tcx.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913
  1. /*
  2. * QEMU TCX Frame buffer
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/datadir.h"
  26. #include "qapi/error.h"
  27. #include "ui/console.h"
  28. #include "ui/pixel_ops.h"
  29. #include "hw/loader.h"
  30. #include "hw/qdev-properties.h"
  31. #include "hw/sysbus.h"
  32. #include "migration/vmstate.h"
  33. #include "qemu/error-report.h"
  34. #include "qemu/module.h"
  35. #include "qom/object.h"
  36. #define TCX_ROM_FILE "QEMU,tcx.bin"
  37. #define FCODE_MAX_ROM_SIZE 0x10000
  38. #define MAXX 1024
  39. #define MAXY 768
  40. #define TCX_DAC_NREGS 16
  41. #define TCX_THC_NREGS 0x1000
  42. #define TCX_DHC_NREGS 0x4000
  43. #define TCX_TEC_NREGS 0x1000
  44. #define TCX_ALT_NREGS 0x8000
  45. #define TCX_STIP_NREGS 0x800000
  46. #define TCX_BLIT_NREGS 0x800000
  47. #define TCX_RSTIP_NREGS 0x800000
  48. #define TCX_RBLIT_NREGS 0x800000
  49. #define TCX_THC_MISC 0x818
  50. #define TCX_THC_CURSXY 0x8fc
  51. #define TCX_THC_CURSMASK 0x900
  52. #define TCX_THC_CURSBITS 0x980
  53. #define TYPE_TCX "sun-tcx"
  54. OBJECT_DECLARE_SIMPLE_TYPE(TCXState, TCX)
  55. struct TCXState {
  56. SysBusDevice parent_obj;
  57. QemuConsole *con;
  58. qemu_irq irq;
  59. uint8_t *vram;
  60. uint32_t *vram24, *cplane;
  61. hwaddr prom_addr;
  62. MemoryRegion rom;
  63. MemoryRegion vram_mem;
  64. MemoryRegion vram_8bit;
  65. MemoryRegion vram_24bit;
  66. MemoryRegion stip;
  67. MemoryRegion blit;
  68. MemoryRegion vram_cplane;
  69. MemoryRegion rstip;
  70. MemoryRegion rblit;
  71. MemoryRegion tec;
  72. MemoryRegion dac;
  73. MemoryRegion thc;
  74. MemoryRegion dhc;
  75. MemoryRegion alt;
  76. MemoryRegion thc24;
  77. ram_addr_t vram24_offset, cplane_offset;
  78. uint32_t tmpblit;
  79. uint32_t vram_size;
  80. uint32_t palette[260];
  81. uint8_t r[260], g[260], b[260];
  82. uint16_t width, height, depth;
  83. uint8_t dac_index, dac_state;
  84. uint32_t thcmisc;
  85. uint32_t cursmask[32];
  86. uint32_t cursbits[32];
  87. uint16_t cursx;
  88. uint16_t cursy;
  89. };
  90. static void tcx_set_dirty(TCXState *s, ram_addr_t addr, int len)
  91. {
  92. memory_region_set_dirty(&s->vram_mem, addr, len);
  93. if (s->depth == 24) {
  94. memory_region_set_dirty(&s->vram_mem, s->vram24_offset + addr * 4,
  95. len * 4);
  96. memory_region_set_dirty(&s->vram_mem, s->cplane_offset + addr * 4,
  97. len * 4);
  98. }
  99. }
  100. static int tcx_check_dirty(TCXState *s, DirtyBitmapSnapshot *snap,
  101. ram_addr_t addr, int len)
  102. {
  103. int ret;
  104. ret = memory_region_snapshot_get_dirty(&s->vram_mem, snap, addr, len);
  105. if (s->depth == 24) {
  106. ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
  107. s->vram24_offset + addr * 4, len * 4);
  108. ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
  109. s->cplane_offset + addr * 4, len * 4);
  110. }
  111. return ret;
  112. }
  113. static void update_palette_entries(TCXState *s, int start, int end)
  114. {
  115. int i;
