|
@@ -0,0 +1,795 @@
|
|
|
+/*
|
|
|
+ * Copyright (c) 2003-2004 Fabrice Bellard
|
|
|
+ * Copyright (c) 2019 Red Hat, Inc.
|
|
|
+ *
|
|
|
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
+ * of this software and associated documentation files (the "Software"), to deal
|
|
|
+ * in the Software without restriction, including without limitation the rights
|
|
|
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
+ * copies of the Software, and to permit persons to whom the Software is
|
|
|
+ * furnished to do so, subject to the following conditions:
|
|
|
+ *
|
|
|
+ * The above copyright notice and this permission notice shall be included in
|
|
|
+ * all copies or substantial portions of the Software.
|
|
|
+ *
|
|
|
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
+ * THE SOFTWARE.
|
|
|
+ */
|
|
|
+#include "qemu/osdep.h"
|
|
|
+#include "qemu/error-report.h"
|
|
|
+#include "qemu/option.h"
|
|
|
+#include "qemu/cutils.h"
|
|
|
+#include "qemu/units.h"
|
|
|
+#include "qemu-common.h"
|
|
|
+#include "qapi/error.h"
|
|
|
+#include "qapi/qmp/qerror.h"
|
|
|
+#include "qapi/qapi-visit-common.h"
|
|
|
+#include "qapi/visitor.h"
|
|
|
+#include "sysemu/qtest.h"
|
|
|
+#include "sysemu/numa.h"
|
|
|
+#include "sysemu/replay.h"
|
|
|
+#include "sysemu/sysemu.h"
|
|
|
+
|
|
|
+#include "hw/i386/x86.h"
|
|
|
+#include "target/i386/cpu.h"
|
|
|
+#include "hw/i386/topology.h"
|
|
|
+#include "hw/i386/fw_cfg.h"
|
|
|
+
|
|
|
+#include "hw/acpi/cpu_hotplug.h"
|
|
|
+#include "hw/nmi.h"
|
|
|
+#include "hw/loader.h"
|
|
|
+#include "multiboot.h"
|
|
|
+#include "elf.h"
|
|
|
+#include "standard-headers/asm-x86/bootparam.h"
|
|
|
+
|
|
|
+#define BIOS_FILENAME "bios.bin"
|
|
|
+
|
|
|
+/* Physical Address of PVH entry point read from kernel ELF NOTE */
|
|
|
+static size_t pvh_start_addr;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Calculates initial APIC ID for a specific CPU index
|
|
|
+ *
|
|
|
+ * Currently we need to be able to calculate the APIC ID from the CPU index
|
|
|
+ * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
|
|
|
+ * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
|
|
|
+ * all CPUs up to max_cpus.
|
|
|
+ */
|
|
|
+uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
|
|
|
+ unsigned int cpu_index)
|
|
|
+{
|
|
|
+ MachineState *ms = MACHINE(x86ms);
|
|
|
+ X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
|
|
|
+ uint32_t correct_id;
|
|
|
+ static bool warned;
|
|
|
+
|
|
|
+ correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores,
|
|
|
+ ms->smp.threads, cpu_index);
|
|
|
+ if (x86mc->compat_apic_id_mode) {
|
|
|
+ if (cpu_index != correct_id && !warned && !qtest_enabled()) {
|
|
|
+ error_report("APIC IDs set in compatibility mode, "
|
|
|
+ "CPU topology won't match the configuration");
|
|
|
+ warned = true;
|
|
|
+ }
|
|
|
+ return cpu_index;
|
|
|
+ } else {
|
|
|
+ return correct_id;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
|
|
|
+{
|
|
|
+ Object *cpu = NULL;
|
|
|
+ Error *local_err = NULL;
|
|
|
+ CPUX86State *env = NULL;
|
|
|
+
|
|
|
+ cpu = object_new(MACHINE(x86ms)->cpu_type);
|
|
|
+
|
|
|
+ env = &X86_CPU(cpu)->env;
|
|
|
+ env->nr_dies = x86ms->smp_dies;
|
|
|
+
|
|
|
+ object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
|
|
|
+ object_property_set_bool(cpu, true, "realized", &local_err);
|
|
|
+
|
|
|
+ object_unref(cpu);
|
|
|
+ error_propagate(errp, local_err);
|
|
|
+}
|
|
|
+
|
|
|
+void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ const CPUArchIdList *possible_cpus;
|
|
|
+ MachineState *ms = MACHINE(x86ms);
|
|
|
+ MachineClass *mc = MACHINE_GET_CLASS(x86ms);
|
|
|
+
|
|
|
+ x86_cpu_set_default_version(default_cpu_version);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Calculates the limit to CPU APIC ID values
|
|
|
+ *
|
|
|
+ * Limit for the APIC ID value, so that all
|
|
|
+ * CPU APIC IDs are < x86ms->apic_id_limit.
