memory.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645
  1. /*
  2. * Physical memory management
  3. *
  4. * Copyright 2011 Red Hat, Inc. and/or its affiliates
  5. *
  6. * Authors:
  7. * Avi Kivity <avi@redhat.com>
  8. *
  9. * This work is licensed under the terms of the GNU GPL, version 2. See
  10. * the COPYING file in the top-level directory.
  11. *
  12. * Contributions after 2012-01-13 are licensed under the terms of the
  13. * GNU GPL, version 2 or (at your option) any later version.
  14. */
  15. #include "qemu/osdep.h"
  16. #include "qapi/error.h"
  17. #include "qemu-common.h"
  18. #include "cpu.h"
  19. #include "exec/memory.h"
  20. #include "exec/address-spaces.h"
  21. #include "exec/ioport.h"
  22. #include "qapi/visitor.h"
  23. #include "qemu/bitops.h"
  24. #include "qemu/error-report.h"
  25. #include "qom/object.h"
  26. #include "trace-root.h"
  27. #include "exec/memory-internal.h"
  28. #include "exec/ram_addr.h"
  29. #include "sysemu/kvm.h"
  30. #include "sysemu/sysemu.h"
  31. //#define DEBUG_UNASSIGNED
  32. static unsigned memory_region_transaction_depth;
  33. static bool memory_region_update_pending;
  34. static bool ioeventfd_update_pending;
  35. static bool global_dirty_log = false;
  36. static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
  37. = QTAILQ_HEAD_INITIALIZER(memory_listeners);
  38. static QTAILQ_HEAD(, AddressSpace) address_spaces
  39. = QTAILQ_HEAD_INITIALIZER(address_spaces);
  40. typedef struct AddrRange AddrRange;
  41. /*
  42. * Note that signed integers are needed for negative offsetting in aliases
  43. * (large MemoryRegion::alias_offset).
  44. */
  45. struct AddrRange {
  46. Int128 start;
  47. Int128 size;
  48. };
  49. static AddrRange addrrange_make(Int128 start, Int128 size)
  50. {
  51. return (AddrRange) { start, size };
  52. }
  53. static bool addrrange_equal(AddrRange r1, AddrRange r2)
  54. {
  55. return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
  56. }
  57. static Int128 addrrange_end(AddrRange r)
  58. {
  59. return int128_add(r.start, r.size);
  60. }
  61. static AddrRange addrrange_shift(AddrRange range, Int128 delta)
  62. {
  63. int128_addto(&range.start, delta);
  64. return range;
  65. }
  66. static bool addrrange_contains(AddrRange range, Int128 addr)
  67. {
  68. return int128_ge(addr, range.start)
  69. && int128_lt(addr, addrrange_end(range));
  70. }
  71. static bool addrrange_intersects(AddrRange r1, AddrRange r2)
  72. {
  73. return addrrange_contains(r1, r2.start)
  74. || addrrange_contains(r2, r1.start);
  75. }
  76. static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
  77. {
  78. Int128 start = int128_max(r1.start, r2.start);
  79. Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
  80. return addrrange_make(start, int128_sub(end, start));
  81. }
  82. enum ListenerDirection { Forward, Reverse };
  83. #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
  84. do { \
  85. MemoryListener *_listener; \
  86. \
  87. switch (_direction) { \
  88. case Forward: \
  89. QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
  90. if (_listener->_callback) { \
  91. _listener->_callback(_listener, ##_args); \
  92. } \
  93. } \
  94. break; \
  95. case Reverse: \
  96. QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
  97. memory_listeners, link) { \
  98. if (_listener->_callback) { \
  99. _listener->_callback(_listener, ##_args); \
  100. } \
  101. } \
  102. break; \
  103. default: \
  104. abort(); \
  105. } \
  106. } while (0)
  107. #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
  108. do { \
  109. MemoryListener *_listener; \
  110. struct memory_listeners_as *list = &(_as)->listeners; \
  111. \
  112. switch (_direction) { \
  113. case Forward: \
  114. QTAILQ_FOREACH(_listener, list, link_as) { \
  115. if (_listener->_callback) { \
  116. _listener->_callback(_listener, _section, ##_args); \
  117. } \
  118. } \
  119. break; \
  120. case Reverse: \
  121. QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
  122. link_as) { \
  123. if (_listener->_callback) { \
  124. _listener->_callback(_listener, _section, ##_args); \
  125. } \
  126. } \
  127. break; \
  128. default: \
  129. abort(); \
  130. } \
  131. } while (0)
  132. /* No need to ref/unref .mr, the FlatRange keeps it alive. */
  133. #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
  134. do { \
  135. MemoryRegionSection mrs = section_from_flat_range(fr, as); \
  136. MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
  137. } while(0)
  138. struct CoalescedMemoryRange {
  139. AddrRange addr;
  140. QTAILQ_ENTRY(CoalescedMemoryRange) link;
  141. };
  142. struct MemoryRegionIoeventfd {
  143. AddrRange addr;
  144. bool match_data;
  145. uint64_t data;
  146. EventNotifier *e;
  147. };
  148. static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
  149. MemoryRegionIoeventfd b)
  150. {
  151. if (int128_lt(a.addr.start, b.addr.start)) {
  152. return true;
  153. } else if (int128_gt(a.addr.start, b.addr.start)) {
  154. return false;
  155. } else if (int128_lt(a.addr.size, b.addr.size)) {
  156. return true;
  157. } else if (int128_gt(a.addr.size, b.addr.size)) {
  158. return false;
  159. } else if (a.match_data < b.match_data) {
  160. return true;
  161. } else if (a.match_data > b.match_data) {
  162. return false;
  163. } else if (a.match_data) {
  164. if (a.data < b.data) {
  165. return true;
  166. } else if (a.data > b.data) {
  167. return false;
  168. }
  169. }
  170. if (a.e < b.e) {
  171. return true;
  172. } else if (a.e > b.e) {
  173. return false;
  174. }
  175. return false;
  176. }
  177. static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
  178. MemoryRegionIoeventfd b)
  179. {
  180. return !memory_region_ioeventfd_before(a, b)
  181. && !memory_region_ioeventfd_before(b, a);
  182. }
  183. typedef struct FlatRange FlatRange;
  184. typedef struct FlatView FlatView;
  185. /* Range of memory in the global map. Addresses are absolute. */
  186. struct FlatRange {
  187. MemoryRegion *mr;
  188. hwaddr offset_in_region;
  189. AddrRange addr;
  190. uint8_t dirty_log_mask;
  191. bool romd_mode;
  192. bool readonly;
  193. };
  194. /* Flattened global view of current active memory hierarchy. Kept in sorted
  195. * order.
  196. */
  197. struct FlatView {
  198. struct rcu_head rcu;
  199. unsigned ref;
  200. FlatRange *ranges;
  201. unsigned nr;
  202. unsigned nr_allocated;
  203. };
  204. typedef struct AddressSpaceOps AddressSpaceOps;
  205. #define FOR_EACH_FLAT_RANGE(var, view) \
  206. for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
  207. static inline MemoryRegionSection
  208. section_from_flat_range(FlatRange *fr, AddressSpace *as)
  209. {
  210. return (MemoryRegionSection) {
  211. .mr = fr->mr,
  212. .address_space = as,
  213. .offset_within_region = fr->offset_in_region,
  214. .size = fr->addr.size,
  215. .offset_within_address_space = int128_get64(fr->addr.start),
  216. .readonly = fr->readonly,
  217. };
  218. }
  219. static bool flatrange_equal(FlatRange *a, FlatRange *b)
  220. {
  221. return a->mr == b->mr
  222. && addrrange_equal(a->addr, b->addr)
  223. && a->offset_in_region == b->offset_in_region
  224. && a->romd_mode == b->romd_mode
  225. && a->readonly == b->readonly;
  226. }
  227. static void flatview_init(FlatView *view)
  228. {
  229. view->ref = 1;
  230. view->ranges = NULL;
  231. view->nr = 0;
  232. view->nr_allocated = 0;
  233. }
  234. /* Insert a range into a given position. Caller is responsible for maintaining
  235. * sorting order.