  116. for (i = start; i < end; i++) {
  117. s->palette[i] = rgb_to_pixel32(s->r[i], s->g[i], s->b[i]);
  118. }
  119. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  120. }
  121. static void tcx_draw_line32(TCXState *s1, uint8_t *d,
  122. const uint8_t *s, int width)
  123. {
  124. int x;
  125. uint8_t val;
  126. uint32_t *p = (uint32_t *)d;
  127. for (x = 0; x < width; x++) {
  128. val = *s++;
  129. *p++ = s1->palette[val];
  130. }
  131. }
  132. static void tcx_draw_cursor32(TCXState *s1, uint8_t *d,
  133. int y, int width)
  134. {
  135. int x, len;
  136. uint32_t mask, bits;
  137. uint32_t *p = (uint32_t *)d;
  138. y = y - s1->cursy;
  139. mask = s1->cursmask[y];
  140. bits = s1->cursbits[y];
  141. len = MIN(width - s1->cursx, 32);
  142. p = &p[s1->cursx];
  143. for (x = 0; x < len; x++) {
  144. if (mask & 0x80000000) {
  145. if (bits & 0x80000000) {
  146. *p = s1->palette[259];
  147. } else {
  148. *p = s1->palette[258];
  149. }
  150. }
  151. p++;
  152. mask <<= 1;
  153. bits <<= 1;
  154. }
  155. }
  156. /*
  157. * XXX Could be much more optimal:
  158. * detect if line/page/whole screen is in 24 bit mode
  159. */
  160. static inline void tcx24_draw_line32(TCXState *s1, uint8_t *d,
  161. const uint8_t *s, int width,
  162. const uint32_t *cplane,
  163. const uint32_t *s24)
  164. {
  165. int x, r, g, b;
  166. uint8_t val, *p8;
  167. uint32_t *p = (uint32_t *)d;
  168. uint32_t dval;
  169. for(x = 0; x < width; x++, s++, s24++) {
  170. if (be32_to_cpu(*cplane) & 0x03000000) {
  171. /* 24-bit direct, BGR order */
  172. p8 = (uint8_t *)s24;
  173. p8++;
  174. b = *p8++;
  175. g = *p8++;
  176. r = *p8;
  177. dval = rgb_to_pixel32(r, g, b);
  178. } else {
  179. /* 8-bit pseudocolor */
  180. val = *s;
  181. dval = s1->palette[val];
  182. }
  183. *p++ = dval;
  184. cplane++;
  185. }
  186. }
  187. /* Fixed line length 1024 allows us to do nice tricks not possible on
  188. VGA... */
  189. static void tcx_update_display(void *opaque)
  190. {
  191. TCXState *ts = opaque;
  192. DisplaySurface *surface = qemu_console_surface(ts->con);
  193. ram_addr_t page;
  194. DirtyBitmapSnapshot *snap = NULL;
  195. int y, y_start, dd, ds;
  196. uint8_t *d, *s;
  197. assert(surface_bits_per_pixel(surface) == 32);
  198. page = 0;
  199. y_start = -1;
  200. d = surface_data(surface);
  201. s = ts->vram;
  202. dd = surface_stride(surface);
  203. ds = 1024;
  204. snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
  205. memory_region_size(&ts->vram_mem),
  206. DIRTY_MEMORY_VGA);
  207. for (y = 0; y < ts->height; y++, page += ds) {
  208. if (tcx_check_dirty(ts, snap, page, ds)) {
  209. if (y_start < 0)
  210. y_start = y;
  211. tcx_draw_line32(ts, d, s, ts->width);
  212. if (y >= ts->cursy && y < ts->cursy + 32 && ts->cursx < ts->width) {
  213. tcx_draw_cursor32(ts, d, y, ts->width);
  214. }
  215. } else {
  216. if (y_start >= 0) {
  217. /* flush to display */
  218. dpy_gfx_update(ts->con, 0, y_start,