|
|
|
+ *
|
|
|
+ * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
|
|
|
+ */
|
|
|
+ x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
|
|
|
+ ms->smp.max_cpus - 1) + 1;
|
|
|
+ possible_cpus = mc->possible_cpu_arch_ids(ms);
|
|
|
+ for (i = 0; i < ms->smp.cpus; i++) {
|
|
|
+ x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+CpuInstanceProperties
|
|
|
+x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
|
|
|
+{
|
|
|
+ MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
|
+ const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
|
|
|
+
|
|
|
+ assert(cpu_index < possible_cpus->len);
|
|
|
+ return possible_cpus->cpus[cpu_index].props;
|
|
|
+}
|
|
|
+
|
|
|
+int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
|
|
|
+{
|
|
|
+ X86CPUTopoInfo topo;
|
|
|
+ X86MachineState *x86ms = X86_MACHINE(ms);
|
|
|
+
|
|
|
+ assert(idx < ms->possible_cpus->len);
|
|
|
+ x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
|
|
|
+ x86ms->smp_dies, ms->smp.cores,
|
|
|
+ ms->smp.threads, &topo);
|
|
|
+ return topo.pkg_id % ms->numa_state->num_nodes;
|
|
|
+}
|
|
|
+
|
|
|
+const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
|
|
|
+{
|
|
|
+ X86MachineState *x86ms = X86_MACHINE(ms);
|
|
|
+ int i;
|
|
|
+ unsigned int max_cpus = ms->smp.max_cpus;
|
|
|
+
|
|
|
+ if (ms->possible_cpus) {
|
|
|
+ /*
|
|
|
+ * make sure that max_cpus hasn't changed since the first use, i.e.
|
|
|
+ * -smp hasn't been parsed after it
|
|
|
+ */
|
|
|
+ assert(ms->possible_cpus->len == max_cpus);
|
|
|
+ return ms->possible_cpus;
|
|
|
+ }
|
|
|
+
|
|
|
+ ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
|
|
|
+ sizeof(CPUArchId) * max_cpus);
|
|
|
+ ms->possible_cpus->len = max_cpus;
|
|
|
+ for (i = 0; i < ms->possible_cpus->len; i++) {
|
|
|
+ X86CPUTopoInfo topo;
|
|
|
+
|
|
|
+ ms->possible_cpus->cpus[i].type = ms->cpu_type;
|
|
|
+ ms->possible_cpus->cpus[i].vcpus_count = 1;
|
|
|
+ ms->possible_cpus->cpus[i].arch_id =
|
|
|
+ x86_cpu_apic_id_from_index(x86ms, i);
|
|
|
+ x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
|
|
|
+ x86ms->smp_dies, ms->smp.cores,
|
|
|
+ ms->smp.threads, &topo);
|
|
|
+ ms->possible_cpus->cpus[i].props.has_socket_id = true;
|
|
|
+ ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
|
|
|
+ if (x86ms->smp_dies > 1) {
|
|
|
+ ms->possible_cpus->cpus[i].props.has_die_id = true;
|
|
|
+ ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
|
|
|
+ }
|
|
|
+ ms->possible_cpus->cpus[i].props.has_core_id = true;
|
|
|
+ ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
|
|
|
+ ms->possible_cpus->cpus[i].props.has_thread_id = true;
|
|
|
+ ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
|
|
|
+ }
|
|
|
+ return ms->possible_cpus;
|
|
|
+}
|
|
|
+
|
|
|
+static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
|
|
|
+{
|
|
|
+ /* cpu index isn't used */
|
|
|
+ CPUState *cs;
|
|
|
+
|
|
|
+ CPU_FOREACH(cs) {
|
|
|
+ X86CPU *cpu = X86_CPU(cs);
|
|
|
+
|
|
|
+ if (!cpu->apic_state) {
|
|
|
+ cpu_interrupt(cs, CPU_INTERRUPT_NMI);
|
|
|
+ } else {
|
|
|
+ apic_deliver_nmi(cpu->apic_state);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static long get_file_size(FILE *f)
|
|
|
+{
|
|
|
+ long where, size;
|
|
|
+
|
|
|
+ /* XXX: on Unix systems, using fstat() probably makes more sense */
|
|
|
+
|
|
|
+ where = ftell(f);
|
|
|
+ fseek(f, 0, SEEK_END);
|
|
|
+ size = ftell(f);
|
|
|
+ fseek(f, where, SEEK_SET);
|
|
|
+
|
|
|
+ return size;
|
|
|
+}
|
|
|
+
|
|
|
+struct setup_data {
|
|
|
+ uint64_t next;
|
|
|
+ uint32_t type;
|
|
|
+ uint32_t len;
|
|
|
+ uint8_t data[0];
|
|
|
+} __attribute__((packed));
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * The entry point into the kernel for PVH boot is different from
|
|
|
+ * the native entry point. The PVH entry is defined by the x86/HVM
|
|
|
+ * direct boot ABI and is available in an ELFNOTE in the kernel binary.
