|
@@ -31,6 +31,16 @@ struct ptimer_state
|
|
|
uint8_t policy_mask;
|
|
|
QEMUBH *bh;
|
|
|
QEMUTimer *timer;
|
|
|
+ ptimer_cb callback;
|
|
|
+ void *callback_opaque;
|
|
|
+ /*
|
|
|
+ * These track whether we're in a transaction block, and if we
|
|
|
+ * need to do a timer reload when the block finishes. They don't
|
|
|
+ * need to be migrated because migration can never happen in the
|
|
|
+ * middle of a transaction block.
|
|
|
+ */
|
|
|
+ bool in_transaction;
|
|
|
+ bool need_reload;
|
|
|
};
|
|
|
|
|
|
/* Use a bottom-half routine to avoid reentrancy issues. */
|
|
@@ -39,13 +49,16 @@ static void ptimer_trigger(ptimer_state *s)
|
|
|
if (s->bh) {
|
|
|
replay_bh_schedule_event(s->bh);
|
|
|
}
|
|
|
+ if (s->callback) {
|
|
|
+ s->callback(s->callback_opaque);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
static void ptimer_reload(ptimer_state *s, int delta_adjust)
|
|
|
{
|
|
|
- uint32_t period_frac = s->period_frac;
|
|
|
- uint64_t period = s->period;
|
|
|
- uint64_t delta = s->delta;
|
|
|
+ uint32_t period_frac;
|
|
|
+ uint64_t period;
|
|
|
+ uint64_t delta;
|
|
|
bool suppress_trigger = false;
|
|
|
|
|
|
/*
|
|
@@ -58,11 +71,20 @@ static void ptimer_reload(ptimer_state *s, int delta_adjust)
|
|
|
(s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
|
|
|
suppress_trigger = true;
|
|
|
}
|
|
|
- if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
|
|
|
+ if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
|
|
|
&& !suppress_trigger) {
|
|
|
ptimer_trigger(s);
|
|
|
}
|
|
|
|
|
|
+ /*
|
|
|
+ * Note that ptimer_trigger() might call the device callback function,
|
|
|
+ * which can then modify timer state, so we must not cache any fields
|
|
|
+ * from ptimer_state until after we have called it.
|
|
|
+ */
|
|
|
+ delta = s->delta;
|
|
|
+ period = s->period;
|
|
|
+ period_frac = s->period_frac;
|
|
|
+
|
|
|
if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
|
|
|
delta = s->delta = s->limit;
|
|
|
}
|
|
@@ -136,6 +158,15 @@ static void ptimer_tick(void *opaque)
|
|
|
ptimer_state *s = (ptimer_state *)opaque;
|
|
|
bool trigger = true;
|
|
|
|
|
|
+ /*
|
|
|
+ * We perform all the tick actions within a begin/commit block
|
|
|
+ * because the callback function that ptimer_trigger() calls
|
|
|
+ * might make calls into the ptimer APIs that provoke another
|
|
|
+ * trigger, and we want that to cause the callback function
|
|
|
+ * to be called iteratively, not recursively.
|
|
|
+ */
|
|
|
+ ptimer_transaction_begin(s);
|
|
|
+
|
|
|
if (s->enabled == 2) {
|
|
|
s->delta = 0;
|
|
|
s->enabled = 0;
|
|
@@ -164,6 +195,8 @@ static void ptimer_tick(void *opaque)
|
|
|
if (trigger) {
|
|
|
ptimer_trigger(s);
|
|
|
}
|
|
|
+
|
|
|
+ ptimer_transaction_commit(s);
|
|
|
}
|
|
|
|
|
|
uint64_t ptimer_get_count(ptimer_state *s)
|
|
@@ -263,10 +296,15 @@ uint64_t ptimer_get_count(ptimer_state *s)
|
|
|
|
|
|
void ptimer_set_count(ptimer_state *s, uint64_t count)
|
|
|
{
|
|
|
+ assert(s->in_transaction || !s->callback);
|
|
|
s->delta = count;
|
|
|
if (s->enabled) {
|
|
|
- s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
- ptimer_reload(s, 0);
|
|
|
+ if (!s->callback) {
|
|
|
+ s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
+ ptimer_reload(s, 0);
|
|
|
+ } else {
|
|
|
+ s->need_reload = true;
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -274,6 +312,8 @@ void ptimer_run(ptimer_state *s, int oneshot)
|
|
|
{
|
|
|
bool was_disabled = !s->enabled;
|
|
|
|
|
|
+ assert(s->in_transaction || !s->callback);
|
|
|
+
|
|
|
if (was_disabled && s->period == 0) {
|
|
|
if (!qtest_enabled()) {
|
|
|
fprintf(stderr, "Timer with period zero, disabling\n");
|
|
@@ -282,8 +322,12 @@ void ptimer_run(ptimer_state *s, int oneshot)
|
|
|
}
|
|
|
s->enabled = oneshot ? 2 : 1;
|
|
|
if (was_disabled) {
|
|
|
- s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
- ptimer_reload(s, 0);
|
|
|
+ if (!s->callback) {
|
|
|
+ s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
+ ptimer_reload(s, 0);
|
|
|
+ } else {
|
|
|
+ s->need_reload = true;
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -291,35 +335,50 @@ void ptimer_run(ptimer_state *s, int oneshot)
|
|
|
is immediately restarted. */
|
|
|
void ptimer_stop(ptimer_state *s)
|
|
|
{
|
|
|
+ assert(s->in_transaction || !s->callback);
|
|
|
+
|
|
|
if (!s->enabled)
|
|
|
return;
|
|
|
|
|
|
s->delta = ptimer_get_count(s);
|
|
|
timer_del(s->timer);
|
|
|
s->enabled = 0;
|
|
|
+ if (s->callback) {
|
|
|