  236. */
  237. static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
  238. {
  239. if (view->nr == view->nr_allocated) {
  240. view->nr_allocated = MAX(2 * view->nr, 10);
  241. view->ranges = g_realloc(view->ranges,
  242. view->nr_allocated * sizeof(*view->ranges));
  243. }
  244. memmove(view->ranges + pos + 1, view->ranges + pos,
  245. (view->nr - pos) * sizeof(FlatRange));
  246. view->ranges[pos] = *range;
  247. memory_region_ref(range->mr);
  248. ++view->nr;
  249. }
  250. static void flatview_destroy(FlatView *view)
  251. {
  252. int i;
  253. for (i = 0; i < view->nr; i++) {
  254. memory_region_unref(view->ranges[i].mr);
  255. }
  256. g_free(view->ranges);
  257. g_free(view);
  258. }
  259. static void flatview_ref(FlatView *view)
  260. {
  261. atomic_inc(&view->ref);
  262. }
  263. static void flatview_unref(FlatView *view)
  264. {
  265. if (atomic_fetch_dec(&view->ref) == 1) {
  266. flatview_destroy(view);
  267. }
  268. }
  269. static bool can_merge(FlatRange *r1, FlatRange *r2)
  270. {
  271. return int128_eq(addrrange_end(r1->addr), r2->addr.start)
  272. && r1->mr == r2->mr
  273. && int128_eq(int128_add(int128_make64(r1->offset_in_region),
  274. r1->addr.size),
  275. int128_make64(r2->offset_in_region))
  276. && r1->dirty_log_mask == r2->dirty_log_mask
  277. && r1->romd_mode == r2->romd_mode
  278. && r1->readonly == r2->readonly;
  279. }
  280. /* Attempt to simplify a view by merging adjacent ranges */
  281. static void flatview_simplify(FlatView *view)
  282. {
  283. unsigned i, j;
  284. i = 0;
  285. while (i < view->nr) {
  286. j = i + 1;
  287. while (j < view->nr
  288. && can_merge(&view->ranges[j-1], &view->ranges[j])) {
  289. int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
  290. ++j;
  291. }
  292. ++i;
  293. memmove(&view->ranges[i], &view->ranges[j],
  294. (view->nr - j) * sizeof(view->ranges[j]));
  295. view->nr -= j - i;
  296. }
  297. }
  298. static bool memory_region_big_endian(MemoryRegion *mr)
  299. {
  300. #ifdef TARGET_WORDS_BIGENDIAN
  301. return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
  302. #else
  303. return mr->ops->endianness == DEVICE_BIG_ENDIAN;
  304. #endif
  305. }
  306. static bool memory_region_wrong_endianness(MemoryRegion *mr)
  307. {
  308. #ifdef TARGET_WORDS_BIGENDIAN
  309. return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
  310. #else
  311. return mr->ops->endianness == DEVICE_BIG_ENDIAN;
  312. #endif
  313. }
  314. static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
  315. {
  316. if (memory_region_wrong_endianness(mr)) {
  317. switch (size) {
  318. case 1:
  319. break;
  320. case 2:
  321. *data = bswap16(*data);
  322. break;
  323. case 4:
  324. *data = bswap32(*data);
  325. break;
  326. case 8:
  327. *data = bswap64(*data);
  328. break;
  329. default:
  330. abort();
  331. }
  332. }
  333. }
  334. static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
  335. {
  336. MemoryRegion *root;
  337. hwaddr abs_addr = offset;
  338. abs_addr += mr->addr;
  339. for (root = mr; root->container; ) {
  340. root = root->container;
  341. abs_addr += root->addr;
  342. }
  343. return abs_addr;
  344. }
  345. static int get_cpu_index(void)
  346. {
  347. if (current_cpu) {
  348. return current_cpu->cpu_index;
  349. }
  350. return -1;
  351. }
  352. static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
  353. hwaddr addr,
  354. uint64_t *value,
  355. unsigned size,
  356. unsigned shift,
  357. uint64_t mask,
  358. MemTxAttrs attrs)
  359. {
  360. uint64_t tmp;
  361. tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
  362. if (mr->subpage) {
  363. trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
  364. } else if (mr == &io_mem_notdirty) {
  365. /* Accesses to code which has previously been translated into a TB show
  366. * up in the MMIO path, as accesses to the io_mem_notdirty
  367. * MemoryRegion. */
  368. trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
  369. } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
  370. hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
  371. trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
  372. }
  373. *value |= (tmp & mask) << shift;
  374. return MEMTX_OK;
  375. }
  376. static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
  377. hwaddr addr,
  378. uint64_t *value,
  379. unsigned size,
  380. unsigned shift,
  381. uint64_t mask,
  382. MemTxAttrs attrs)
  383. {
  384. uint64_t tmp;
  385. tmp = mr->ops->read(mr->opaque, addr, size);
  386. if (mr->subpage) {
  387. trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
  388. } else if (mr == &io_mem_notdirty) {
  389. /* Accesses to code which has previously been translated into a TB show
  390. * up in the MMIO path, as accesses to the io_mem_notdirty
  391. * MemoryRegion. */
  392. trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
  393. } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
  394. hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
  395. trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
  396. }
  397. *value |= (tmp & mask) << shift;
  398. return MEMTX_OK;
  399. }
  400. static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
  401. hwaddr addr,
  402. uint64_t *value,
  403. unsigned size,
  404. unsigned shift,
  405. uint64_t mask,
  406. MemTxAttrs attrs)
  407. {
  408. uint64_t tmp = 0;
  409. MemTxResult r;
  410. r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
  411. if (mr->subpage) {
  412. trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
  413. } else if (mr == &io_mem_notdirty) {
  414. /* Accesses to code which has previously been translated into a TB show
  415. * up in the MMIO path, as accesses to the io_mem_notdirty
  416. * MemoryRegion. */
  417. trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
  418. } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
  419. hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
  420. trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
  421. }
  422. *value |= (tmp & mask) << shift;
  423. return r;
  424. }
  425. static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
  426. hwaddr addr,
  427. uint64_t *value,
  428. unsigned size,
  429. unsigned shift,
  430. uint64_t mask,
  431. MemTxAttrs attrs)
  432. {
  433. uint64_t tmp;
  434. tmp = (*value >> shift) & mask;
  435. if (mr->subpage) {
  436. trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
  437. } else if (mr == &io_mem_notdirty) {
  438. /* Accesses to code which has previously been translated into a TB show
  439. * up in the MMIO path, as accesses to the io_mem_notdirty
  440. * MemoryRegion. */
  441. trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
  442. } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
  443. hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
  444. trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
  445. }
  446. mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
  447. return MEMTX_OK;
  448. }
  449. static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
  450. hwaddr addr,
  451. uint64_t *value,
  452. unsigned size,
  453. unsigned shift,
  454. uint64_t mask,
  455. MemTxAttrs attrs)
  456. {
  457. uint64_t tmp;
  458. tmp = (*value >> shift) & mask;
  459. if (mr->subpage) {
  460. trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
  461. } else if (mr == &io_mem_notdirty) {
  462. /* Accesses to code which has previously been translated into a TB show
  463. * up in the MMIO path, as accesses to the io_mem_notdirty
  464. * MemoryRegion. */
  465. trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
  466. } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
  467. hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
  468. trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
  469. }
  470. mr->ops->write(mr->opaque, addr, tmp, size);
  471. return MEMTX_OK;
  472. }
  473. static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
  474. hwaddr addr,
  475. uint64_t *value,
  476. unsigned size,
  477. unsigned shift,
  478. uint64_t mask,
  479. MemTxAttrs attrs)
  480. {
  481. uint64_t tmp;
  482. tmp = (*value >> shift) & mask;
  483. if (mr->subpage) {
  484. trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
  485. } else if (mr == &io_mem_notdirty) {
  486. /* Accesses to code which has previously been translated into a TB show
  487. * up in the MMIO path, as accesses to the io_mem_notdirty
  488. * MemoryRegion. */
  489. trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
  490. } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
  491. hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
  492. trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
  493. }
  494. return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
  495. }
  496. static MemTxResult access_with_adjusted_size(hwaddr addr,
  497. uint64_t *value,
  498. unsigned size,
  499. unsigned access_size_min,
  500. unsigned access_size_max,
  501. MemTxResult (*access)(MemoryRegion *mr,
  502. hwaddr addr,
  503. uint64_t *value,
  504. unsigned size,
  505. unsigned shift,
  506. uint64_t mask,
  507. MemTxAttrs attrs),
  508. MemoryRegion *mr,
  509. MemTxAttrs attrs)
  510. {
  511. uint64_t access_mask;
  512. unsigned access_size;
  513. unsigned i;
  514. MemTxResult r = MEMTX_OK;
  515. if (!access_size_min) {
  516. access_size_min = 1;
  517. }
  518. if (!access_size_max) {
  519. access_size_max = 4;
  520. }
  521. /* FIXME: support unaligned access? */
  522. access_size = MAX(MIN(size, access_size_max), access_size_min);
  523. access_mask = -1ULL >> (64 - access_size * 8);
  524. if (memory_region_big_endian(mr)) {
  525. for (i = 0; i < size; i += access_size) {
  526. r |= access(mr, addr + i, value, access_size,
  527. (size - access_size - i) * 8, access_mask, attrs);
  528. }
  529. } else {
  530. for (i = 0; i < size; i += access_size) {
  531. r |= access(mr, addr + i, value, access_size, i * 8,
  532. access_mask, attrs);
  533. }
  534. }
  535. return r;
  536. }
  537. static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
  538. {
  539. AddressSpace *as;
  540. while (mr->container) {
  541. mr = mr->container;
  542. }
  543. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  544. if (mr == as->root) {
  545. return as;
  546. }
  547. }
  548. return NULL;
  549. }
  550. /* Render a memory region into the global view. Ranges in @view obscure
  551. * ranges in @mr.
  552. */
  553. static void render_memory_region(FlatView *view,
  554. MemoryRegion *mr,
  555. Int128 base,
  556. AddrRange clip,
  557. bool readonly)
  558. {
  559. MemoryRegion *subregion;
  560. unsigned i;
  561. hwaddr offset_in_region;
  562. Int128 remain;
  563. Int128 now;
  564. FlatRange fr;
  565. AddrRange tmp;
  566. if (!mr->enabled) {
  567. return;
  568. }
  569. int128_addto(&base, int128_make64(mr->addr));
  570. readonly |= mr->readonly;
  571. tmp = addrrange_make(base, mr->size);
  572. if (!addrrange_intersects(tmp, clip)) {
  573. return;
  574. }
  575. clip = addrrange_intersection(tmp, clip);
  576. if (mr->alias) {
  577. int128_subfrom(&base, int128_make64(mr->alias->addr));
  578. int128_subfrom(&base, int128_make64(mr->alias_offset));
  579. render_memory_region(view, mr->alias, base, clip, readonly);
  580. return;
  581. }
  582. /* Render subregions in priority order. */
  583. QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
  584. render_memory_region(view, subregion, base, clip, readonly);
  585. }
  586. if (!mr->terminates) {
  587. return;
  588. }
  589. offset_in_region = int128_get64(int128_sub(clip.start, base));
  590. base = clip.start;
  591. remain = clip.size;
  592. fr.mr = mr;
  593. fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
  594. fr.romd_mode = mr->romd_mode;
  595. fr.readonly = readonly;
  596. /* Render the region itself into any gaps left by the current view. */
  597. for (i = 0; i < view->nr && int128_nz(remain); ++i) {
  598. if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
  599. continue;
  600. }
  601. if (int128_lt(base, view->ranges[i].addr.start)) {
  602. now = int128_min(remain,
  603. int128_sub(view->ranges[i].addr.start, base));
  604. fr.offset_in_region = offset_in_region;
  605. fr.addr = addrrange_make(base, now);
  606. flatview_insert(view, i, &fr);
  607. ++i;
  608. int128_addto(&base, now);
  609. offset_in_region += int128_get64(now);
  610. int128_subfrom(&remain, now);
  611. }
  612. now = int128_sub(int128_min(int128_add(base, remain),
  613. addrrange_end(view->ranges[i].addr)),
  614. base);
  615. int128_addto(&base, now);
  616. offset_in_region += int128_get64(now);
  617. int128_subfrom(&remain, now);
  618. }
  619. if (int128_nz(remain)) {
  620. fr.offset_in_region = offset_in_region;
  621. fr.addr = addrrange_make(base, remain);
  622. flatview_insert(view, i, &fr);
  623. }
  624. }
  625. /* Render a memory topology into a list of disjoint absolute ranges. */
  626. static FlatView *generate_memory_topology(MemoryRegion *mr)
  627. {
  628. FlatView *view;
  629. view = g_new(FlatView, 1);
  630. flatview_init(view);
  631. if (mr) {
  632. render_memory_region(view, mr, int128_zero(),
  633. addrrange_make(int128_zero(), int128_2_64()), false);
  634. }
  635. flatview_simplify(view);
  636. return view;
  637. }
  638. static void address_space_add_del_ioeventfds(AddressSpace *as,
  639. MemoryRegionIoeventfd *fds_new,
  640. unsigned fds_new_nb,
  641. MemoryRegionIoeventfd *fds_old,
  642. unsigned fds_old_nb)
  643. {
  644. unsigned iold, inew;
  645. MemoryRegionIoeventfd *fd;
  646. MemoryRegionSection section;
  647. /* Generate a symmetric difference of the old and new fd sets, adding
  648. * and deleting as necessary.