|
|
|
+ *
|
|
|
+ * This function is passed to load_elf() when it is called from
|
|
|
+ * load_elfboot() which then additionally checks for an ELF Note of
|
|
|
+ * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
|
|
|
+ * parse the PVH entry address from the ELF Note.
|
|
|
+ *
|
|
|
+ * Due to trickery in elf_opts.h, load_elf() is actually available as
|
|
|
+ * load_elf32() or load_elf64() and this routine needs to be able
|
|
|
+ * to deal with being called as 32 or 64 bit.
|
|
|
+ *
|
|
|
+ * The address of the PVH entry point is saved to the 'pvh_start_addr'
|
|
|
+ * global variable. (although the entry point is 32-bit, the kernel
|
|
|
+ * binary can be either 32-bit or 64-bit).
|
|
|
+ */
|
|
|
+static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
|
|
|
+{
|
|
|
+ size_t *elf_note_data_addr;
|
|
|
+
|
|
|
+ /* Check if ELF Note header passed in is valid */
|
|
|
+ if (arg1 == NULL) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (is64) {
|
|
|
+ struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
|
|
|
+ uint64_t nhdr_size64 = sizeof(struct elf64_note);
|
|
|
+ uint64_t phdr_align = *(uint64_t *)arg2;
|
|
|
+ uint64_t nhdr_namesz = nhdr64->n_namesz;
|
|
|
+
|
|
|
+ elf_note_data_addr =
|
|
|
+ ((void *)nhdr64) + nhdr_size64 +
|
|
|
+ QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
|
|
|
+ } else {
|
|
|
+ struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
|
|
|
+ uint32_t nhdr_size32 = sizeof(struct elf32_note);
|
|
|
+ uint32_t phdr_align = *(uint32_t *)arg2;
|
|
|
+ uint32_t nhdr_namesz = nhdr32->n_namesz;
|
|
|
+
|
|
|
+ elf_note_data_addr =
|
|
|
+ ((void *)nhdr32) + nhdr_size32 +
|
|
|
+ QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
|
|
|
+ }
|
|
|
+
|
|
|
+ pvh_start_addr = *elf_note_data_addr;
|
|
|
+
|
|
|
+ return pvh_start_addr;
|
|
|
+}
|
|
|
+
|
|
|
+static bool load_elfboot(const char *kernel_filename,
|
|
|
+ int kernel_file_size,
|
|
|
+ uint8_t *header,
|
|
|
+ size_t pvh_xen_start_addr,
|
|
|
+ FWCfgState *fw_cfg)
|
|
|
+{
|
|
|
+ uint32_t flags = 0;
|
|
|
+ uint32_t mh_load_addr = 0;
|
|
|
+ uint32_t elf_kernel_size = 0;
|
|
|
+ uint64_t elf_entry;
|
|
|
+ uint64_t elf_low, elf_high;
|
|
|
+ int kernel_size;
|
|
|
+
|
|
|
+ if (ldl_p(header) != 0x464c457f) {
|
|
|
+ return false; /* no elfboot */
|
|
|
+ }
|
|
|
+
|
|
|
+ bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
|
|
|
+ flags = elf_is64 ?
