msf2-emac.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587
  1. /*
  2. * QEMU model of the Smartfusion2 Ethernet MAC.
  3. *
  4. * Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. *
  24. * Refer to section Ethernet MAC in the document:
  25. * UG0331: SmartFusion2 Microcontroller Subsystem User Guide
  26. * Datasheet URL:
  27. * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/
  28. * 56758-soc?lang=en&limit=20&limitstart=220
  29. */
  30. #include "qemu/osdep.h"
  31. #include "qemu/log.h"
  32. #include "qapi/error.h"
  33. #include "hw/registerfields.h"
  34. #include "hw/net/msf2-emac.h"
  35. #include "hw/net/mii.h"
  36. #include "hw/irq.h"
  37. #include "hw/qdev-properties.h"
  38. #include "migration/vmstate.h"
  39. REG32(CFG1, 0x0)
  40. FIELD(CFG1, RESET, 31, 1)
  41. FIELD(CFG1, RX_EN, 2, 1)
  42. FIELD(CFG1, TX_EN, 0, 1)
  43. FIELD(CFG1, LB_EN, 8, 1)
  44. REG32(CFG2, 0x4)
  45. REG32(IFG, 0x8)
  46. REG32(HALF_DUPLEX, 0xc)
  47. REG32(MAX_FRAME_LENGTH, 0x10)
  48. REG32(MII_CMD, 0x24)
  49. FIELD(MII_CMD, READ, 0, 1)
  50. REG32(MII_ADDR, 0x28)
  51. FIELD(MII_ADDR, REGADDR, 0, 5)
  52. FIELD(MII_ADDR, PHYADDR, 8, 5)
  53. REG32(MII_CTL, 0x2c)
  54. REG32(MII_STS, 0x30)
  55. REG32(STA1, 0x40)
  56. REG32(STA2, 0x44)
  57. REG32(FIFO_CFG0, 0x48)
  58. REG32(FIFO_CFG4, 0x58)
  59. FIELD(FIFO_CFG4, BCAST, 9, 1)
  60. FIELD(FIFO_CFG4, MCAST, 8, 1)
  61. REG32(FIFO_CFG5, 0x5C)
  62. FIELD(FIFO_CFG5, BCAST, 9, 1)
  63. FIELD(FIFO_CFG5, MCAST, 8, 1)
  64. REG32(DMA_TX_CTL, 0x180)
  65. FIELD(DMA_TX_CTL, EN, 0, 1)
  66. REG32(DMA_TX_DESC, 0x184)
  67. REG32(DMA_TX_STATUS, 0x188)
  68. FIELD(DMA_TX_STATUS, PKTCNT, 16, 8)
  69. FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1)
  70. FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1)
  71. REG32(DMA_RX_CTL, 0x18c)
  72. FIELD(DMA_RX_CTL, EN, 0, 1)
  73. REG32(DMA_RX_DESC, 0x190)
  74. REG32(DMA_RX_STATUS, 0x194)
  75. FIELD(DMA_RX_STATUS, PKTCNT, 16, 8)
  76. FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1)
  77. FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1)
  78. REG32(DMA_IRQ_MASK, 0x198)
  79. REG32(DMA_IRQ, 0x19c)
  80. #define EMPTY_MASK (1 << 31)
  81. #define PKT_SIZE 0x7FF
  82. #define PHYADDR 0x1
  83. #define MAX_PKT_SIZE 2048
  84. typedef struct {
  85. uint32_t pktaddr;
  86. uint32_t pktsize;
  87. uint32_t next;
  88. } EmacDesc;
  89. static uint32_t emac_get_isr(MSF2EmacState *s)
  90. {
  91. uint32_t ier = s->regs[R_DMA_IRQ_MASK];
  92. uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF;
  93. uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF;
  94. uint32_t isr = (rx << 4) | tx;
  95. s->regs[R_DMA_IRQ] = ier & isr;
  96. return s->regs[R_DMA_IRQ];
  97. }
  98. static void emac_update_irq(MSF2EmacState *s)
  99. {
  100. bool intr = emac_get_isr(s);
  101. qemu_set_irq(s->irq, intr);
  102. }
  103. static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
  104. {
  105. address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
  106. /* Convert from LE into host endianness. */
  107. d->pktaddr = le32_to_cpu(d->pktaddr);
  108. d->pktsize = le32_to_cpu(d->pktsize);
  109. d->next = le32_to_cpu(d->next);
  110. }
  111. static void emac_store_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
  112. {
  113. /* Convert from host endianness into LE. */
  114. d->pktaddr = cpu_to_le32(d->pktaddr);
  115. d->pktsize = cpu_to_le32(d->pktsize);
  116. d->next = cpu_to_le32(d->next);
  117. address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
  118. }
  119. static void msf2_dma_tx(MSF2EmacState *s)
  120. {
  121. NetClientState *nc = qemu_get_queue(s->nic);
  122. hwaddr desc = s->regs[R_DMA_TX_DESC];
  123. uint8_t buf[MAX_PKT_SIZE];
  124. EmacDesc d;
  125. int size;
  126. uint8_t pktcnt;
  127. uint32_t status;
  128. if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) {
  129. return;
  130. }
  131. while (1) {
  132. emac_load_desc(s, &d, desc);
  133. if (d.pktsize & EMPTY_MASK) {
  134. break;
  135. }
  136. size = d.pktsize & PKT_SIZE;
  137. address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
  138. buf, size);
  139. /*
  140. * This is very basic way to send packets. Ideally there should be
  141. * a FIFO and packets should be sent out from FIFO only when
  142. * R_CFG1 bit 0 is set.