  649. */
  650. iold = inew = 0;
  651. while (iold < fds_old_nb || inew < fds_new_nb) {
  652. if (iold < fds_old_nb
  653. && (inew == fds_new_nb
  654. || memory_region_ioeventfd_before(fds_old[iold],
  655. fds_new[inew]))) {
  656. fd = &fds_old[iold];
  657. section = (MemoryRegionSection) {
  658. .address_space = as,
  659. .offset_within_address_space = int128_get64(fd->addr.start),
  660. .size = fd->addr.size,
  661. };
  662. MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
  663. fd->match_data, fd->data, fd->e);
  664. ++iold;
  665. } else if (inew < fds_new_nb
  666. && (iold == fds_old_nb
  667. || memory_region_ioeventfd_before(fds_new[inew],
  668. fds_old[iold]))) {
  669. fd = &fds_new[inew];
  670. section = (MemoryRegionSection) {
  671. .address_space = as,
  672. .offset_within_address_space = int128_get64(fd->addr.start),
  673. .size = fd->addr.size,
  674. };
  675. MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
  676. fd->match_data, fd->data, fd->e);
  677. ++inew;
  678. } else {
  679. ++iold;
  680. ++inew;
  681. }
  682. }
  683. }
  684. static FlatView *address_space_get_flatview(AddressSpace *as)
  685. {
  686. FlatView *view;
  687. rcu_read_lock();
  688. view = atomic_rcu_read(&as->current_map);
  689. flatview_ref(view);
  690. rcu_read_unlock();
  691. return view;
  692. }
  693. static void address_space_update_ioeventfds(AddressSpace *as)
  694. {
  695. FlatView *view;
  696. FlatRange *fr;
  697. unsigned ioeventfd_nb = 0;
  698. MemoryRegionIoeventfd *ioeventfds = NULL;
  699. AddrRange tmp;
  700. unsigned i;
  701. view = address_space_get_flatview(as);
  702. FOR_EACH_FLAT_RANGE(fr, view) {
  703. for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
  704. tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
  705. int128_sub(fr->addr.start,
  706. int128_make64(fr->offset_in_region)));
  707. if (addrrange_intersects(fr->addr, tmp)) {
  708. ++ioeventfd_nb;
  709. ioeventfds = g_realloc(ioeventfds,
  710. ioeventfd_nb * sizeof(*ioeventfds));
  711. ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
  712. ioeventfds[ioeventfd_nb-1].addr = tmp;
  713. }
  714. }
  715. }
  716. address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
  717. as->ioeventfds, as->ioeventfd_nb);
  718. g_free(as->ioeventfds);
  719. as->ioeventfds = ioeventfds;
  720. as->ioeventfd_nb = ioeventfd_nb;
  721. flatview_unref(view);
  722. }
  723. static void address_space_update_topology_pass(AddressSpace *as,
  724. const FlatView *old_view,
  725. const FlatView *new_view,
  726. bool adding)
  727. {
  728. unsigned iold, inew;
  729. FlatRange *frold, *frnew;
  730. /* Generate a symmetric difference of the old and new memory maps.
  731. * Kill ranges in the old map, and instantiate ranges in the new map.
  732. */
  733. iold = inew = 0;
  734. while (iold < old_view->nr || inew < new_view->nr) {
  735. if (iold < old_view->nr) {
  736. frold = &old_view->ranges[iold];
  737. } else {
  738. frold = NULL;
  739. }
  740. if (inew < new_view->nr) {
  741. frnew = &new_view->ranges[inew];
  742. } else {
  743. frnew = NULL;
  744. }
  745. if (frold
  746. && (!frnew
  747. || int128_lt(frold->addr.start, frnew->addr.start)
  748. || (int128_eq(frold->addr.start, frnew->addr.start)
  749. && !flatrange_equal(frold, frnew)))) {
  750. /* In old but not in new, or in both but attributes changed. */
  751. if (!adding) {
  752. MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
  753. }
  754. ++iold;
  755. } else if (frold && frnew && flatrange_equal(frold, frnew)) {
  756. /* In both and unchanged (except logging may have changed) */
  757. if (adding) {
  758. MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
  759. if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
  760. MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
  761. frold->dirty_log_mask,
  762. frnew->dirty_log_mask);
  763. }
  764. if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
  765. MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
  766. frold->dirty_log_mask,
  767. frnew->dirty_log_mask);
  768. }
  769. }
  770. ++iold;
  771. ++inew;
  772. } else {
  773. /* In new */
  774. if (adding) {
  775. MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
  776. }
  777. ++inew;
  778. }
  779. }
  780. }
  781. static void address_space_update_topology(AddressSpace *as)
  782. {
  783. FlatView *old_view = address_space_get_flatview(as);
  784. FlatView *new_view = generate_memory_topology(as->root);
  785. address_space_update_topology_pass(as, old_view, new_view, false);
  786. address_space_update_topology_pass(as, old_view, new_view, true);
  787. /* Writes are protected by the BQL. */
  788. atomic_rcu_set(&as->current_map, new_view);
  789. call_rcu(old_view, flatview_unref, rcu);
  790. /* Note that all the old MemoryRegions are still alive up to this
  791. * point. This relieves most MemoryListeners from the need to
  792. * ref/unref the MemoryRegions they get---unless they use them
  793. * outside the iothread mutex, in which case precise reference
  794. * counting is necessary.
  795. */
  796. flatview_unref(old_view);
  797. address_space_update_ioeventfds(as);
  798. }
  799. void memory_region_transaction_begin(void)
  800. {
  801. qemu_flush_coalesced_mmio_buffer();
  802. ++memory_region_transaction_depth;
  803. }
  804. static void memory_region_clear_pending(void)
  805. {
  806. memory_region_update_pending = false;
  807. ioeventfd_update_pending = false;
  808. }
  809. void memory_region_transaction_commit(void)
  810. {
  811. AddressSpace *as;
  812. assert(memory_region_transaction_depth);
  813. --memory_region_transaction_depth;
  814. if (!memory_region_transaction_depth) {
  815. if (memory_region_update_pending) {
  816. MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
  817. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  818. address_space_update_topology(as);
  819. }
  820. MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
  821. } else if (ioeventfd_update_pending) {
  822. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  823. address_space_update_ioeventfds(as);
  824. }
  825. }
  826. memory_region_clear_pending();
  827. }
  828. }
  829. static void memory_region_destructor_none(MemoryRegion *mr)
  830. {
  831. }
  832. static void memory_region_destructor_ram(MemoryRegion *mr)
  833. {
  834. qemu_ram_free(mr->ram_block);
  835. }
  836. static bool memory_region_need_escape(char c)
  837. {
  838. return c == '/' || c == '[' || c == '\\' || c == ']';
  839. }
  840. static char *memory_region_escape_name(const char *name)
  841. {
  842. const char *p;
  843. char *escaped, *q;
  844. uint8_t c;
  845. size_t bytes = 0;
  846. for (p = name; *p; p++) {
  847. bytes += memory_region_need_escape(*p) ? 4 : 1;
  848. }
  849. if (bytes == p - name) {
  850. return g_memdup(name, bytes + 1);
  851. }
  852. escaped = g_malloc(bytes + 1);
  853. for (p = name, q = escaped; *p; p++) {
  854. c = *p;
  855. if (unlikely(memory_region_need_escape(c))) {
  856. *q++ = '\\';
  857. *q++ = 'x';
  858. *q++ = "0123456789abcdef"[c >> 4];
  859. c = "0123456789abcdef"[c & 15];
  860. }
  861. *q++ = c;
  862. }
  863. *q = 0;
  864. return escaped;
  865. }
  866. void memory_region_init(MemoryRegion *mr,
  867. Object *owner,
  868. const char *name,
  869. uint64_t size)
  870. {
  871. object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
  872. mr->size = int128_make64(size);
  873. if (size == UINT64_MAX) {
  874. mr->size = int128_2_64();
  875. }
  876. mr->name = g_strdup(name);
  877. mr->owner = owner;
  878. mr->ram_block = NULL;
  879. if (name) {
  880. char *escaped_name = memory_region_escape_name(name);
  881. char *name_array = g_strdup_printf("%s[*]", escaped_name);
  882. if (!owner) {
  883. owner = container_get(qdev_get_machine(), "/unattached");
  884. }
  885. object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
  886. object_unref(OBJECT(mr));
  887. g_free(name_array);
  888. g_free(escaped_name);
  889. }
  890. }
  891. static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
  892. void *opaque, Error **errp)
  893. {
  894. MemoryRegion *mr = MEMORY_REGION(obj);
  895. uint64_t value = mr->addr;
  896. visit_type_uint64(v, name, &value, errp);
  897. }
  898. static void memory_region_get_container(Object *obj, Visitor *v,
  899. const char *name, void *opaque,
  900. Error **errp)
  901. {
  902. MemoryRegion *mr = MEMORY_REGION(obj);
  903. gchar *path = (gchar *)"";
  904. if (mr->container) {
  905. path = object_get_canonical_path(OBJECT(mr->container));
  906. }
  907. visit_type_str(v, name, &path, errp);
  908. if (mr->container) {
  909. g_free(path);
  910. }
  911. }
  912. static Object *memory_region_resolve_container(Object *obj, void *opaque,
  913. const char *part)
  914. {
  915. MemoryRegion *mr = MEMORY_REGION(obj);
  916. return OBJECT(mr->container);
  917. }
  918. static void memory_region_get_priority(Object *obj, Visitor *v,
  919. const char *name, void *opaque,
  920. Error **errp)
  921. {
  922. MemoryRegion *mr = MEMORY_REGION(obj);
  923. int32_t value = mr->priority;
  924. visit_type_int32(v, name, &value, errp);
  925. }
  926. static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
  927. void *opaque, Error **errp)
  928. {
  929. MemoryRegion *mr = MEMORY_REGION(obj);
  930. uint64_t value = memory_region_size(mr);
  931. visit_type_uint64(v, name, &value, errp);
  932. }
  933. static void memory_region_initfn(Object *obj)
  934. {
  935. MemoryRegion *mr = MEMORY_REGION(obj);
  936. ObjectProperty *op;
  937. mr->ops = &unassigned_mem_ops;
  938. mr->enabled = true;
  939. mr->romd_mode = true;
  940. mr->global_locking = true;
  941. mr->destructor = memory_region_destructor_none;