  219. ts->width, y - y_start);
  220. y_start = -1;
  221. }
  222. }
  223. s += ds;
  224. d += dd;
  225. }
  226. if (y_start >= 0) {
  227. /* flush to display */
  228. dpy_gfx_update(ts->con, 0, y_start,
  229. ts->width, y - y_start);
  230. }
  231. g_free(snap);
  232. }
  233. static void tcx24_update_display(void *opaque)
  234. {
  235. TCXState *ts = opaque;
  236. DisplaySurface *surface = qemu_console_surface(ts->con);
  237. ram_addr_t page;
  238. DirtyBitmapSnapshot *snap = NULL;
  239. int y, y_start, dd, ds;
  240. uint8_t *d, *s;
  241. uint32_t *cptr, *s24;
  242. assert(surface_bits_per_pixel(surface) == 32);
  243. page = 0;
  244. y_start = -1;
  245. d = surface_data(surface);
  246. s = ts->vram;
  247. s24 = ts->vram24;
  248. cptr = ts->cplane;
  249. dd = surface_stride(surface);
  250. ds = 1024;
  251. snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
  252. memory_region_size(&ts->vram_mem),
  253. DIRTY_MEMORY_VGA);
  254. for (y = 0; y < ts->height; y++, page += ds) {
  255. if (tcx_check_dirty(ts, snap, page, ds)) {
  256. if (y_start < 0)
  257. y_start = y;
  258. tcx24_draw_line32(ts, d, s, ts->width, cptr, s24);
  259. if (y >= ts->cursy && y < ts->cursy+32 && ts->cursx < ts->width) {
  260. tcx_draw_cursor32(ts, d, y, ts->width);
  261. }
  262. } else {
  263. if (y_start >= 0) {
  264. /* flush to display */
  265. dpy_gfx_update(ts->con, 0, y_start,
  266. ts->width, y - y_start);
  267. y_start = -1;
  268. }
  269. }
  270. d += dd;
  271. s += ds;
  272. cptr += ds;
  273. s24 += ds;
  274. }
  275. if (y_start >= 0) {
  276. /* flush to display */
  277. dpy_gfx_update(ts->con, 0, y_start,
  278. ts->width, y - y_start);
  279. }
  280. g_free(snap);
  281. }
  282. static void tcx_invalidate_display(void *opaque)
  283. {
  284. TCXState *s = opaque;
  285. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  286. qemu_console_resize(s->con, s->width, s->height);
  287. }
  288. static void tcx24_invalidate_display(void *opaque)
  289. {
  290. TCXState *s = opaque;
  291. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  292. qemu_console_resize(s->con, s->width, s->height);
  293. }
  294. static int vmstate_tcx_post_load(void *opaque, int version_id)
  295. {
  296. TCXState *s = opaque;
  297. update_palette_entries(s, 0, 256);
  298. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  299. return 0;
  300. }
  301. static const VMStateDescription vmstate_tcx = {
  302. .name ="tcx",
  303. .version_id = 4,
  304. .minimum_version_id = 4,
  305. .post_load = vmstate_tcx_post_load,
  306. .fields = (VMStateField[]) {
  307. VMSTATE_UINT16(height, TCXState),
  308. VMSTATE_UINT16(width, TCXState),
  309. VMSTATE_UINT16(depth, TCXState),
  310. VMSTATE_BUFFER(r, TCXState),
  311. VMSTATE_BUFFER(g, TCXState),
  312. VMSTATE_BUFFER(b, TCXState),
  313. VMSTATE_UINT8(dac_index, TCXState),
  314. VMSTATE_UINT8(dac_state, TCXState),
  315. VMSTATE_END_OF_LIST()
  316. }
  317. };
  318. static void tcx_reset(DeviceState *d)
  319. {