+ s->need_reload = false;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/* Set counter increment interval in nanoseconds. */
|
|
|
void ptimer_set_period(ptimer_state *s, int64_t period)
|
|
|
{
|
|
|
+ assert(s->in_transaction || !s->callback);
|
|
|
s->delta = ptimer_get_count(s);
|
|
|
s->period = period;
|
|
|
s->period_frac = 0;
|
|
|
if (s->enabled) {
|
|
|
- s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
- ptimer_reload(s, 0);
|
|
|
+ if (!s->callback) {
|
|
|
+ s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
+ ptimer_reload(s, 0);
|
|
|
+ } else {
|
|
|
+ s->need_reload = true;
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* Set counter frequency in Hz. */
|
|
|
void ptimer_set_freq(ptimer_state *s, uint32_t freq)
|
|
|
{
|
|
|
+ assert(s->in_transaction || !s->callback);
|
|
|
s->delta = ptimer_get_count(s);
|
|
|
s->period = 1000000000ll / freq;
|
|
|
s->period_frac = (1000000000ll << 32) / freq;
|
|
|
if (s->enabled) {
|
|
|
- s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
- ptimer_reload(s, 0);
|
|
|
+ if (!s->callback) {
|
|
|
+ s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
+ ptimer_reload(s, 0);
|
|
|
+ } else {
|
|
|
+ s->need_reload = true;
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -327,12 +386,17 @@ void ptimer_set_freq(ptimer_state *s, uint32_t freq)
|
|
|
count = limit. */
|
|
|
void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
|
|
|
{
|
|
|
+ assert(s->in_transaction || !s->callback);
|
|
|
s->limit = limit;
|
|
|
if (reload)
|
|
|
s->delta = limit;
|
|
|
if (s->enabled && reload) {
|
|
|
- s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
- ptimer_reload(s, 0);
|
|
|
+ if (!s->callback) {
|
|
|
+ s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
+ ptimer_reload(s, 0);
|
|
|
+ } else {
|
|
|
+ s->need_reload = true;
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -341,6 +405,32 @@ uint64_t ptimer_get_limit(ptimer_state *s)
|
|
|
return s->limit;
|
|
|
}
|
|
|
|
|
|
+void ptimer_transaction_begin(ptimer_state *s)
|
|
|
+{
|
|
|
+ assert(!s->in_transaction || !s->callback);
|
|
|
+ s->in_transaction = true;
|
|
|
+ s->need_reload = false;
|
|
|
+}
|
|
|
+
|
|
|
+void ptimer_transaction_commit(ptimer_state *s)
|
|
|
+{
|
|
|
+ assert(s->in_transaction);
|
|
|
+ /*
|
|
|
+ * We must loop here because ptimer_reload() can call the callback
|
|
|
+ * function, which might then update ptimer state in a way that
|
|
|
+ * means we need to do another reload and possibly another callback.
|
|
|
+ * A disabled timer never needs reloading (and if we don't check
|
|
|
+ * this then we loop forever if ptimer_reload() disables the timer).
|
|
|
+ */
|
|
|
+ while (s->need_reload && s->enabled) {
|
|
|
+ s->need_reload = false;
|
|
|
+ s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
|
+ ptimer_reload(s, 0);
|
|
|
+ }
|
|
|
+ /* Now we've finished reload we can leave the transaction block. */
|
|
|
+ s->in_transaction = false;
|
|
|
+}
|
|
|
+
|
|
|
const VMStateDescription vmstate_ptimer = {
|
|
|
.name = "ptimer",
|
|
|
.version_id = 1,
|
|
@@ -377,9 +467,41 @@ ptimer_state *ptimer_init_with_bh(QEMUBH *bh, uint8_t policy_mask)
|
|
|
return s;
|
|
|
}
|
|
|
|
|
|
+ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
|
|
|
+ uint8_t policy_mask)
|
|
|
+{
|
|
|
+ ptimer_state *s;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The callback function is mandatory; so we use it to distinguish
|
|
|
+ * old-style QEMUBH ptimers from new transaction API ptimers.
|
|
|
+ * (ptimer_init_with_bh() allows a NULL bh pointer and at least
|
|
|
+ * one device (digic-timer) passes NULL, so it's not the case
|
|
|
+ * that either s->bh != NULL or s->callback != NULL.)
|
|
|
+ */
|
|
|
+ assert(callback);
|
|
|
+
|
|
|
+ s = g_new0(ptimer_state, 1);
|
|
|
+ s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
|
|
|
+ s->policy_mask = policy_mask;
|
|
|
+ s->callback = callback;
|
|
|
+ s->callback_opaque = callback_opaque;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * These two policies are incompatible -- trigger-on-decrement implies
|
|
|
+ * a timer trigger when the count becomes 0, but no-immediate-trigger
|
|
|
+ * implies a trigger when the count stops being 0.
|
|
|
+ */
|
|
|
+ assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
|
|
|
+ (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
void ptimer_free(ptimer_state *s)
|
|
|
{
|
|
|
- qemu_bh_delete(s->bh);
|
|
|
+ if (s->bh) {
|
|
|
+ qemu_bh_delete(s->bh);
|
|
|
+ }
|
|
|
timer_free(s->timer);
|
|
|
g_free(s);
|
|
|
}
|