  942. QTAILQ_INIT(&mr->subregions);
  943. QTAILQ_INIT(&mr->coalesced);
  944. op = object_property_add(OBJECT(mr), "container",
  945. "link<" TYPE_MEMORY_REGION ">",
  946. memory_region_get_container,
  947. NULL, /* memory_region_set_container */
  948. NULL, NULL, &error_abort);
  949. op->resolve = memory_region_resolve_container;
  950. object_property_add(OBJECT(mr), "addr", "uint64",
  951. memory_region_get_addr,
  952. NULL, /* memory_region_set_addr */
  953. NULL, NULL, &error_abort);
  954. object_property_add(OBJECT(mr), "priority", "uint32",
  955. memory_region_get_priority,
  956. NULL, /* memory_region_set_priority */
  957. NULL, NULL, &error_abort);
  958. object_property_add(OBJECT(mr), "size", "uint64",
  959. memory_region_get_size,
  960. NULL, /* memory_region_set_size, */
  961. NULL, NULL, &error_abort);
  962. }
  963. static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
  964. unsigned size)
  965. {
  966. #ifdef DEBUG_UNASSIGNED
  967. printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
  968. #endif
  969. if (current_cpu != NULL) {
  970. cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
  971. }
  972. return 0;
  973. }
  974. static void unassigned_mem_write(void *opaque, hwaddr addr,
  975. uint64_t val, unsigned size)
  976. {
  977. #ifdef DEBUG_UNASSIGNED
  978. printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
  979. #endif
  980. if (current_cpu != NULL) {
  981. cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
  982. }
  983. }
  984. static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
  985. unsigned size, bool is_write)
  986. {
  987. return false;
  988. }
  989. const MemoryRegionOps unassigned_mem_ops = {
  990. .valid.accepts = unassigned_mem_accepts,
  991. .endianness = DEVICE_NATIVE_ENDIAN,
  992. };
  993. static uint64_t memory_region_ram_device_read(void *opaque,
  994. hwaddr addr, unsigned size)
  995. {
  996. MemoryRegion *mr = opaque;
  997. uint64_t data = (uint64_t)~0;
  998. switch (size) {
  999. case 1:
  1000. data = *(uint8_t *)(mr->ram_block->host + addr);
  1001. break;
  1002. case 2:
  1003. data = *(uint16_t *)(mr->ram_block->host + addr);
  1004. break;
  1005. case 4:
  1006. data = *(uint32_t *)(mr->ram_block->host + addr);
  1007. break;
  1008. case 8:
  1009. data = *(uint64_t *)(mr->ram_block->host + addr);
  1010. break;
  1011. }
  1012. trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
  1013. return data;
  1014. }
  1015. static void memory_region_ram_device_write(void *opaque, hwaddr addr,
  1016. uint64_t data, unsigned size)
  1017. {
  1018. MemoryRegion *mr = opaque;
  1019. trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
  1020. switch (size) {
  1021. case 1:
  1022. *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
  1023. break;
  1024. case 2:
  1025. *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
  1026. break;
  1027. case 4:
  1028. *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
  1029. break;
  1030. case 8:
  1031. *(uint64_t *)(mr->ram_block->host + addr) = data;
  1032. break;
  1033. }
  1034. }
  1035. static const MemoryRegionOps ram_device_mem_ops = {
  1036. .read = memory_region_ram_device_read,
  1037. .write = memory_region_ram_device_write,
  1038. .endianness = DEVICE_NATIVE_ENDIAN,
  1039. .valid = {
  1040. .min_access_size = 1,
  1041. .max_access_size = 8,
  1042. .unaligned = true,
  1043. },
  1044. .impl = {
  1045. .min_access_size = 1,
  1046. .max_access_size = 8,
  1047. .unaligned = true,
  1048. },
  1049. };
  1050. bool memory_region_access_valid(MemoryRegion *mr,
  1051. hwaddr addr,
  1052. unsigned size,
  1053. bool is_write)
  1054. {
  1055. int access_size_min, access_size_max;
  1056. int access_size, i;
  1057. if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
  1058. return false;
  1059. }
  1060. if (!mr->ops->valid.accepts) {
  1061. return true;
  1062. }
  1063. access_size_min = mr->ops->valid.min_access_size;
  1064. if (!mr->ops->valid.min_access_size) {
  1065. access_size_min = 1;
  1066. }
  1067. access_size_max = mr->ops->valid.max_access_size;
  1068. if (!mr->ops->valid.max_access_size) {
  1069. access_size_max = 4;
  1070. }
  1071. access_size = MAX(MIN(size, access_size_max), access_size_min);
  1072. for (i = 0; i < size; i += access_size) {
  1073. if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
  1074. is_write)) {
  1075. return false;
  1076. }
  1077. }
  1078. return true;
  1079. }
  1080. static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
  1081. hwaddr addr,
  1082. uint64_t *pval,
  1083. unsigned size,
  1084. MemTxAttrs attrs)
  1085. {
  1086. *pval = 0;
  1087. if (mr->ops->read) {
  1088. return access_with_adjusted_size(addr, pval, size,
  1089. mr->ops->impl.min_access_size,
  1090. mr->ops->impl.max_access_size,
  1091. memory_region_read_accessor,
  1092. mr, attrs);
  1093. } else if (mr->ops->read_with_attrs) {
  1094. return access_with_adjusted_size(addr, pval, size,
  1095. mr->ops->impl.min_access_size,
  1096. mr->ops->impl.max_access_size,
  1097. memory_region_read_with_attrs_accessor,
  1098. mr, attrs);
  1099. } else {
  1100. return access_with_adjusted_size(addr, pval, size, 1, 4,
  1101. memory_region_oldmmio_read_accessor,
  1102. mr, attrs);
  1103. }
  1104. }
  1105. MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
  1106. hwaddr addr,
  1107. uint64_t *pval,
  1108. unsigned size,
  1109. MemTxAttrs attrs)
  1110. {
  1111. MemTxResult r;
  1112. if (!memory_region_access_valid(mr, addr, size, false)) {
  1113. *pval = unassigned_mem_read(mr, addr, size);
  1114. return MEMTX_DECODE_ERROR;
  1115. }
  1116. r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
  1117. adjust_endianness(mr, pval, size);
  1118. return r;
  1119. }
  1120. /* Return true if an eventfd was signalled */
  1121. static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
  1122. hwaddr addr,
  1123. uint64_t data,
  1124. unsigned size,
  1125. MemTxAttrs attrs)
  1126. {
  1127. MemoryRegionIoeventfd ioeventfd = {
  1128. .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
  1129. .data = data,
  1130. };
  1131. unsigned i;
  1132. for (i = 0; i < mr->ioeventfd_nb; i++) {
  1133. ioeventfd.match_data = mr->ioeventfds[i].match_data;
  1134. ioeventfd.e = mr->ioeventfds[i].e;
  1135. if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
  1136. event_notifier_set(ioeventfd.e);
  1137. return true;
  1138. }
  1139. }
  1140. return false;
  1141. }
  1142. MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
  1143. hwaddr addr,
  1144. uint64_t data,
  1145. unsigned size,
  1146. MemTxAttrs attrs)
  1147. {
  1148. if (!memory_region_access_valid(mr, addr, size, true)) {
  1149. unassigned_mem_write(mr, addr, data, size);
  1150. return MEMTX_DECODE_ERROR;
  1151. }
  1152. adjust_endianness(mr, &data, size);
  1153. if ((!kvm_eventfds_enabled()) &&
  1154. memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
  1155. return MEMTX_OK;
  1156. }
  1157. if (mr->ops->write) {
  1158. return access_with_adjusted_size(addr, &data, size,
  1159. mr->ops->impl.min_access_size,
  1160. mr->ops->impl.max_access_size,
  1161. memory_region_write_accessor, mr,
  1162. attrs);
  1163. } else if (mr->ops->write_with_attrs) {
  1164. return
  1165. access_with_adjusted_size(addr, &data, size,
  1166. mr->ops->impl.min_access_size,
  1167. mr->ops->impl.max_access_size,
  1168. memory_region_write_with_attrs_accessor,
  1169. mr, attrs);
  1170. } else {
  1171. return access_with_adjusted_size(addr, &data, size, 1, 4,
  1172. memory_region_oldmmio_write_accessor,
  1173. mr, attrs);
  1174. }
  1175. }
  1176. void memory_region_init_io(MemoryRegion *mr,
  1177. Object *owner,
  1178. const MemoryRegionOps *ops,
  1179. void *opaque,
  1180. const char *name,
  1181. uint64_t size)
  1182. {
  1183. memory_region_init(mr, owner, name, size);
  1184. mr->ops = ops ? ops : &unassigned_mem_ops;
  1185. mr->opaque = opaque;
  1186. mr->terminates = true;
  1187. }
  1188. void memory_region_init_ram(MemoryRegion *mr,
  1189. Object *owner,
  1190. const char *name,
  1191. uint64_t size,
  1192. Error **errp)
  1193. {
  1194. memory_region_init(mr, owner, name, size);
  1195. mr->ram = true;
  1196. mr->terminates = true;
  1197. mr->destructor = memory_region_destructor_ram;
  1198. mr->ram_block = qemu_ram_alloc(size, mr, errp);
  1199. mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
  1200. }
  1201. void memory_region_init_resizeable_ram(MemoryRegion *mr,
  1202. Object *owner,
  1203. const char *name,
  1204. uint64_t size,
  1205. uint64_t max_size,
  1206. void (*resized)(const char*,
  1207. uint64_t length,
  1208. void *host),
  1209. Error **errp)
  1210. {
  1211. memory_region_init(mr, owner, name, size);
  1212. mr->ram = true;
  1213. mr->terminates = true;
  1214. mr->destructor = memory_region_destructor_ram;
  1215. mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
  1216. mr, errp);
  1217. mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
  1218. }
  1219. #ifdef __linux__
  1220. void memory_region_init_ram_from_file(MemoryRegion *mr,
  1221. struct Object *owner,
  1222. const char *name,
  1223. uint64_t size,
  1224. bool share,
  1225. const char *path,
  1226. Error **errp)
  1227. {
  1228. memory_region_init(mr, owner, name, size);
  1229. mr->ram = true;
  1230. mr->terminates = true;
  1231. mr->destructor = memory_region_destructor_ram;
  1232. mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
  1233. mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
  1234. }
  1235. #endif
  1236. void memory_region_init_ram_ptr(MemoryRegion *mr,
  1237. Object *owner,
  1238. const char *name,
  1239. uint64_t size,
  1240. void *ptr)
  1241. {
  1242. memory_region_init(mr, owner, name, size);