  143. */
  144. if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) {
  145. qemu_receive_packet(nc, buf, size);
  146. } else {
  147. qemu_send_packet(nc, buf, size);
  148. }
  149. d.pktsize |= EMPTY_MASK;
  150. emac_store_desc(s, &d, desc);
  151. /* update sent packets count */
  152. status = s->regs[R_DMA_TX_STATUS];
  153. pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT);
  154. pktcnt++;
  155. s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS,
  156. PKTCNT, pktcnt);
  157. s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK;
  158. desc = d.next;
  159. }
  160. s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK;
  161. s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK;
  162. }
  163. static void msf2_phy_update_link(MSF2EmacState *s)
  164. {
  165. /* Autonegotiation status mirrors link status. */
  166. if (qemu_get_queue(s->nic)->link_down) {
  167. s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP |
  168. MII_BMSR_LINK_ST);
  169. } else {
  170. s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP |
  171. MII_BMSR_LINK_ST);
  172. }
  173. }
  174. static void msf2_phy_reset(MSF2EmacState *s)
  175. {
  176. memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
  177. s->phy_regs[MII_BMCR] = 0x1140;
  178. s->phy_regs[MII_BMSR] = 0x7968;
  179. s->phy_regs[MII_PHYID1] = 0x0022;
  180. s->phy_regs[MII_PHYID2] = 0x1550;
  181. s->phy_regs[MII_ANAR] = 0x01E1;
  182. s->phy_regs[MII_ANLPAR] = 0xCDE1;
  183. msf2_phy_update_link(s);
  184. }
  185. static void write_to_phy(MSF2EmacState *s)
  186. {
  187. uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
  188. uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
  189. R_MII_ADDR_REGADDR_MASK;
  190. uint16_t data = s->regs[R_MII_CTL] & 0xFFFF;
  191. if (phy_addr != PHYADDR) {
  192. return;
  193. }
  194. switch (reg_addr) {
  195. case MII_BMCR:
  196. if (data & MII_BMCR_RESET) {
  197. /* Phy reset */
  198. msf2_phy_reset(s);
  199. data &= ~MII_BMCR_RESET;
  200. }
  201. if (data & MII_BMCR_AUTOEN) {
  202. /* Complete autonegotiation immediately */
  203. data &= ~MII_BMCR_AUTOEN;
  204. s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP;
  205. }
  206. break;
  207. }
  208. s->phy_regs[reg_addr] = data;
  209. }
  210. static uint16_t read_from_phy(MSF2EmacState *s)
  211. {
  212. uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
  213. uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
  214. R_MII_ADDR_REGADDR_MASK;
  215. if (phy_addr == PHYADDR) {
  216. return s->phy_regs[reg_addr];
  217. } else {
  218. return 0xFFFF;
  219. }
  220. }
  221. static void msf2_emac_do_reset(MSF2EmacState *s)
  222. {
  223. memset(&s->regs[0], 0, sizeof(s->regs));
  224. s->regs[R_CFG1] = 0x80000000;
  225. s->regs[R_CFG2] = 0x00007000;
  226. s->regs[R_IFG] = 0x40605060;
  227. s->regs[R_HALF_DUPLEX] = 0x00A1F037;
  228. s->regs[R_MAX_FRAME_LENGTH] = 0x00000600;
  229. s->regs[R_FIFO_CFG5] = 0X3FFFF;
  230. msf2_phy_reset(s);
  231. }
  232. static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size)
  233. {
  234. MSF2EmacState *s = opaque;
  235. uint32_t r = 0;
  236. addr >>= 2;
  237. switch (addr) {
  238. case R_DMA_IRQ:
  239. r = emac_get_isr(s);
  240. break;
  241. default:
  242. if (addr >= ARRAY_SIZE(s->regs)) {
  243. qemu_log_mask(LOG_GUEST_ERROR,
  244. "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
  245. addr * 4);
  246. return r;
  247. }
  248. r = s->regs[addr];
  249. break;
  250. }
  251. return r;
  252. }
  253. static void emac_write(void *opaque, hwaddr addr, uint64_t val64,
  254. unsigned int size)
  255. {
  256. MSF2EmacState *s = opaque;
  257. uint32_t value = val64;
  258. uint32_t enreqbits;
  259. uint8_t pktcnt;
  260. addr >>= 2;
  261. switch (addr) {
  262. case R_DMA_TX_CTL:
  263. s->regs[addr] = value;
  264. if (value & R_DMA_TX_CTL_EN_MASK) {
  265. msf2_dma_tx(s);
  266. }
  267. break;
  268. case R_DMA_RX_CTL:
  269. s->regs[addr] = value;
  270. if (value & R_DMA_RX_CTL_EN_MASK) {
  271. s->rx_desc = s->regs[R_DMA_RX_DESC];
  272. qemu_flush_queued_packets(qemu_get_queue(s->nic));
  273. }
  274. break;
  275. case R_CFG1:
  276. s->regs[addr] = value;
  277. if (value & R_CFG1_RESET_MASK) {
  278. msf2_emac_do_reset(s);
  279. }
  280. break;
  281. case R_FIFO_CFG0:
  282. /*
  283. * For our implementation, turning on modules is instantaneous,
  284. * so the states requested via the *ENREQ bits appear in the
  285. * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC
  286. * module are not emulated here since it deals with start of frames,
  287. * inter-packet gap and control frames.
