x71900000,
  1212. .aux2_base = 0x71910000,
  1213. .nvram_machine_id = 0x80,
  1214. .machine_id = scls_id,
  1215. .iommu_version = 0x05000000,
  1216. .max_mem = 0x10000000,
  1217. };
  1218. mc->desc = "Sun4m platform, SPARCClassic";
  1219. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1220. smc->hwdef = &scls_hwdef;
  1221. }
  1222. static void sbook_class_init(ObjectClass *oc, void *data)
  1223. {
  1224. MachineClass *mc = MACHINE_CLASS(oc);
  1225. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1226. static const struct sun4m_hwdef sbook_hwdef = {
  1227. .iommu_base = 0x10000000,
  1228. .tcx_base = 0x50000000, /* XXX */
  1229. .slavio_base = 0x70000000,
  1230. .ms_kb_base = 0x71000000,
  1231. .serial_base = 0x71100000,
  1232. .nvram_base = 0x71200000,
  1233. .fd_base = 0x71400000,
  1234. .counter_base = 0x71d00000,
  1235. .intctl_base = 0x71e00000,
  1236. .idreg_base = 0x78000000,
  1237. .dma_base = 0x78400000,
  1238. .esp_base = 0x78800000,
  1239. .le_base = 0x78c00000,
  1240. .apc_base = 0x6a000000,
  1241. .aux1_base = 0x71900000,
  1242. .aux2_base = 0x71910000,
  1243. .nvram_machine_id = 0x80,
  1244. .machine_id = sbook_id,
  1245. .iommu_version = 0x05000000,
  1246. .max_mem = 0x10000000,
  1247. };
  1248. mc->desc = "Sun4m platform, SPARCbook";
  1249. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1250. smc->hwdef = &sbook_hwdef;
  1251. }
  1252. static const TypeInfo sun4m_machine_types[] = {
  1253. {
  1254. .name = MACHINE_TYPE_NAME("SS-5"),
  1255. .parent = TYPE_SUN4M_MACHINE,
  1256. .class_init = ss5_class_init,
  1257. }, {
  1258. .name = MACHINE_TYPE_NAME("SS-10"),
  1259. .parent = TYPE_SUN4M_MACHINE,
  1260. .class_init = ss10_class_init,
  1261. }, {
  1262. .name = MACHINE_TYPE_NAME("SS-600MP"),
  1263. .parent = TYPE_SUN4M_MACHINE,
  1264. .class_init = ss600mp_class_init,
  1265. }, {
  1266. .name = MACHINE_TYPE_NAME("SS-20"),
  1267. .parent = TYPE_SUN4M_MACHINE,
  1268. .class_init = ss20_class_init,
  1269. }, {
  1270. .name = MACHINE_TYPE_NAME("Voyager"),
  1271. .parent = TYPE_SUN4M_MACHINE,
  1272. .class_init = voyager_class_init,
  1273. }, {
  1274. .name = MACHINE_TYPE_NAME("LX"),
  1275. .parent = TYPE_SUN4M_MACHINE,
  1276. .class_init = ss_lx_class_init,
  1277. }, {
  1278. .name = MACHINE_TYPE_NAME("SS-4"),
  1279. .parent = TYPE_SUN4M_MACHINE,
  1280. .class_init = ss4_class_init,
  1281. }, {
  1282. .name = MACHINE_TYPE_NAME("SPARCClassic"),
  1283. .parent = TYPE_SUN4M_MACHINE,
  1284. .class_init = scls_class_init,
  1285. }, {
  1286. .name = MACHINE_TYPE_NAME("SPARCbook"),
  1287. .parent = TYPE_SUN4M_MACHINE,
  1288. .class_init = sbook_class_init,
  1289. }, {
  1290. .name = TYPE_SUN4M_MACHINE,
  1291. .parent = TYPE_MACHINE,
  1292. .class_size = sizeof(Sun4mMachineClass),
  1293. .class_init = sun4m_machine_class_init,
  1294. .abstract = true,
  1295. }
  1296. };
  1297. DEFINE_TYPES(sun4m_machine_types)
  1298. static void sun4m_register_types(void)
  1299. {
  1300. type_register_static(&idreg_info);
  1301. type_register_static(&afx_info);
  1302. type_register_static(&prom_info);
  1303. type_register_static(&ram_info);
  1304. }
  1305. type_init(sun4m_register_types)