|
@@ -8,7 +8,6 @@
|
|
|
* so some portions are provided under:
|
|
|
* the SoftFloat-2a license
|
|
|
* the BSD license
|
|
|
- * GPL-v2-or-later
|
|
|
*
|
|
|
* Any future contributions to this file after December 1st 2014 will be
|
|
|
* taken to be licensed under the Softfloat-2a license unless specifically
|
|
@@ -75,10 +74,6 @@ this code that are retained.
|
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
*/
|
|
|
|
|
|
-/* Portions of this work are licensed under the terms of the GNU GPL,
|
|
|
- * version 2 or later. See the COPYING file in the top-level directory.
|
|
|
- */
|
|
|
-
|
|
|
#ifndef FPU_SOFTFLOAT_MACROS_H
|
|
|
#define FPU_SOFTFLOAT_MACROS_H
|
|
|
|
|
@@ -585,83 +580,6 @@ static inline uint64_t estimateDiv128To64(uint64_t a0, uint64_t a1, uint64_t b)
|
|
|
|
|
|
}
|
|
|
|
|
|
-/* From the GNU Multi Precision Library - longlong.h __udiv_qrnnd
|
|
|
- * (https://gmplib.org/repo/gmp/file/tip/longlong.h)
|
|
|
- *
|
|
|
- * Licensed under the GPLv2/LGPLv3
|
|
|
- */
|
|
|
-static inline uint64_t udiv_qrnnd(uint64_t *r, uint64_t n1,
|
|
|
- uint64_t n0, uint64_t d)
|
|
|
-{
|
|
|
-#if defined(__x86_64__)
|
|
|
- uint64_t q;
|
|
|
- asm("divq %4" : "=a"(q), "=d"(*r) : "0"(n0), "1"(n1), "rm"(d));
|
|
|
- return q;
|
|
|
-#elif defined(__s390x__) && !defined(__clang__)
|
|
|
- /* Need to use a TImode type to get an even register pair for DLGR. */
|
|
|
- unsigned __int128 n = (unsigned __int128)n1 << 64 | n0;
|
|
|
- asm("dlgr %0, %1" : "+r"(n) : "r"(d));
|
|
|
- *r = n >> 64;
|
|
|
- return n;
|
|
|
-#elif defined(_ARCH_PPC64) && defined(_ARCH_PWR7)
|
|
|
- /* From Power ISA 2.06, programming note for divdeu. */
|
|
|
- uint64_t q1, q2, Q, r1, r2, R;
|
|
|
- asm("divdeu %0,%2,%4; divdu %1,%3,%4"
|
|
|
- : "=&r"(q1), "=r"(q2)
|
|
|
- : "r"(n1), "r"(n0), "r"(d));
|
|
|
- r1 = -(q1 * d); /* low part of (n1<<64) - (q1 * d) */
|
|
|
- r2 = n0 - (q2 * d);
|
|
|
- Q = q1 + q2;
|
|
|
- R = r1 + r2;
|
|
|
- if (R >= d || R < r2) { /* overflow implies R > d */
|
|
|
- Q += 1;
|
|
|
- R -= d;
|
|
|
- }
|
|
|
- *r = R;
|
|
|
- return Q;
|
|
|
-#else
|
|
|
- uint64_t d0, d1, q0, q1, r1, r0, m;
|
|
|
-
|
|
|
- d0 = (uint32_t)d;
|
|
|
- d1 = d >> 32;
|
|
|
-
|
|
|
- r1 = n1 % d1;
|
|
|
- q1 = n1 / d1;
|
|
|
- m = q1 * d0;
|
|
|
- r1 = (r1 << 32) | (n0 >> 32);
|
|
|
- if (r1 < m) {
|
|
|
- q1 -= 1;
|
|
|
- r1 += d;
|
|
|
- if (r1 >= d) {
|
|
|
- if (r1 < m) {
|
|
|
- q1 -= 1;
|
|
|
- r1 += d;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- r1 -= m;
|
|
|
-
|
|
|
- r0 = r1 % d1;
|
|
|
- q0 = r1 / d1;
|
|
|
- m = q0 * d0;
|
|
|
- r0 = (r0 << 32) | (uint32_t)n0;
|
|
|
- if (r0 < m) {
|
|
|
- q0 -= 1;
|
|
|
- r0 += d;
|
|
|
- if (r0 >= d) {
|
|
|
- if (r0 < m) {
|
|
|
- q0 -= 1;
|
|
|
- r0 += d;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- r0 -= m;
|
|
|
-
|
|
|
- *r = r0;
|
|
|
- return (q1 << 32) | q0;
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
/*----------------------------------------------------------------------------
|
|
|
| Returns an approximation to the square root of the 32-bit significand given
|
|
|
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|