imx_epit.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. /*
  2. * IMX EPIT Timer
  3. *
  4. * Copyright (c) 2008 OK Labs
  5. * Copyright (c) 2011 NICTA Pty Ltd
  6. * Originally written by Hans Jiang
  7. * Updated by Peter Chubb
  8. * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
  9. *
  10. * This code is licensed under GPL version 2 or later. See
  11. * the COPYING file in the top-level directory.
  12. *
  13. */
  14. #include "qemu/osdep.h"
  15. #include "hw/timer/imx_epit.h"
  16. #include "hw/misc/imx_ccm.h"
  17. #include "qemu/main-loop.h"
  18. #include "qemu/log.h"
  19. #ifndef DEBUG_IMX_EPIT
  20. #define DEBUG_IMX_EPIT 0
  21. #endif
  22. #define DPRINTF(fmt, args...) \
  23. do { \
  24. if (DEBUG_IMX_EPIT) { \
  25. fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_EPIT, \
  26. __func__, ##args); \
  27. } \
  28. } while (0)
  29. static char const *imx_epit_reg_name(uint32_t reg)
  30. {
  31. switch (reg) {
  32. case 0:
  33. return "CR";
  34. case 1:
  35. return "SR";
  36. case 2:
  37. return "LR";
  38. case 3:
  39. return "CMP";
  40. case 4:
  41. return "CNT";
  42. default:
  43. return "[?]";
  44. }
  45. }
  46. /*
  47. * Exact clock frequencies vary from board to board.
  48. * These are typical.
  49. */
  50. static const IMXClk imx_epit_clocks[] = {
  51. CLK_NONE, /* 00 disabled */
  52. CLK_IPG, /* 01 ipg_clk, ~532MHz */
  53. CLK_IPG_HIGH, /* 10 ipg_clk_highfreq */
  54. CLK_32k, /* 11 ipg_clk_32k -- ~32kHz */
  55. };
  56. /*
  57. * Update interrupt status
  58. */
  59. static void imx_epit_update_int(IMXEPITState *s)
  60. {
  61. if (s->sr && (s->cr & CR_OCIEN) && (s->cr & CR_EN)) {
  62. qemu_irq_raise(s->irq);
  63. } else {
  64. qemu_irq_lower(s->irq);
  65. }
  66. }
  67. static void imx_epit_set_freq(IMXEPITState *s)
  68. {
  69. uint32_t clksrc;
  70. uint32_t prescaler;
  71. clksrc = extract32(s->cr, CR_CLKSRC_SHIFT, 2);
  72. prescaler = 1 + extract32(s->cr, CR_PRESCALE_SHIFT, 12);
  73. s->freq = imx_ccm_get_clock_frequency(s->ccm,
  74. imx_epit_clocks[clksrc]) / prescaler;
  75. DPRINTF("Setting ptimer frequency to %u\n", s->freq);
  76. if (s->freq) {
  77. ptimer_set_freq(s->timer_reload, s->freq);
  78. ptimer_set_freq(s->timer_cmp, s->freq);
  79. }
  80. }
  81. static void imx_epit_reset(DeviceState *dev)
  82. {
  83. IMXEPITState *s = IMX_EPIT(dev);
  84. /*
  85. * Soft reset doesn't touch some bits; hard reset clears them
  86. */
  87. s->cr &= (CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN);
  88. s->sr = 0;
  89. s->lr = EPIT_TIMER_MAX;
  90. s->cmp = 0;
  91. s->cnt = 0;
  92. /* stop both timers */
  93. ptimer_stop(s->timer_cmp);
  94. ptimer_stop(s->timer_reload);
  95. /* compute new frequency */
  96. imx_epit_set_freq(s);
  97. /* init both timers to EPIT_TIMER_MAX */
  98. ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1);
  99. ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1);
  100. if (s->freq && (s->cr & CR_EN)) {
  101. /* if the timer is still enabled, restart it */
  102. ptimer_run(s->timer_reload, 0);
  103. }