  288. */
  289. enreqbits = extract32(value, 8, 5);
  290. s->regs[addr] = deposit32(value, 16, 5, enreqbits);
  291. break;
  292. case R_DMA_TX_DESC:
  293. if (value & 0x3) {
  294. qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be"
  295. " 32 bit aligned\n");
  296. }
  297. /* Ignore [1:0] bits */
  298. s->regs[addr] = value & ~3;
  299. break;
  300. case R_DMA_RX_DESC:
  301. if (value & 0x3) {
  302. qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be"
  303. " 32 bit aligned\n");
  304. }
  305. /* Ignore [1:0] bits */
  306. s->regs[addr] = value & ~3;
  307. break;
  308. case R_DMA_TX_STATUS:
  309. if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) {
  310. s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK;
  311. }
  312. if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) {
  313. pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT);
  314. pktcnt--;
  315. s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS,
  316. PKTCNT, pktcnt);
  317. if (pktcnt == 0) {
  318. s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK;
  319. }
  320. }
  321. break;
  322. case R_DMA_RX_STATUS:
  323. if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) {
  324. s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK;
  325. }
  326. if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) {
  327. pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT);
  328. pktcnt--;
  329. s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS,
  330. PKTCNT, pktcnt);
  331. if (pktcnt == 0) {
  332. s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK;
  333. }
  334. }
  335. break;
  336. case R_DMA_IRQ:
  337. break;
  338. case R_MII_CMD:
  339. if (value & R_MII_CMD_READ_MASK) {
  340. s->regs[R_MII_STS] = read_from_phy(s);
  341. }
  342. break;
  343. case R_MII_CTL:
  344. s->regs[addr] = value;
  345. write_to_phy(s);
  346. break;
  347. case R_STA1:
  348. s->regs[addr] = value;
  349. /*
  350. * R_STA1 [31:24] : octet 1 of mac address
  351. * R_STA1 [23:16] : octet 2 of mac address
  352. * R_STA1 [15:8] : octet 3 of mac address
  353. * R_STA1 [7:0] : octet 4 of mac address
  354. */
  355. stl_be_p(s->mac_addr, value);
  356. break;
  357. case R_STA2:
  358. s->regs[addr] = value;
  359. /*
  360. * R_STA2 [31:24] : octet 5 of mac address
  361. * R_STA2 [23:16] : octet 6 of mac address
  362. */
  363. stw_be_p(s->mac_addr + 4, value >> 16);
  364. break;
  365. default:
  366. if (addr >= ARRAY_SIZE(s->regs)) {
  367. qemu_log_mask(LOG_GUEST_ERROR,
  368. "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
  369. addr * 4);
  370. return;
  371. }
  372. s->regs[addr] = value;
  373. break;
  374. }
  375. emac_update_irq(s);
  376. }
  377. static const MemoryRegionOps emac_ops = {
  378. .read = emac_read,
  379. .write = emac_write,
  380. .endianness = DEVICE_NATIVE_ENDIAN,
  381. .impl = {
  382. .min_access_size = 4,
  383. .max_access_size = 4
  384. }
  385. };
  386. static bool emac_can_rx(NetClientState *nc)
  387. {
  388. MSF2EmacState *s = qemu_get_nic_opaque(nc);
  389. return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) &&
  390. (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK);
  391. }
  392. static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf)
  393. {
  394. /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */
  395. const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF,
  396. 0xFF, 0xFF };
  397. bool bcast_en = true;
  398. bool mcast_en = true;
  399. if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) {
  400. bcast_en = true; /* Broadcast dont care for drop circuitry */
  401. } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) {
  402. bcast_en = false;
  403. }
  404. if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) {
  405. mcast_en = true; /* Multicast dont care for drop circuitry */
  406. } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) {
  407. mcast_en = false;
  408. }
  409. if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) {
  410. return bcast_en;
  411. }
  412. if (buf[0] & 1) {