  320. TCXState *s = TCX(d);
  321. /* Initialize palette */
  322. memset(s->r, 0, 260);
  323. memset(s->g, 0, 260);
  324. memset(s->b, 0, 260);
  325. s->r[255] = s->g[255] = s->b[255] = 255;
  326. s->r[256] = s->g[256] = s->b[256] = 255;
  327. s->r[258] = s->g[258] = s->b[258] = 255;
  328. update_palette_entries(s, 0, 260);
  329. memset(s->vram, 0, MAXX*MAXY);
  330. memory_region_reset_dirty(&s->vram_mem, 0, MAXX * MAXY * (1 + 4 + 4),
  331. DIRTY_MEMORY_VGA);
  332. s->dac_index = 0;
  333. s->dac_state = 0;
  334. s->cursx = 0xf000; /* Put cursor off screen */
  335. s->cursy = 0xf000;
  336. }
  337. static uint64_t tcx_dac_readl(void *opaque, hwaddr addr,
  338. unsigned size)
  339. {
  340. TCXState *s = opaque;
  341. uint32_t val = 0;
  342. switch (s->dac_state) {
  343. case 0:
  344. val = s->r[s->dac_index] << 24;
  345. s->dac_state++;
  346. break;
  347. case 1:
  348. val = s->g[s->dac_index] << 24;
  349. s->dac_state++;
  350. break;
  351. case 2:
  352. val = s->b[s->dac_index] << 24;
  353. s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
  354. /* fall through */
  355. default:
  356. s->dac_state = 0;
  357. break;
  358. }
  359. return val;
  360. }
  361. static void tcx_dac_writel(void *opaque, hwaddr addr, uint64_t val,
  362. unsigned size)
  363. {
  364. TCXState *s = opaque;
  365. unsigned index;
  366. switch (addr) {
  367. case 0: /* Address */
  368. s->dac_index = val >> 24;
  369. s->dac_state = 0;
  370. break;
  371. case 4: /* Pixel colours */
  372. case 12: /* Overlay (cursor) colours */
  373. if (addr & 8) {
  374. index = (s->dac_index & 3) + 256;
  375. } else {
  376. index = s->dac_index;
  377. }
  378. switch (s->dac_state) {
  379. case 0:
  380. s->r[index] = val >> 24;
  381. update_palette_entries(s, index, index + 1);
  382. s->dac_state++;
  383. break;
  384. case 1:
  385. s->g[index] = val >> 24;
  386. update_palette_entries(s, index, index + 1);
  387. s->dac_state++;
  388. break;
  389. case 2:
  390. s->b[index] = val >> 24;
  391. update_palette_entries(s, index, index + 1);
  392. s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
  393. /* fall through */
  394. default:
  395. s->dac_state = 0;
  396. break;
  397. }
  398. break;
  399. default: /* Control registers */
  400. break;
  401. }
  402. }
  403. static const MemoryRegionOps tcx_dac_ops = {
  404. .read = tcx_dac_readl,
  405. .write = tcx_dac_writel,
  406. .endianness = DEVICE_NATIVE_ENDIAN,
  407. .valid = {
  408. .min_access_size = 4,
  409. .max_access_size = 4,
  410. },
  411. };
  412. static uint64_t tcx_stip_readl(void *opaque, hwaddr addr,
  413. unsigned size)
  414. {
  415. return 0;
  416. }
  417. static void tcx_stip_writel(void *opaque, hwaddr addr,
  418. uint64_t val, unsigned size)
  419. {
  420. TCXState *s = opaque;
  421. int i;
  422. uint32_t col;
  423. if (!(addr & 4)) {
  424. s->tmpblit = val;
  425. } else {
  426. addr = (addr >> 3) & 0xfffff;
  427. col = cpu_to_be32(s->tmpblit);
  428. if (s->depth == 24) {