  104. }
  105. static uint32_t imx_epit_update_count(IMXEPITState *s)
  106. {
  107. s->cnt = ptimer_get_count(s->timer_reload);
  108. return s->cnt;
  109. }
  110. static uint64_t imx_epit_read(void *opaque, hwaddr offset, unsigned size)
  111. {
  112. IMXEPITState *s = IMX_EPIT(opaque);
  113. uint32_t reg_value = 0;
  114. switch (offset >> 2) {
  115. case 0: /* Control Register */
  116. reg_value = s->cr;
  117. break;
  118. case 1: /* Status Register */
  119. reg_value = s->sr;
  120. break;
  121. case 2: /* LR - ticks*/
  122. reg_value = s->lr;
  123. break;
  124. case 3: /* CMP */
  125. reg_value = s->cmp;
  126. break;
  127. case 4: /* CNT */
  128. imx_epit_update_count(s);
  129. reg_value = s->cnt;
  130. break;
  131. default:
  132. qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
  133. HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset);
  134. break;
  135. }
  136. DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(offset >> 2), reg_value);
  137. return reg_value;
  138. }
  139. static void imx_epit_reload_compare_timer(IMXEPITState *s)
  140. {
  141. if ((s->cr & (CR_EN | CR_OCIEN)) == (CR_EN | CR_OCIEN)) {
  142. /* if the compare feature is on and timers are running */
  143. uint32_t tmp = imx_epit_update_count(s);
  144. uint64_t next;
  145. if (tmp > s->cmp) {
  146. /* It'll fire in this round of the timer */
  147. next = tmp - s->cmp;
  148. } else { /* catch it next time around */
  149. next = tmp - s->cmp + ((s->cr & CR_RLD) ? EPIT_TIMER_MAX : s->lr);
  150. }
  151. ptimer_set_count(s->timer_cmp, next);
  152. }
  153. }
  154. static void imx_epit_write(void *opaque, hwaddr offset, uint64_t value,
  155. unsigned size)
  156. {
  157. IMXEPITState *s = IMX_EPIT(opaque);
  158. uint64_t oldcr;
  159. DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(offset >> 2),
  160. (uint32_t)value);
  161. switch (offset >> 2) {
  162. case 0: /* CR */
  163. oldcr = s->cr;
  164. s->cr = value & 0x03ffffff;
  165. if (s->cr & CR_SWR) {
  166. /* handle the reset */
  167. imx_epit_reset(DEVICE(s));
  168. } else {
  169. imx_epit_set_freq(s);
  170. }
  171. if (s->freq && (s->cr & CR_EN) && !(oldcr & CR_EN)) {
  172. if (s->cr & CR_ENMOD) {
  173. if (s->cr & CR_RLD) {
  174. ptimer_set_limit(s->timer_reload, s->lr, 1);
  175. ptimer_set_limit(s->timer_cmp, s->lr, 1);
  176. } else {
  177. ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1);
  178. ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1);
  179. }
  180. }
  181. imx_epit_reload_compare_timer(s);
  182. ptimer_run(s->timer_reload, 0);
  183. if (s->cr & CR_OCIEN) {
  184. ptimer_run(s->timer_cmp, 0);
  185. } else {
  186. ptimer_stop(s->timer_cmp);
  187. }
  188. } else if (!(s->cr & CR_EN)) {
  189. /* stop both timers */
  190. ptimer_stop(s->timer_reload);
  191. ptimer_stop(s->timer_cmp);
  192. } else if (s->cr & CR_OCIEN) {
  193. if (!(oldcr & CR_OCIEN)) {
  194. imx_epit_reload_compare_timer(s);
  195. ptimer_run(s->timer_cmp, 0);
  196. }
  197. } else {
  198. ptimer_stop(s->timer_cmp);
  199. }
  200. break;