  1243. mr->ram = true;
  1244. mr->terminates = true;
  1245. mr->destructor = memory_region_destructor_ram;
  1246. mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
  1247. /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
  1248. assert(ptr != NULL);
  1249. mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
  1250. }
  1251. void memory_region_init_ram_device_ptr(MemoryRegion *mr,
  1252. Object *owner,
  1253. const char *name,
  1254. uint64_t size,
  1255. void *ptr)
  1256. {
  1257. memory_region_init_ram_ptr(mr, owner, name, size, ptr);
  1258. mr->ram_device = true;
  1259. mr->ops = &ram_device_mem_ops;
  1260. mr->opaque = mr;
  1261. }
  1262. void memory_region_init_alias(MemoryRegion *mr,
  1263. Object *owner,
  1264. const char *name,
  1265. MemoryRegion *orig,
  1266. hwaddr offset,
  1267. uint64_t size)
  1268. {
  1269. memory_region_init(mr, owner, name, size);
  1270. mr->alias = orig;
  1271. mr->alias_offset = offset;
  1272. }
  1273. void memory_region_init_rom(MemoryRegion *mr,
  1274. struct Object *owner,
  1275. const char *name,
  1276. uint64_t size,
  1277. Error **errp)
  1278. {
  1279. memory_region_init(mr, owner, name, size);
  1280. mr->ram = true;
  1281. mr->readonly = true;
  1282. mr->terminates = true;
  1283. mr->destructor = memory_region_destructor_ram;
  1284. mr->ram_block = qemu_ram_alloc(size, mr, errp);
  1285. mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
  1286. }
  1287. void memory_region_init_rom_device(MemoryRegion *mr,
  1288. Object *owner,
  1289. const MemoryRegionOps *ops,
  1290. void *opaque,
  1291. const char *name,
  1292. uint64_t size,
  1293. Error **errp)
  1294. {
  1295. assert(ops);
  1296. memory_region_init(mr, owner, name, size);
  1297. mr->ops = ops;
  1298. mr->opaque = opaque;
  1299. mr->terminates = true;
  1300. mr->rom_device = true;
  1301. mr->destructor = memory_region_destructor_ram;
  1302. mr->ram_block = qemu_ram_alloc(size, mr, errp);
  1303. }
  1304. void memory_region_init_iommu(MemoryRegion *mr,
  1305. Object *owner,
  1306. const MemoryRegionIOMMUOps *ops,
  1307. const char *name,
  1308. uint64_t size)
  1309. {
  1310. memory_region_init(mr, owner, name, size);
  1311. mr->iommu_ops = ops,
  1312. mr->terminates = true; /* then re-forwards */
  1313. QLIST_INIT(&mr->iommu_notify);
  1314. mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
  1315. }
  1316. static void memory_region_finalize(Object *obj)
  1317. {
  1318. MemoryRegion *mr = MEMORY_REGION(obj);
  1319. assert(!mr->container);
  1320. /* We know the region is not visible in any address space (it
  1321. * does not have a container and cannot be a root either because
  1322. * it has no references, so we can blindly clear mr->enabled.
  1323. * memory_region_set_enabled instead could trigger a transaction
  1324. * and cause an infinite loop.
  1325. */
  1326. mr->enabled = false;
  1327. memory_region_transaction_begin();
  1328. while (!QTAILQ_EMPTY(&mr->subregions)) {
  1329. MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
  1330. memory_region_del_subregion(mr, subregion);
  1331. }
  1332. memory_region_transaction_commit();
  1333. mr->destructor(mr);
  1334. memory_region_clear_coalescing(mr);
  1335. g_free((char *)mr->name);
  1336. g_free(mr->ioeventfds);
  1337. }
  1338. Object *memory_region_owner(MemoryRegion *mr)
  1339. {
  1340. Object *obj = OBJECT(mr);
  1341. return obj->parent;
  1342. }
  1343. void memory_region_ref(MemoryRegion *mr)
  1344. {
  1345. /* MMIO callbacks most likely will access data that belongs
  1346. * to the owner, hence the need to ref/unref the owner whenever
  1347. * the memory region is in use.
  1348. *
  1349. * The memory region is a child of its owner. As long as the
  1350. * owner doesn't call unparent itself on the memory region,
  1351. * ref-ing the owner will also keep the memory region alive.
  1352. * Memory regions without an owner are supposed to never go away;
  1353. * we do not ref/unref them because it slows down DMA sensibly.
  1354. */
  1355. if (mr && mr->owner) {
  1356. object_ref(mr->owner);
  1357. }
  1358. }
  1359. void memory_region_unref(MemoryRegion *mr)
  1360. {
  1361. if (mr && mr->owner) {
  1362. object_unref(mr->owner);
  1363. }
  1364. }
  1365. uint64_t memory_region_size(MemoryRegion *mr)
  1366. {
  1367. if (int128_eq(mr->size, int128_2_64())) {
  1368. return UINT64_MAX;
  1369. }
  1370. return int128_get64(mr->size);
  1371. }
  1372. const char *memory_region_name(const MemoryRegion *mr)
  1373. {
  1374. if (!mr->name) {
  1375. ((MemoryRegion *)mr)->name =
  1376. object_get_canonical_path_component(OBJECT(mr));
  1377. }
  1378. return mr->name;
  1379. }
  1380. bool memory_region_is_ram_device(MemoryRegion *mr)
  1381. {
  1382. return mr->ram_device;
  1383. }
  1384. uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
  1385. {
  1386. uint8_t mask = mr->dirty_log_mask;
  1387. if (global_dirty_log && mr->ram_block) {
  1388. mask |= (1 << DIRTY_MEMORY_MIGRATION);
  1389. }
  1390. return mask;
  1391. }
  1392. bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
  1393. {
  1394. return memory_region_get_dirty_log_mask(mr) & (1 << client);
  1395. }
  1396. static void memory_region_update_iommu_notify_flags(MemoryRegion *mr)
  1397. {
  1398. IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
  1399. IOMMUNotifier *iommu_notifier;
  1400. QLIST_FOREACH(iommu_notifier, &mr->iommu_notify, node) {
  1401. flags |= iommu_notifier->notifier_flags;
  1402. }
  1403. if (flags != mr->iommu_notify_flags &&
  1404. mr->iommu_ops->notify_flag_changed) {
  1405. mr->iommu_ops->notify_flag_changed(mr, mr->iommu_notify_flags,
  1406. flags);
  1407. }
  1408. mr->iommu_notify_flags = flags;
  1409. }
  1410. void memory_region_register_iommu_notifier(MemoryRegion *mr,
  1411. IOMMUNotifier *n)
  1412. {
  1413. if (mr->alias) {
  1414. memory_region_register_iommu_notifier(mr->alias, n);
  1415. return;
  1416. }
  1417. /* We need to register for at least one bitfield */
  1418. assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
  1419. QLIST_INSERT_HEAD(&mr->iommu_notify, n, node);
  1420. memory_region_update_iommu_notify_flags(mr);
  1421. }
  1422. uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr)
  1423. {
  1424. assert(memory_region_is_iommu(mr));
  1425. if (mr->iommu_ops && mr->iommu_ops->get_min_page_size) {
  1426. return mr->iommu_ops->get_min_page_size(mr);
  1427. }
  1428. return TARGET_PAGE_SIZE;
  1429. }
  1430. void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
  1431. bool is_write)
  1432. {
  1433. hwaddr addr, granularity;
  1434. IOMMUTLBEntry iotlb;
  1435. granularity = memory_region_iommu_get_min_page_size(mr);
  1436. for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
  1437. iotlb = mr->iommu_ops->translate(mr, addr, is_write);
  1438. if (iotlb.perm != IOMMU_NONE) {
  1439. n->notify(n, &iotlb);
  1440. }
  1441. /* if (2^64 - MR size) < granularity, it's possible to get an
  1442. * infinite loop here. This should catch such a wraparound */
  1443. if ((addr + granularity) < addr) {
  1444. break;
  1445. }
  1446. }
  1447. }
  1448. void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
  1449. IOMMUNotifier *n)
  1450. {
  1451. if (mr->alias) {
  1452. memory_region_unregister_iommu_notifier(mr->alias, n);
  1453. return;
  1454. }
  1455. QLIST_REMOVE(n, node);
  1456. memory_region_update_iommu_notify_flags(mr);
  1457. }
  1458. void memory_region_notify_iommu(MemoryRegion *mr,
  1459. IOMMUTLBEntry entry)
  1460. {
  1461. IOMMUNotifier *iommu_notifier;
  1462. IOMMUNotifierFlag request_flags;
  1463. assert(memory_region_is_iommu(mr));
  1464. if (entry.perm & IOMMU_RW) {
  1465. request_flags = IOMMU_NOTIFIER_MAP;
  1466. } else {
  1467. request_flags = IOMMU_NOTIFIER_UNMAP;
  1468. }
  1469. QLIST_FOREACH(iommu_notifier, &mr->iommu_notify, node) {
  1470. if (iommu_notifier->notifier_flags & request_flags) {
  1471. iommu_notifier->notify(iommu_notifier, &entry);
  1472. }
  1473. }
  1474. }
  1475. void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
  1476. {
  1477. uint8_t mask = 1 << client;
  1478. uint8_t old_logging;
  1479. assert(client == DIRTY_MEMORY_VGA);
  1480. old_logging = mr->vga_logging_count;
  1481. mr->vga_logging_count += log ? 1 : -1;
  1482. if (!!old_logging == !!mr->vga_logging_count) {
  1483. return;
  1484. }
  1485. memory_region_transaction_begin();
  1486. mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
  1487. memory_region_update_pending |= mr->enabled;
  1488. memory_region_transaction_commit();
  1489. }
  1490. bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
  1491. hwaddr size, unsigned client)
  1492. {
  1493. assert(mr->ram_block);
  1494. return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
  1495. size, client);
  1496. }
  1497. void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
  1498. hwaddr size)
  1499. {
  1500. assert(mr->ram_block);
  1501. cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
  1502. size,
  1503. memory_region_get_dirty_log_mask(mr));
  1504. }
  1505. bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
  1506. hwaddr size, unsigned client)
  1507. {
  1508. assert(mr->ram_block);
  1509. return cpu_physical_memory_test_and_clear_dirty(
  1510. memory_region_get_ram_addr(mr) + addr, size, client);
  1511. }
  1512. void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
  1513. {
  1514. MemoryListener *listener;
  1515. AddressSpace *as;
  1516. FlatView *view;
  1517. FlatRange *fr;
  1518. /* If the same address space has multiple log_sync listeners, we
  1519. * visit that address space's FlatView multiple times. But because
  1520. * log_sync listeners are rare, it's still cheaper than walking each
  1521. * address space once.