  429. for (i = 0; i < 32; i++) {
  430. if (val & 0x80000000) {
  431. s->vram[addr + i] = s->tmpblit;
  432. s->vram24[addr + i] = col;
  433. }
  434. val <<= 1;
  435. }
  436. } else {
  437. for (i = 0; i < 32; i++) {
  438. if (val & 0x80000000) {
  439. s->vram[addr + i] = s->tmpblit;
  440. }
  441. val <<= 1;
  442. }
  443. }
  444. tcx_set_dirty(s, addr, 32);
  445. }
  446. }
  447. static void tcx_rstip_writel(void *opaque, hwaddr addr,
  448. uint64_t val, unsigned size)
  449. {
  450. TCXState *s = opaque;
  451. int i;
  452. uint32_t col;
  453. if (!(addr & 4)) {
  454. s->tmpblit = val;
  455. } else {
  456. addr = (addr >> 3) & 0xfffff;
  457. col = cpu_to_be32(s->tmpblit);
  458. if (s->depth == 24) {
  459. for (i = 0; i < 32; i++) {
  460. if (val & 0x80000000) {
  461. s->vram[addr + i] = s->tmpblit;
  462. s->vram24[addr + i] = col;
  463. s->cplane[addr + i] = col;
  464. }
  465. val <<= 1;
  466. }
  467. } else {
  468. for (i = 0; i < 32; i++) {
  469. if (val & 0x80000000) {
  470. s->vram[addr + i] = s->tmpblit;
  471. }
  472. val <<= 1;
  473. }
  474. }
  475. tcx_set_dirty(s, addr, 32);
  476. }
  477. }
  478. static const MemoryRegionOps tcx_stip_ops = {
  479. .read = tcx_stip_readl,
  480. .write = tcx_stip_writel,
  481. .endianness = DEVICE_NATIVE_ENDIAN,
  482. .impl = {
  483. .min_access_size = 4,
  484. .max_access_size = 4,
  485. },
  486. .valid = {
  487. .min_access_size = 4,
  488. .max_access_size = 8,
  489. },
  490. };
  491. static const MemoryRegionOps tcx_rstip_ops = {
  492. .read = tcx_stip_readl,
  493. .write = tcx_rstip_writel,
  494. .endianness = DEVICE_NATIVE_ENDIAN,
  495. .impl = {
  496. .min_access_size = 4,
  497. .max_access_size = 4,
  498. },
  499. .valid = {
  500. .min_access_size = 4,
  501. .max_access_size = 8,
  502. },
  503. };
  504. static uint64_t tcx_blit_readl(void *opaque, hwaddr addr,
  505. unsigned size)
  506. {
  507. return 0;
  508. }
  509. static void tcx_blit_writel(void *opaque, hwaddr addr,
  510. uint64_t val, unsigned size)
  511. {
  512. TCXState *s = opaque;
  513. uint32_t adsr, len;
  514. int i;
  515. if (!(addr & 4)) {
  516. s->tmpblit = val;
  517. } else {
  518. addr = (addr >> 3) & 0xfffff;
  519. adsr = val & 0xffffff;
  520. len = ((val >> 24) & 0x1f) + 1;
  521. if (adsr == 0xffffff) {
  522. memset(&s->vram[addr], s->tmpblit, len);
  523. if (s->depth == 24) {
  524. val = s->tmpblit & 0xffffff;
  525. val = cpu_to_be32(val);
  526. for (i = 0; i < len; i++) {
  527. s->vram24[addr + i] = val;
  528. }
  529. }
  530. } else {
  531. memcpy(&s->vram[addr], &s->vram[adsr], len);
  532. if (s->depth == 24) {
  533. memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
  534. }
  535. }
  536. tcx_set_dirty(s, addr, len);
  537. }
  538. }
  539. static void tcx_rblit_writel(void *opaque, hwaddr addr,
  540. uint64_t val, unsigned size)
  541. {
  542. TCXState *s = opaque;
  543. uint32_t adsr, len;
  544. int i;
  545. if (!(addr & 4)) {
  546. s->tmpblit = val;
  547. } else {