  413. return mcast_en;
  414. }
  415. return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr));
  416. }
  417. static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size)
  418. {
  419. MSF2EmacState *s = qemu_get_nic_opaque(nc);
  420. EmacDesc d;
  421. uint8_t pktcnt;
  422. uint32_t status;
  423. if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) {
  424. return size;
  425. }
  426. if (!addr_filter_ok(s, buf)) {
  427. return size;
  428. }
  429. emac_load_desc(s, &d, s->rx_desc);
  430. if (d.pktsize & EMPTY_MASK) {
  431. address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
  432. buf, size & PKT_SIZE);
  433. d.pktsize = size & PKT_SIZE;
  434. emac_store_desc(s, &d, s->rx_desc);
  435. /* update received packets count */
  436. status = s->regs[R_DMA_RX_STATUS];
  437. pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT);
  438. pktcnt++;
  439. s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS,
  440. PKTCNT, pktcnt);
  441. s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK;
  442. s->rx_desc = d.next;
  443. } else {
  444. s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK;
  445. s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK;
  446. }
  447. emac_update_irq(s);
  448. return size;
  449. }
  450. static void msf2_emac_reset(DeviceState *dev)
  451. {
  452. MSF2EmacState *s = MSS_EMAC(dev);
  453. msf2_emac_do_reset(s);
  454. }
  455. static void emac_set_link(NetClientState *nc)
  456. {
  457. MSF2EmacState *s = qemu_get_nic_opaque(nc);
  458. msf2_phy_update_link(s);
  459. }
  460. static NetClientInfo net_msf2_emac_info = {
  461. .type = NET_CLIENT_DRIVER_NIC,
  462. .size = sizeof(NICState),
  463. .can_receive = emac_can_rx,
  464. .receive = emac_rx,
  465. .link_status_changed = emac_set_link,
  466. };
  467. static void msf2_emac_realize(DeviceState *dev, Error **errp)
  468. {
  469. MSF2EmacState *s = MSS_EMAC(dev);
  470. if (!s->dma_mr) {
  471. error_setg(errp, "MSS_EMAC 'ahb-bus' link not set");
  472. return;
  473. }
  474. address_space_init(&s->dma_as, s->dma_mr, "emac-ahb");
  475. qemu_macaddr_default_if_unset(&s->conf.macaddr);
  476. s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf,
  477. object_get_typename(OBJECT(dev)), dev->id, s);
  478. qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
  479. }
  480. static void msf2_emac_init(Object *obj)
  481. {
  482. MSF2EmacState *s = MSS_EMAC(obj);
  483. sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
  484. memory_region_init_io(&s->mmio, obj, &emac_ops, s,
  485. "msf2-emac", R_MAX * 4);
  486. sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
  487. }
  488. static Property msf2_emac_properties[] = {
  489. DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr,
  490. TYPE_MEMORY_REGION, MemoryRegion *),
  491. DEFINE_NIC_PROPERTIES(MSF2EmacState, conf),
  492. DEFINE_PROP_END_OF_LIST(),
  493. };
  494. static const VMStateDescription vmstate_msf2_emac = {
  495. .name = TYPE_MSS_EMAC,
  496. .version_id = 1,
  497. .minimum_version_id = 1,
  498. .fields = (VMStateField[]) {
  499. VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN),
  500. VMSTATE_UINT32(rx_desc, MSF2EmacState),
  501. VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS),
  502. VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX),
  503. VMSTATE_END_OF_LIST()
  504. }
  505. };
  506. static void msf2_emac_class_init(ObjectClass *klass, void *data)
  507. {
  508. DeviceClass *dc = DEVICE_CLASS(klass);
  509. dc->realize = msf2_emac_realize;
  510. dc->reset = msf2_emac_reset;
  511. dc->vmsd = &vmstate_msf2_emac;
  512. device_class_set_props(dc, msf2_emac_properties);
  513. }
  514. static const TypeInfo msf2_emac_info = {
  515. .name = TYPE_MSS_EMAC,
  516. .parent = TYPE_SYS_BUS_DEVICE,
  517. .instance_size = sizeof(MSF2EmacState),
  518. .instance_init = msf2_emac_init,
  519. .class_init = msf2_emac_class_init,
  520. };
  521. static void msf2_emac_register_types(void)
  522. {
  523. type_register_static(&msf2_emac_info);
  524. }
  525. type_init(msf2_emac_register_types)