  1522. */
  1523. QTAILQ_FOREACH(listener, &memory_listeners, link) {
  1524. if (!listener->log_sync) {
  1525. continue;
  1526. }
  1527. as = listener->address_space;
  1528. view = address_space_get_flatview(as);
  1529. FOR_EACH_FLAT_RANGE(fr, view) {
  1530. if (fr->mr == mr) {
  1531. MemoryRegionSection mrs = section_from_flat_range(fr, as);
  1532. listener->log_sync(listener, &mrs);
  1533. }
  1534. }
  1535. flatview_unref(view);
  1536. }
  1537. }
  1538. void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
  1539. {
  1540. if (mr->readonly != readonly) {
  1541. memory_region_transaction_begin();
  1542. mr->readonly = readonly;
  1543. memory_region_update_pending |= mr->enabled;
  1544. memory_region_transaction_commit();
  1545. }
  1546. }
  1547. void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
  1548. {
  1549. if (mr->romd_mode != romd_mode) {
  1550. memory_region_transaction_begin();
  1551. mr->romd_mode = romd_mode;
  1552. memory_region_update_pending |= mr->enabled;
  1553. memory_region_transaction_commit();
  1554. }
  1555. }
  1556. void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
  1557. hwaddr size, unsigned client)
  1558. {
  1559. assert(mr->ram_block);
  1560. cpu_physical_memory_test_and_clear_dirty(
  1561. memory_region_get_ram_addr(mr) + addr, size, client);
  1562. }
  1563. int memory_region_get_fd(MemoryRegion *mr)
  1564. {
  1565. int fd;
  1566. rcu_read_lock();
  1567. while (mr->alias) {
  1568. mr = mr->alias;
  1569. }
  1570. fd = mr->ram_block->fd;
  1571. rcu_read_unlock();
  1572. return fd;
  1573. }
  1574. void memory_region_set_fd(MemoryRegion *mr, int fd)
  1575. {
  1576. rcu_read_lock();
  1577. while (mr->alias) {
  1578. mr = mr->alias;
  1579. }
  1580. mr->ram_block->fd = fd;
  1581. rcu_read_unlock();
  1582. }
  1583. void *memory_region_get_ram_ptr(MemoryRegion *mr)
  1584. {
  1585. void *ptr;
  1586. uint64_t offset = 0;
  1587. rcu_read_lock();
  1588. while (mr->alias) {
  1589. offset += mr->alias_offset;
  1590. mr = mr->alias;
  1591. }
  1592. assert(mr->ram_block);
  1593. ptr = qemu_map_ram_ptr(mr->ram_block, offset);
  1594. rcu_read_unlock();
  1595. return ptr;
  1596. }
  1597. MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
  1598. {
  1599. RAMBlock *block;
  1600. block = qemu_ram_block_from_host(ptr, false, offset);
  1601. if (!block) {
  1602. return NULL;
  1603. }
  1604. return block->mr;
  1605. }
  1606. ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
  1607. {
  1608. return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
  1609. }
  1610. void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
  1611. {
  1612. assert(mr->ram_block);
  1613. qemu_ram_resize(mr->ram_block, newsize, errp);
  1614. }
  1615. static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
  1616. {
  1617. FlatView *view;
  1618. FlatRange *fr;
  1619. CoalescedMemoryRange *cmr;
  1620. AddrRange tmp;
  1621. MemoryRegionSection section;
  1622. view = address_space_get_flatview(as);
  1623. FOR_EACH_FLAT_RANGE(fr, view) {
  1624. if (fr->mr == mr) {
  1625. section = (MemoryRegionSection) {
  1626. .address_space = as,
  1627. .offset_within_address_space = int128_get64(fr->addr.start),
  1628. .size = fr->addr.size,
  1629. };
  1630. MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
  1631. int128_get64(fr->addr.start),
  1632. int128_get64(fr->addr.size));
  1633. QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
  1634. tmp = addrrange_shift(cmr->addr,
  1635. int128_sub(fr->addr.start,
  1636. int128_make64(fr->offset_in_region)));
  1637. if (!addrrange_intersects(tmp, fr->addr)) {
  1638. continue;
  1639. }
  1640. tmp = addrrange_intersection(tmp, fr->addr);
  1641. MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
  1642. int128_get64(tmp.start),
  1643. int128_get64(tmp.size));
  1644. }
  1645. }
  1646. }
  1647. flatview_unref(view);
  1648. }
  1649. static void memory_region_update_coalesced_range(MemoryRegion *mr)
  1650. {
  1651. AddressSpace *as;
  1652. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  1653. memory_region_update_coalesced_range_as(mr, as);
  1654. }
  1655. }
  1656. void memory_region_set_coalescing(MemoryRegion *mr)
  1657. {
  1658. memory_region_clear_coalescing(mr);
  1659. memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
  1660. }
  1661. void memory_region_add_coalescing(MemoryRegion *mr,
  1662. hwaddr offset,
  1663. uint64_t size)
  1664. {
  1665. CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
  1666. cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
  1667. QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
  1668. memory_region_update_coalesced_range(mr);
  1669. memory_region_set_flush_coalesced(mr);
  1670. }
  1671. void memory_region_clear_coalescing(MemoryRegion *mr)
  1672. {
  1673. CoalescedMemoryRange *cmr;
  1674. bool updated = false;
  1675. qemu_flush_coalesced_mmio_buffer();
  1676. mr->flush_coalesced_mmio = false;
  1677. while (!QTAILQ_EMPTY(&mr->coalesced)) {
  1678. cmr = QTAILQ_FIRST(&mr->coalesced);
  1679. QTAILQ_REMOVE(&mr->coalesced, cmr, link);
  1680. g_free(cmr);
  1681. updated = true;
  1682. }
  1683. if (updated) {
  1684. memory_region_update_coalesced_range(mr);
  1685. }
  1686. }
  1687. void memory_region_set_flush_coalesced(MemoryRegion *mr)
  1688. {
  1689. mr->flush_coalesced_mmio = true;
  1690. }
  1691. void memory_region_clear_flush_coalesced(MemoryRegion *mr)
  1692. {
  1693. qemu_flush_coalesced_mmio_buffer();
  1694. if (QTAILQ_EMPTY(&mr->coalesced)) {
  1695. mr->flush_coalesced_mmio = false;
  1696. }
  1697. }
  1698. void memory_region_set_global_locking(MemoryRegion *mr)
  1699. {
  1700. mr->global_locking = true;
  1701. }
  1702. void memory_region_clear_global_locking(MemoryRegion *mr)
  1703. {
  1704. mr->global_locking = false;
  1705. }
  1706. static bool userspace_eventfd_warning;
  1707. void memory_region_add_eventfd(MemoryRegion *mr,
  1708. hwaddr addr,
  1709. unsigned size,
  1710. bool match_data,
  1711. uint64_t data,
  1712. EventNotifier *e)
  1713. {
  1714. MemoryRegionIoeventfd mrfd = {
  1715. .addr.start = int128_make64(addr),
  1716. .addr.size = int128_make64(size),
  1717. .match_data = match_data,
  1718. .data = data,
  1719. .e = e,
  1720. };
  1721. unsigned i;
  1722. if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
  1723. userspace_eventfd_warning))) {
  1724. userspace_eventfd_warning = true;
  1725. error_report("Using eventfd without MMIO binding in KVM. "
  1726. "Suboptimal performance expected");
  1727. }
  1728. if (size) {
  1729. adjust_endianness(mr, &mrfd.data, size);
  1730. }
  1731. memory_region_transaction_begin();
  1732. for (i = 0; i < mr->ioeventfd_nb; ++i) {
  1733. if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
  1734. break;
  1735. }
  1736. }
  1737. ++mr->ioeventfd_nb;
  1738. mr->ioeventfds = g_realloc(mr->ioeventfds,
  1739. sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
  1740. memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
  1741. sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
  1742. mr->ioeventfds[i] = mrfd;
  1743. ioeventfd_update_pending |= mr->enabled;
  1744. memory_region_transaction_commit();
  1745. }
  1746. void memory_region_del_eventfd(MemoryRegion *mr,
  1747. hwaddr addr,
  1748. unsigned size,
  1749. bool match_data,
  1750. uint64_t data,
  1751. EventNotifier *e)
  1752. {
  1753. MemoryRegionIoeventfd mrfd = {
  1754. .addr.start = int128_make64(addr),
  1755. .addr.size = int128_make64(size),
  1756. .match_data = match_data,
  1757. .data = data,
  1758. .e = e,
  1759. };
  1760. unsigned i;
  1761. if (size) {
  1762. adjust_endianness(mr, &mrfd.data, size);
  1763. }
  1764. memory_region_transaction_begin();
  1765. for (i = 0; i < mr->ioeventfd_nb; ++i) {
  1766. if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
  1767. break;
  1768. }
  1769. }
  1770. assert(i != mr->ioeventfd_nb);
  1771. memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
  1772. sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
  1773. --mr->ioeventfd_nb;
  1774. mr->ioeventfds = g_realloc(mr->ioeventfds,
  1775. sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
  1776. ioeventfd_update_pending |= mr->enabled;
  1777. memory_region_transaction_commit();
  1778. }
  1779. static void memory_region_update_container_subregions(MemoryRegion *subregion)
  1780. {
  1781. MemoryRegion *mr = subregion->container;
  1782. MemoryRegion *other;
  1783. memory_region_transaction_begin();
  1784. memory_region_ref(subregion);
  1785. QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
  1786. if (subregion->priority >= other->priority) {
  1787. QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
  1788. goto done;
  1789. }
  1790. }