  548. addr = (addr >> 3) & 0xfffff;
  549. adsr = val & 0xffffff;
  550. len = ((val >> 24) & 0x1f) + 1;
  551. if (adsr == 0xffffff) {
  552. memset(&s->vram[addr], s->tmpblit, len);
  553. if (s->depth == 24) {
  554. val = s->tmpblit & 0xffffff;
  555. val = cpu_to_be32(val);
  556. for (i = 0; i < len; i++) {
  557. s->vram24[addr + i] = val;
  558. s->cplane[addr + i] = val;
  559. }
  560. }
  561. } else {
  562. memcpy(&s->vram[addr], &s->vram[adsr], len);
  563. if (s->depth == 24) {
  564. memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
  565. memcpy(&s->cplane[addr], &s->cplane[adsr], len * 4);
  566. }
  567. }
  568. tcx_set_dirty(s, addr, len);
  569. }
  570. }
  571. static const MemoryRegionOps tcx_blit_ops = {
  572. .read = tcx_blit_readl,
  573. .write = tcx_blit_writel,
  574. .endianness = DEVICE_NATIVE_ENDIAN,
  575. .impl = {
  576. .min_access_size = 4,
  577. .max_access_size = 4,
  578. },
  579. .valid = {
  580. .min_access_size = 4,
  581. .max_access_size = 8,
  582. },
  583. };
  584. static const MemoryRegionOps tcx_rblit_ops = {
  585. .read = tcx_blit_readl,
  586. .write = tcx_rblit_writel,
  587. .endianness = DEVICE_NATIVE_ENDIAN,
  588. .impl = {
  589. .min_access_size = 4,
  590. .max_access_size = 4,
  591. },
  592. .valid = {
  593. .min_access_size = 4,
  594. .max_access_size = 8,
  595. },
  596. };
  597. static void tcx_invalidate_cursor_position(TCXState *s)
  598. {
  599. int ymin, ymax, start, end;
  600. /* invalidate only near the cursor */
  601. ymin = s->cursy;
  602. if (ymin >= s->height) {
  603. return;
  604. }
  605. ymax = MIN(s->height, ymin + 32);
  606. start = ymin * 1024;
  607. end = ymax * 1024;
  608. tcx_set_dirty(s, start, end - start);
  609. }
  610. static uint64_t tcx_thc_readl(void *opaque, hwaddr addr,
  611. unsigned size)
  612. {
  613. TCXState *s = opaque;
  614. uint64_t val;
  615. if (addr == TCX_THC_MISC) {
  616. val = s->thcmisc | 0x02000000;
  617. } else {
  618. val = 0;
  619. }
  620. return val;
  621. }
  622. static void tcx_thc_writel(void *opaque, hwaddr addr,
  623. uint64_t val, unsigned size)
  624. {
  625. TCXState *s = opaque;
  626. if (addr == TCX_THC_CURSXY) {
  627. tcx_invalidate_cursor_position(s);
  628. s->cursx = val >> 16;
  629. s->cursy = val;
  630. tcx_invalidate_cursor_position(s);
  631. } else if (addr >= TCX_THC_CURSMASK && addr < TCX_THC_CURSMASK + 128) {
  632. s->cursmask[(addr - TCX_THC_CURSMASK) >> 2] = val;
  633. tcx_invalidate_cursor_position(s);
  634. } else if (addr >= TCX_THC_CURSBITS && addr < TCX_THC_CURSBITS + 128) {
  635. s->cursbits[(addr - TCX_THC_CURSBITS) >> 2] = val;
  636. tcx_invalidate_cursor_position(s);
  637. } else if (addr == TCX_THC_MISC) {
  638. s->thcmisc = val;
  639. }
  640. }
  641. static const MemoryRegionOps tcx_thc_ops = {
  642. .read = tcx_thc_readl,
  643. .write = tcx_thc_writel,
  644. .endianness = DEVICE_NATIVE_ENDIAN,
  645. .valid = {
  646. .min_access_size = 4,
  647. .max_access_size = 4,
  648. },
  649. };