|
|
|
+ ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
|
|
|
+
|
|
|
+ if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
|
|
|
+ error_report("elfboot unsupported flags = %x", flags);
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
|
|
|
+ kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
|
|
|
+ NULL, &elf_note_type, &elf_entry,
|
|
|
+ &elf_low, &elf_high, 0, I386_ELF_MACHINE,
|
|
|
+ 0, 0);
|
|
|
+
|
|
|
+ if (kernel_size < 0) {
|
|
|
+ error_report("Error while loading elf kernel");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ mh_load_addr = elf_low;
|
|
|
+ elf_kernel_size = elf_high - elf_low;
|
|
|
+
|
|
|
+ if (pvh_start_addr == 0) {
|
|
|
+ error_report("Error loading uncompressed kernel without PVH ELF Note");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+void x86_load_linux(X86MachineState *x86ms,
|
|
|
+ FWCfgState *fw_cfg,
|
|
|
+ int acpi_data_size,
|
|
|
+ bool pvh_enabled,
|
|
|
+ bool linuxboot_dma_enabled)
|
|
|
+{
|
|
|
+ uint16_t protocol;
|
|
|
+ int setup_size, kernel_size, cmdline_size;
|
|
|
+ int dtb_size, setup_data_offset;
|
|
|
+ uint32_t initrd_max;
|
|
|
+ uint8_t header[8192], *setup, *kernel;
|
|
|
+ hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
|
|
|
+ FILE *f;
|
|
|
+ char *vmode;
|
|
|
+ MachineState *machine = MACHINE(x86ms);
|
|
|
+ struct setup_data *setup_data;
|
|
|
+ const char *kernel_filename = machine->kernel_filename;
|
|
|
+ const char *initrd_filename = machine->initrd_filename;
|
|
|
+ const char *dtb_filename = machine->dtb;
|
|
|
+ const char *kernel_cmdline = machine->kernel_cmdline;
|
|
|
+
|
|
|
+ /* Align to 16 bytes as a paranoia measure */
|
|
|
+ cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
|
|
|
+
|
|
|
+ /* load the kernel header */
|
|
|
+ f = fopen(kernel_filename, "rb");
|
|
|
+ if (!f) {
|
|
|
+ fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
|
|
|
+ kernel_filename, strerror(errno));
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ kernel_size = get_file_size(f);
|
|
|
+ if (!kernel_size ||
|
|
|
+ fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
|
|
|
+ MIN(ARRAY_SIZE(header), kernel_size)) {
|
|
|
+ fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
|
|
|
+ kernel_filename, strerror(errno));
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* kernel protocol version */
|
|
|
+ if (ldl_p(header + 0x202) == 0x53726448) {
|
|
|
+ protocol = lduw_p(header + 0x206);
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ * This could be a multiboot kernel. If it is, let's stop treating it
|
|
|
+ * like a Linux kernel.
|
|
|
+ * Note: some multiboot images could be in the ELF format (the same of
|
|
|
+ * PVH), so we try multiboot first since we check the multiboot magic
|
|
|
+ * header before to load it.
|
|
|
+ */
|
|
|
+ if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
|
|
|
+ kernel_cmdline, kernel_size, header)) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ * Check if the file is an uncompressed kernel file (ELF) and load it,
|
|
|
+ * saving the PVH entry point used by the x86/HVM direct boot ABI.
|
|
|
+ * If load_elfboot() is successful, populate the fw_cfg info.
|
|
|
+ */
|
|
|
+ if (pvh_enabled &&
|
|
|
+ load_elfboot(kernel_filename, kernel_size,
|
|
|
+ header, pvh_start_addr, fw_cfg)) {
|
|
|
+ fclose(f);
|
|
|
+
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
|
|
|
+ strlen(kernel_cmdline) + 1);
|
|
|
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
|
|
|
+
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
|
|
|
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
|
|
|
+ header, sizeof(header));
|
|
|
+
|
|
|
+ /* load initrd */
|
|
|
+ if (initrd_filename) {
|
|
|
+ GMappedFile *mapped_file;
|
|
|
+ gsize initrd_size;
|
|
|
+ gchar *initrd_data;
|
|
|
+ GError *gerr = NULL;
|
|
|
+
|
|
|
+ mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
|
|
|
+ if (!mapped_file) {
|
|
|
+ fprintf(stderr, "qemu: error reading initrd %s: %s\n",
|
|
|
+ initrd_filename, gerr->message);
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ x86ms->initrd_mapped_file = mapped_file;
|
|
|
+
|
|
|
+ initrd_data = g_mapped_file_get_contents(mapped_file);
|
|
|
+ initrd_size = g_mapped_file_get_length(mapped_file);
|
|
|
+ initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
|
|
|
+ if (initrd_size >= initrd_max) {
|
|
|
+ fprintf(stderr, "qemu: initrd is too large, cannot support."