  1791. QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
  1792. done:
  1793. memory_region_update_pending |= mr->enabled && subregion->enabled;
  1794. memory_region_transaction_commit();
  1795. }
  1796. static void memory_region_add_subregion_common(MemoryRegion *mr,
  1797. hwaddr offset,
  1798. MemoryRegion *subregion)
  1799. {
  1800. assert(!subregion->container);
  1801. subregion->container = mr;
  1802. subregion->addr = offset;
  1803. memory_region_update_container_subregions(subregion);
  1804. }
  1805. void memory_region_add_subregion(MemoryRegion *mr,
  1806. hwaddr offset,
  1807. MemoryRegion *subregion)
  1808. {
  1809. subregion->priority = 0;
  1810. memory_region_add_subregion_common(mr, offset, subregion);
  1811. }
  1812. void memory_region_add_subregion_overlap(MemoryRegion *mr,
  1813. hwaddr offset,
  1814. MemoryRegion *subregion,
  1815. int priority)
  1816. {
  1817. subregion->priority = priority;
  1818. memory_region_add_subregion_common(mr, offset, subregion);
  1819. }
  1820. void memory_region_del_subregion(MemoryRegion *mr,
  1821. MemoryRegion *subregion)
  1822. {
  1823. memory_region_transaction_begin();
  1824. assert(subregion->container == mr);
  1825. subregion->container = NULL;
  1826. QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
  1827. memory_region_unref(subregion);
  1828. memory_region_update_pending |= mr->enabled && subregion->enabled;
  1829. memory_region_transaction_commit();
  1830. }
  1831. void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
  1832. {
  1833. if (enabled == mr->enabled) {
  1834. return;
  1835. }
  1836. memory_region_transaction_begin();
  1837. mr->enabled = enabled;
  1838. memory_region_update_pending = true;
  1839. memory_region_transaction_commit();
  1840. }
  1841. void memory_region_set_size(MemoryRegion *mr, uint64_t size)
  1842. {
  1843. Int128 s = int128_make64(size);
  1844. if (size == UINT64_MAX) {
  1845. s = int128_2_64();
  1846. }
  1847. if (int128_eq(s, mr->size)) {
  1848. return;
  1849. }
  1850. memory_region_transaction_begin();
  1851. mr->size = s;
  1852. memory_region_update_pending = true;
  1853. memory_region_transaction_commit();
  1854. }
  1855. static void memory_region_readd_subregion(MemoryRegion *mr)
  1856. {
  1857. MemoryRegion *container = mr->container;
  1858. if (container) {
  1859. memory_region_transaction_begin();
  1860. memory_region_ref(mr);
  1861. memory_region_del_subregion(container, mr);
  1862. mr->container = container;
  1863. memory_region_update_container_subregions(mr);
  1864. memory_region_unref(mr);
  1865. memory_region_transaction_commit();
  1866. }
  1867. }
  1868. void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
  1869. {
  1870. if (addr != mr->addr) {
  1871. mr->addr = addr;
  1872. memory_region_readd_subregion(mr);
  1873. }
  1874. }
  1875. void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
  1876. {
  1877. assert(mr->alias);
  1878. if (offset == mr->alias_offset) {
  1879. return;
  1880. }
  1881. memory_region_transaction_begin();
  1882. mr->alias_offset = offset;
  1883. memory_region_update_pending |= mr->enabled;
  1884. memory_region_transaction_commit();
  1885. }
  1886. uint64_t memory_region_get_alignment(const MemoryRegion *mr)
  1887. {
  1888. return mr->align;
  1889. }
  1890. static int cmp_flatrange_addr(const void *addr_, const void *fr_)
  1891. {
  1892. const AddrRange *addr = addr_;
  1893. const FlatRange *fr = fr_;
  1894. if (int128_le(addrrange_end(*addr), fr->addr.start)) {
  1895. return -1;
  1896. } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
  1897. return 1;
  1898. }
  1899. return 0;
  1900. }
  1901. static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
  1902. {
  1903. return bsearch(&addr, view->ranges, view->nr,
  1904. sizeof(FlatRange), cmp_flatrange_addr);
  1905. }
  1906. bool memory_region_is_mapped(MemoryRegion *mr)
  1907. {
  1908. return mr->container ? true : false;
  1909. }
  1910. /* Same as memory_region_find, but it does not add a reference to the
  1911. * returned region. It must be called from an RCU critical section.
  1912. */
  1913. static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
  1914. hwaddr addr, uint64_t size)
  1915. {
  1916. MemoryRegionSection ret = { .mr = NULL };
  1917. MemoryRegion *root;
  1918. AddressSpace *as;
  1919. AddrRange range;
  1920. FlatView *view;
  1921. FlatRange *fr;
  1922. addr += mr->addr;
  1923. for (root = mr; root->container; ) {
  1924. root = root->container;
  1925. addr += root->addr;
  1926. }
  1927. as = memory_region_to_address_space(root);
  1928. if (!as) {
  1929. return ret;
  1930. }
  1931. range = addrrange_make(int128_make64(addr), int128_make64(size));
  1932. view = atomic_rcu_read(&as->current_map);
  1933. fr = flatview_lookup(view, range);
  1934. if (!fr) {
  1935. return ret;
  1936. }
  1937. while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
  1938. --fr;
  1939. }
  1940. ret.mr = fr->mr;
  1941. ret.address_space = as;
  1942. range = addrrange_intersection(range, fr->addr);
  1943. ret.offset_within_region = fr->offset_in_region;
  1944. ret.offset_within_region += int128_get64(int128_sub(range.start,
  1945. fr->addr.start));
  1946. ret.size = range.size;
  1947. ret.offset_within_address_space = int128_get64(range.start);
  1948. ret.readonly = fr->readonly;
  1949. return ret;
  1950. }
  1951. MemoryRegionSection memory_region_find(MemoryRegion *mr,
  1952. hwaddr addr, uint64_t size)
  1953. {
  1954. MemoryRegionSection ret;
  1955. rcu_read_lock();
  1956. ret = memory_region_find_rcu(mr, addr, size);
  1957. if (ret.mr) {
  1958. memory_region_ref(ret.mr);
  1959. }
  1960. rcu_read_unlock();
  1961. return ret;
  1962. }
  1963. bool memory_region_present(MemoryRegion *container, hwaddr addr)
  1964. {
  1965. MemoryRegion *mr;
  1966. rcu_read_lock();
  1967. mr = memory_region_find_rcu(container, addr, 1).mr;
  1968. rcu_read_unlock();
  1969. return mr && mr != container;
  1970. }
  1971. void memory_global_dirty_log_sync(void)
  1972. {
  1973. MemoryListener *listener;
  1974. AddressSpace *as;
  1975. FlatView *view;
  1976. FlatRange *fr;
  1977. QTAILQ_FOREACH(listener, &memory_listeners, link) {
  1978. if (!listener->log_sync) {
  1979. continue;
  1980. }
  1981. as = listener->address_space;
  1982. view = address_space_get_flatview(as);
  1983. FOR_EACH_FLAT_RANGE(fr, view) {
  1984. if (fr->dirty_log_mask) {
  1985. MemoryRegionSection mrs = section_from_flat_range(fr, as);
  1986. listener->log_sync(listener, &mrs);
  1987. }
  1988. }
  1989. flatview_unref(view);
  1990. }
  1991. }
  1992. void memory_global_dirty_log_start(void)
  1993. {
  1994. global_dirty_log = true;
  1995. MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
  1996. /* Refresh DIRTY_LOG_MIGRATION bit. */
  1997. memory_region_transaction_begin();
  1998. memory_region_update_pending = true;
  1999. memory_region_transaction_commit();
  2000. }
  2001. void memory_global_dirty_log_stop(void)
  2002. {
  2003. global_dirty_log = false;
  2004. /* Refresh DIRTY_LOG_MIGRATION bit. */
  2005. memory_region_transaction_begin();
  2006. memory_region_update_pending = true;
  2007. memory_region_transaction_commit();
  2008. MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
  2009. }
  2010. static void listener_add_address_space(MemoryListener *listener,
  2011. AddressSpace *as)
  2012. {
  2013. FlatView *view;
  2014. FlatRange *fr;
  2015. if (listener->begin) {
  2016. listener->begin(listener);
  2017. }
  2018. if (global_dirty_log) {
  2019. if (listener->log_global_start) {
  2020. listener->log_global_start(listener);
  2021. }
  2022. }
  2023. view = address_space_get_flatview(as);
  2024. FOR_EACH_FLAT_RANGE(fr, view) {
  2025. MemoryRegionSection section = {
  2026. .mr = fr->mr,
  2027. .address_space = as,
  2028. .offset_within_region = fr->offset_in_region,
  2029. .size = fr->addr.size,
  2030. .offset_within_address_space = int128_get64(fr->addr.start),
  2031. .readonly = fr->readonly,
  2032. };
  2033. if (fr->dirty_log_mask && listener->log_start) {
  2034. listener->log_start(listener, &section, 0, fr->dirty_log_mask);
  2035. }
  2036. if (listener->region_add) {
  2037. listener->region_add(listener, &section);
  2038. }
  2039. }
  2040. if (listener->commit) {
  2041. listener->commit(listener);
  2042. }
  2043. flatview_unref(view);
  2044. }
  2045. void memory_listener_register(MemoryListener *listener, AddressSpace *as)
  2046. {
  2047. MemoryListener *other = NULL;
  2048. listener->address_space = as;
  2049. if (QTAILQ_EMPTY(&memory_listeners)
  2050. || listener->priority >= QTAILQ_LAST(&memory_listeners,
  2051. memory_listeners)->priority) {
  2052. QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
  2053. } else {