  201. case 1: /* SR - ACK*/
  202. /* writing 1 to OCIF clear the OCIF bit */
  203. if (value & 0x01) {
  204. s->sr = 0;
  205. imx_epit_update_int(s);
  206. }
  207. break;
  208. case 2: /* LR - set ticks */
  209. s->lr = value;
  210. if (s->cr & CR_RLD) {
  211. /* Also set the limit if the LRD bit is set */
  212. /* If IOVW bit is set then set the timer value */
  213. ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW);
  214. ptimer_set_limit(s->timer_cmp, s->lr, 0);
  215. } else if (s->cr & CR_IOVW) {
  216. /* If IOVW bit is set then set the timer value */
  217. ptimer_set_count(s->timer_reload, s->lr);
  218. }
  219. imx_epit_reload_compare_timer(s);
  220. break;
  221. case 3: /* CMP */
  222. s->cmp = value;
  223. imx_epit_reload_compare_timer(s);
  224. break;
  225. default:
  226. qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
  227. HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset);
  228. break;
  229. }
  230. }
  231. static void imx_epit_cmp(void *opaque)
  232. {
  233. IMXEPITState *s = IMX_EPIT(opaque);
  234. DPRINTF("sr was %d\n", s->sr);
  235. s->sr = 1;
  236. imx_epit_update_int(s);
  237. }
  238. static const MemoryRegionOps imx_epit_ops = {
  239. .read = imx_epit_read,
  240. .write = imx_epit_write,
  241. .endianness = DEVICE_NATIVE_ENDIAN,
  242. };
  243. static const VMStateDescription vmstate_imx_timer_epit = {
  244. .name = TYPE_IMX_EPIT,
  245. .version_id = 2,
  246. .minimum_version_id = 2,
  247. .fields = (VMStateField[]) {
  248. VMSTATE_UINT32(cr, IMXEPITState),
  249. VMSTATE_UINT32(sr, IMXEPITState),
  250. VMSTATE_UINT32(lr, IMXEPITState),
  251. VMSTATE_UINT32(cmp, IMXEPITState),
  252. VMSTATE_UINT32(cnt, IMXEPITState),
  253. VMSTATE_UINT32(freq, IMXEPITState),
  254. VMSTATE_PTIMER(timer_reload, IMXEPITState),
  255. VMSTATE_PTIMER(timer_cmp, IMXEPITState),
  256. VMSTATE_END_OF_LIST()
  257. }
  258. };
  259. static void imx_epit_realize(DeviceState *dev, Error **errp)
  260. {
  261. IMXEPITState *s = IMX_EPIT(dev);
  262. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  263. QEMUBH *bh;
  264. DPRINTF("\n");
  265. sysbus_init_irq(sbd, &s->irq);
  266. memory_region_init_io(&s->iomem, OBJECT(s), &imx_epit_ops, s, TYPE_IMX_EPIT,
  267. 0x00001000);
  268. sysbus_init_mmio(sbd, &s->iomem);
  269. s->timer_reload = ptimer_init(NULL);
  270. bh = qemu_bh_new(imx_epit_cmp, s);
  271. s->timer_cmp = ptimer_init(bh);
  272. }
  273. static void imx_epit_class_init(ObjectClass *klass, void *data)
  274. {
  275. DeviceClass *dc = DEVICE_CLASS(klass);
  276. dc->realize = imx_epit_realize;
  277. dc->reset = imx_epit_reset;
  278. dc->vmsd = &vmstate_imx_timer_epit;
  279. dc->desc = "i.MX periodic timer";
  280. }
  281. static const TypeInfo imx_epit_info = {
  282. .name = TYPE_IMX_EPIT,
  283. .parent = TYPE_SYS_BUS_DEVICE,
  284. .instance_size = sizeof(IMXEPITState),
  285. .class_init = imx_epit_class_init,
  286. };
  287. static void imx_epit_register_types(void)
  288. {
  289. type_register_static(&imx_epit_info);
  290. }
  291. type_init(imx_epit_register_types)