  650. static uint64_t tcx_dummy_readl(void *opaque, hwaddr addr,
  651. unsigned size)
  652. {
  653. return 0;
  654. }
  655. static void tcx_dummy_writel(void *opaque, hwaddr addr,
  656. uint64_t val, unsigned size)
  657. {
  658. return;
  659. }
  660. static const MemoryRegionOps tcx_dummy_ops = {
  661. .read = tcx_dummy_readl,
  662. .write = tcx_dummy_writel,
  663. .endianness = DEVICE_NATIVE_ENDIAN,
  664. .valid = {
  665. .min_access_size = 4,
  666. .max_access_size = 4,
  667. },
  668. };
  669. static const GraphicHwOps tcx_ops = {
  670. .invalidate = tcx_invalidate_display,
  671. .gfx_update = tcx_update_display,
  672. };
  673. static const GraphicHwOps tcx24_ops = {
  674. .invalidate = tcx24_invalidate_display,
  675. .gfx_update = tcx24_update_display,
  676. };
  677. static void tcx_initfn(Object *obj)
  678. {
  679. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  680. TCXState *s = TCX(obj);
  681. memory_region_init_rom_nomigrate(&s->rom, obj, "tcx.prom",
  682. FCODE_MAX_ROM_SIZE, &error_fatal);
  683. sysbus_init_mmio(sbd, &s->rom);
  684. /* 2/STIP : Stippler */
  685. memory_region_init_io(&s->stip, obj, &tcx_stip_ops, s, "tcx.stip",
  686. TCX_STIP_NREGS);
  687. sysbus_init_mmio(sbd, &s->stip);
  688. /* 3/BLIT : Blitter */
  689. memory_region_init_io(&s->blit, obj, &tcx_blit_ops, s, "tcx.blit",
  690. TCX_BLIT_NREGS);
  691. sysbus_init_mmio(sbd, &s->blit);
  692. /* 5/RSTIP : Raw Stippler */
  693. memory_region_init_io(&s->rstip, obj, &tcx_rstip_ops, s, "tcx.rstip",
  694. TCX_RSTIP_NREGS);
  695. sysbus_init_mmio(sbd, &s->rstip);
  696. /* 6/RBLIT : Raw Blitter */
  697. memory_region_init_io(&s->rblit, obj, &tcx_rblit_ops, s, "tcx.rblit",
  698. TCX_RBLIT_NREGS);
  699. sysbus_init_mmio(sbd, &s->rblit);
  700. /* 7/TEC : ??? */
  701. memory_region_init_io(&s->tec, obj, &tcx_dummy_ops, s, "tcx.tec",
  702. TCX_TEC_NREGS);
  703. sysbus_init_mmio(sbd, &s->tec);
  704. /* 8/CMAP : DAC */
  705. memory_region_init_io(&s->dac, obj, &tcx_dac_ops, s, "tcx.dac",
  706. TCX_DAC_NREGS);
  707. sysbus_init_mmio(sbd, &s->dac);
  708. /* 9/THC : Cursor */
  709. memory_region_init_io(&s->thc, obj, &tcx_thc_ops, s, "tcx.thc",
  710. TCX_THC_NREGS);
  711. sysbus_init_mmio(sbd, &s->thc);
  712. /* 11/DHC : ??? */
  713. memory_region_init_io(&s->dhc, obj, &tcx_dummy_ops, s, "tcx.dhc",
  714. TCX_DHC_NREGS);
  715. sysbus_init_mmio(sbd, &s->dhc);
  716. /* 12/ALT : ??? */
  717. memory_region_init_io(&s->alt, obj, &tcx_dummy_ops, s, "tcx.alt",
  718. TCX_ALT_NREGS);
  719. sysbus_init_mmio(sbd, &s->alt);
  720. }
  721. static void tcx_realizefn(DeviceState *dev, Error **errp)
  722. {
  723. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  724. TCXState *s = TCX(dev);
  725. ram_addr_t vram_offset = 0;
  726. int size, ret;
  727. uint8_t *vram_base;
  728. char *fcode_filename;
  729. memory_region_init_ram_nomigrate(&s->vram_mem, OBJECT(s), "tcx.vram",
  730. s->vram_size * (1 + 4 + 4), &error_fatal);
  731. vmstate_register_ram_global(&s->vram_mem);