  2054. QTAILQ_FOREACH(other, &memory_listeners, link) {
  2055. if (listener->priority < other->priority) {
  2056. break;
  2057. }
  2058. }
  2059. QTAILQ_INSERT_BEFORE(other, listener, link);
  2060. }
  2061. if (QTAILQ_EMPTY(&as->listeners)
  2062. || listener->priority >= QTAILQ_LAST(&as->listeners,
  2063. memory_listeners)->priority) {
  2064. QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
  2065. } else {
  2066. QTAILQ_FOREACH(other, &as->listeners, link_as) {
  2067. if (listener->priority < other->priority) {
  2068. break;
  2069. }
  2070. }
  2071. QTAILQ_INSERT_BEFORE(other, listener, link_as);
  2072. }
  2073. listener_add_address_space(listener, as);
  2074. }
  2075. void memory_listener_unregister(MemoryListener *listener)
  2076. {
  2077. QTAILQ_REMOVE(&memory_listeners, listener, link);
  2078. QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
  2079. }
  2080. void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
  2081. {
  2082. memory_region_ref(root);
  2083. memory_region_transaction_begin();
  2084. as->ref_count = 1;
  2085. as->root = root;
  2086. as->malloced = false;
  2087. as->current_map = g_new(FlatView, 1);
  2088. flatview_init(as->current_map);
  2089. as->ioeventfd_nb = 0;
  2090. as->ioeventfds = NULL;
  2091. QTAILQ_INIT(&as->listeners);
  2092. QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
  2093. as->name = g_strdup(name ? name : "anonymous");
  2094. address_space_init_dispatch(as);
  2095. memory_region_update_pending |= root->enabled;
  2096. memory_region_transaction_commit();
  2097. }
  2098. static void do_address_space_destroy(AddressSpace *as)
  2099. {
  2100. bool do_free = as->malloced;
  2101. address_space_destroy_dispatch(as);
  2102. assert(QTAILQ_EMPTY(&as->listeners));
  2103. flatview_unref(as->current_map);
  2104. g_free(as->name);
  2105. g_free(as->ioeventfds);
  2106. memory_region_unref(as->root);
  2107. if (do_free) {
  2108. g_free(as);
  2109. }
  2110. }
  2111. AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
  2112. {
  2113. AddressSpace *as;
  2114. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  2115. if (root == as->root && as->malloced) {
  2116. as->ref_count++;
  2117. return as;
  2118. }
  2119. }
  2120. as = g_malloc0(sizeof *as);
  2121. address_space_init(as, root, name);
  2122. as->malloced = true;
  2123. return as;
  2124. }
  2125. void address_space_destroy(AddressSpace *as)
  2126. {
  2127. MemoryRegion *root = as->root;
  2128. as->ref_count--;
  2129. if (as->ref_count) {
  2130. return;
  2131. }
  2132. /* Flush out anything from MemoryListeners listening in on this */
  2133. memory_region_transaction_begin();
  2134. as->root = NULL;
  2135. memory_region_transaction_commit();
  2136. QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
  2137. address_space_unregister(as);
  2138. /* At this point, as->dispatch and as->current_map are dummy
  2139. * entries that the guest should never use. Wait for the old
  2140. * values to expire before freeing the data.
  2141. */
  2142. as->root = root;
  2143. call_rcu(as, do_address_space_destroy, rcu);
  2144. }
  2145. static const char *memory_region_type(MemoryRegion *mr)
  2146. {
  2147. if (memory_region_is_ram_device(mr)) {
  2148. return "ramd";
  2149. } else if (memory_region_is_romd(mr)) {
  2150. return "romd";
  2151. } else if (memory_region_is_rom(mr)) {
  2152. return "rom";
  2153. } else if (memory_region_is_ram(mr)) {
  2154. return "ram";
  2155. } else {
  2156. return "i/o";
  2157. }
  2158. }
  2159. typedef struct MemoryRegionList MemoryRegionList;
  2160. struct MemoryRegionList {
  2161. const MemoryRegion *mr;
  2162. QTAILQ_ENTRY(MemoryRegionList) queue;
  2163. };
  2164. typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
  2165. #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
  2166. int128_sub((size), int128_one())) : 0)
  2167. #define MTREE_INDENT " "
  2168. static void mtree_print_mr(fprintf_function mon_printf, void *f,
  2169. const MemoryRegion *mr, unsigned int level,
  2170. hwaddr base,
  2171. MemoryRegionListHead *alias_print_queue)
  2172. {
  2173. MemoryRegionList *new_ml, *ml, *next_ml;
  2174. MemoryRegionListHead submr_print_queue;
  2175. const MemoryRegion *submr;
  2176. unsigned int i;
  2177. if (!mr) {
  2178. return;
  2179. }
  2180. for (i = 0; i < level; i++) {
  2181. mon_printf(f, MTREE_INDENT);
  2182. }
  2183. if (mr->alias) {
  2184. MemoryRegionList *ml;
  2185. bool found = false;
  2186. /* check if the alias is already in the queue */
  2187. QTAILQ_FOREACH(ml, alias_print_queue, queue) {
  2188. if (ml->mr == mr->alias) {
  2189. found = true;
  2190. }
  2191. }
  2192. if (!found) {
  2193. ml = g_new(MemoryRegionList, 1);
  2194. ml->mr = mr->alias;
  2195. QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
  2196. }
  2197. mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
  2198. " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
  2199. "-" TARGET_FMT_plx "%s\n",
  2200. base + mr->addr,
  2201. base + mr->addr + MR_SIZE(mr->size),
  2202. mr->priority,
  2203. memory_region_type((MemoryRegion *)mr),
  2204. memory_region_name(mr),
  2205. memory_region_name(mr->alias),
  2206. mr->alias_offset,
  2207. mr->alias_offset + MR_SIZE(mr->size),
  2208. mr->enabled ? "" : " [disabled]");
  2209. } else {
  2210. mon_printf(f,
  2211. TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
  2212. base + mr->addr,
  2213. base + mr->addr + MR_SIZE(mr->size),
  2214. mr->priority,
  2215. memory_region_type((MemoryRegion *)mr),
  2216. memory_region_name(mr),
  2217. mr->enabled ? "" : " [disabled]");
  2218. }
  2219. QTAILQ_INIT(&submr_print_queue);
  2220. QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
  2221. new_ml = g_new(MemoryRegionList, 1);
  2222. new_ml->mr = submr;
  2223. QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
  2224. if (new_ml->mr->addr < ml->mr->addr ||
  2225. (new_ml->mr->addr == ml->mr->addr &&
  2226. new_ml->mr->priority > ml->mr->priority)) {
  2227. QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
  2228. new_ml = NULL;
  2229. break;
  2230. }
  2231. }
  2232. if (new_ml) {
  2233. QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
  2234. }
  2235. }
  2236. QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
  2237. mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
  2238. alias_print_queue);
  2239. }
  2240. QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
  2241. g_free(ml);
  2242. }
  2243. }
  2244. static void mtree_print_flatview(fprintf_function p, void *f,
  2245. AddressSpace *as)
  2246. {
  2247. FlatView *view = address_space_get_flatview(as);
  2248. FlatRange *range = &view->ranges[0];
  2249. MemoryRegion *mr;
  2250. int n = view->nr;
  2251. if (n <= 0) {
  2252. p(f, MTREE_INDENT "No rendered FlatView for "
  2253. "address space '%s'\n", as->name);
  2254. flatview_unref(view);
  2255. return;
  2256. }
  2257. while (n--) {
  2258. mr = range->mr;
  2259. p(f, MTREE_INDENT TARGET_FMT_plx "-"
  2260. TARGET_FMT_plx " (prio %d, %s): %s\n",
  2261. int128_get64(range->addr.start),
  2262. int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
  2263. mr->priority,
  2264. memory_region_type(mr),
  2265. memory_region_name(mr));
  2266. range++;
  2267. }
  2268. flatview_unref(view);
  2269. }
  2270. void mtree_info(fprintf_function mon_printf, void *f, bool flatview)
  2271. {
  2272. MemoryRegionListHead ml_head;
  2273. MemoryRegionList *ml, *ml2;
  2274. AddressSpace *as;
  2275. if (flatview) {
  2276. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  2277. mon_printf(f, "address-space (flat view): %s\n", as->name);
  2278. mtree_print_flatview(mon_printf, f, as);
  2279. mon_printf(f, "\n");
  2280. }
  2281. return;
  2282. }
  2283. QTAILQ_INIT(&ml_head);
  2284. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  2285. mon_printf(f, "address-space: %s\n", as->name);
  2286. mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
  2287. mon_printf(f, "\n");
  2288. }
  2289. /* print aliased regions */
  2290. QTAILQ_FOREACH(ml, &ml_head, queue) {
  2291. mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
  2292. mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
  2293. mon_printf(f, "\n");
  2294. }
  2295. QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
  2296. g_free(ml);
  2297. }
  2298. }
  2299. static const TypeInfo memory_region_info = {
  2300. .parent = TYPE_OBJECT,
  2301. .name = TYPE_MEMORY_REGION,
  2302. .instance_size = sizeof(MemoryRegion),
  2303. .instance_init = memory_region_initfn,
  2304. .instance_finalize = memory_region_finalize,
  2305. };
  2306. static void memory_register_types(void)
  2307. {
  2308. type_register_static(&memory_region_info);
  2309. }
  2310. type_init(memory_register_types)