  732. memory_region_set_log(&s->vram_mem, true, DIRTY_MEMORY_VGA);
  733. vram_base = memory_region_get_ram_ptr(&s->vram_mem);
  734. /* 10/ROM : FCode ROM */
  735. vmstate_register_ram_global(&s->rom);
  736. fcode_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, TCX_ROM_FILE);
  737. if (fcode_filename) {
  738. ret = load_image_mr(fcode_filename, &s->rom);
  739. g_free(fcode_filename);
  740. if (ret < 0 || ret > FCODE_MAX_ROM_SIZE) {
  741. warn_report("tcx: could not load prom '%s'", TCX_ROM_FILE);
  742. }
  743. }
  744. /* 0/DFB8 : 8-bit plane */
  745. s->vram = vram_base;
  746. size = s->vram_size;
  747. memory_region_init_alias(&s->vram_8bit, OBJECT(s), "tcx.vram.8bit",
  748. &s->vram_mem, vram_offset, size);
  749. sysbus_init_mmio(sbd, &s->vram_8bit);
  750. vram_offset += size;
  751. vram_base += size;
  752. /* 1/DFB24 : 24bit plane */
  753. size = s->vram_size * 4;
  754. s->vram24 = (uint32_t *)vram_base;
  755. s->vram24_offset = vram_offset;
  756. memory_region_init_alias(&s->vram_24bit, OBJECT(s), "tcx.vram.24bit",
  757. &s->vram_mem, vram_offset, size);
  758. sysbus_init_mmio(sbd, &s->vram_24bit);
  759. vram_offset += size;
  760. vram_base += size;
  761. /* 4/RDFB32 : Raw Framebuffer */
  762. size = s->vram_size * 4;
  763. s->cplane = (uint32_t *)vram_base;
  764. s->cplane_offset = vram_offset;
  765. memory_region_init_alias(&s->vram_cplane, OBJECT(s), "tcx.vram.cplane",
  766. &s->vram_mem, vram_offset, size);
  767. sysbus_init_mmio(sbd, &s->vram_cplane);
  768. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  769. if (s->depth == 8) {
  770. memory_region_init_io(&s->thc24, OBJECT(s), &tcx_dummy_ops, s,
  771. "tcx.thc24", TCX_THC_NREGS);
  772. sysbus_init_mmio(sbd, &s->thc24);
  773. }
  774. sysbus_init_irq(sbd, &s->irq);
  775. if (s->depth == 8) {
  776. s->con = graphic_console_init(dev, 0, &tcx_ops, s);
  777. } else {
  778. s->con = graphic_console_init(dev, 0, &tcx24_ops, s);
  779. }
  780. s->thcmisc = 0;
  781. qemu_console_resize(s->con, s->width, s->height);
  782. }
  783. static Property tcx_properties[] = {
  784. DEFINE_PROP_UINT32("vram_size", TCXState, vram_size, -1),
  785. DEFINE_PROP_UINT16("width", TCXState, width, -1),
  786. DEFINE_PROP_UINT16("height", TCXState, height, -1),
  787. DEFINE_PROP_UINT16("depth", TCXState, depth, -1),
  788. DEFINE_PROP_END_OF_LIST(),
  789. };
  790. static void tcx_class_init(ObjectClass *klass, void *data)
  791. {
  792. DeviceClass *dc = DEVICE_CLASS(klass);
  793. dc->realize = tcx_realizefn;
  794. dc->reset = tcx_reset;
  795. dc->vmsd = &vmstate_tcx;
  796. device_class_set_props(dc, tcx_properties);
  797. }
  798. static const TypeInfo tcx_info = {
  799. .name = TYPE_TCX,
  800. .parent = TYPE_SYS_BUS_DEVICE,
  801. .instance_size = sizeof(TCXState),
  802. .instance_init = tcx_initfn,
  803. .class_init = tcx_class_init,
  804. };
  805. static void tcx_register_types(void)
  806. {
  807. type_register_static(&tcx_info);
  808. }
  809. type_init(tcx_register_types)