|
|
|
+ "(max: %"PRIu32", need %"PRId64")\n",
|
|
|
+ initrd_max, (uint64_t)initrd_size);
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ initrd_addr = (initrd_max - initrd_size) & ~4095;
|
|
|
+
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
|
|
|
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
|
|
|
+ initrd_size);
|
|
|
+ }
|
|
|
+
|
|
|
+ option_rom[nb_option_roms].bootindex = 0;
|
|
|
+ option_rom[nb_option_roms].name = "pvh.bin";
|
|
|
+ nb_option_roms++;
|
|
|
+
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ protocol = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (protocol < 0x200 || !(header[0x211] & 0x01)) {
|
|
|
+ /* Low kernel */
|
|
|
+ real_addr = 0x90000;
|
|
|
+ cmdline_addr = 0x9a000 - cmdline_size;
|
|
|
+ prot_addr = 0x10000;
|
|
|
+ } else if (protocol < 0x202) {
|
|
|
+ /* High but ancient kernel */
|
|
|
+ real_addr = 0x90000;
|
|
|
+ cmdline_addr = 0x9a000 - cmdline_size;
|
|
|
+ prot_addr = 0x100000;
|
|
|
+ } else {
|
|
|
+ /* High and recent kernel */
|
|
|
+ real_addr = 0x10000;
|
|
|
+ cmdline_addr = 0x20000;
|
|
|
+ prot_addr = 0x100000;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* highest address for loading the initrd */
|
|
|
+ if (protocol >= 0x20c &&
|
|
|
+ lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
|
|
|
+ /*
|
|
|
+ * Linux has supported initrd up to 4 GB for a very long time (2007,
|
|
|
+ * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
|
|
|
+ * though it only sets initrd_max to 2 GB to "work around bootloader
|
|
|
+ * bugs". Luckily, QEMU firmware(which does something like bootloader)
|
|
|
+ * has supported this.
|
|
|
+ *
|
|
|
+ * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
|
|
|
+ * be loaded into any address.
|
|
|
+ *
|
|
|
+ * In addition, initrd_max is uint32_t simply because QEMU doesn't
|
|
|
+ * support the 64-bit boot protocol (specifically the ext_ramdisk_image
|
|
|
+ * field).
|
|
|
+ *
|
|
|
+ * Therefore here just limit initrd_max to UINT32_MAX simply as well.
|
|
|
+ */
|
|
|
+ initrd_max = UINT32_MAX;
|
|
|
+ } else if (protocol >= 0x203) {
|
|
|
+ initrd_max = ldl_p(header + 0x22c);
|
|
|
+ } else {
|
|
|
+ initrd_max = 0x37ffffff;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
|
|
|
+ initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
|
|
|
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
|
|
|
+
|
|
|
+ if (protocol >= 0x202) {
|
|
|
+ stl_p(header + 0x228, cmdline_addr);
|
|
|
+ } else {
|
|
|
+ stw_p(header + 0x20, 0xA33F);
|
|
|
+ stw_p(header + 0x22, cmdline_addr - real_addr);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* handle vga= parameter */
|
|
|
+ vmode = strstr(kernel_cmdline, "vga=");
|
|
|
+ if (vmode) {
|
|
|
+ unsigned int video_mode;
|
|
|
+ int ret;
|
|
|
+ /* skip "vga=" */
|
|
|
+ vmode += 4;
|
|
|
+ if (!strncmp(vmode, "normal", 6)) {
|
|
|
+ video_mode = 0xffff;
|
|
|
+ } else if (!strncmp(vmode, "ext", 3)) {
|
|
|
+ video_mode = 0xfffe;
|
|
|
+ } else if (!strncmp(vmode, "ask", 3)) {
|
|
|
+ video_mode = 0xfffd;
|
|
|
+ } else {
|
|
|
+ ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
|
|
|
+ if (ret != 0) {
|
|
|
+ fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
|
|
|
+ strerror(-ret));
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ stw_p(header + 0x1fa, video_mode);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* loader type */
|
|
|
+ /*
|
|
|
+ * High nybble = B reserved for QEMU; low nybble is revision number.
|
|
|
+ * If this code is substantially changed, you may want to consider
|
|
|
+ * incrementing the revision.
|
|
|
+ */
|
|
|
+ if (protocol >= 0x200) {
|
|
|
+ header[0x210] = 0xB0;
|
|
|
+ }
|
|
|
+ /* heap */
|
|
|
+ if (protocol >= 0x201) {
|
|
|
+ header[0x211] |= 0x80; /* CAN_USE_HEAP */
|
|
|
+ stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* load initrd */
|
|
|
+ if (initrd_filename) {
|
|
|
+ GMappedFile *mapped_file;
|
|
|
+ gsize initrd_size;
|
|
|
+ gchar *initrd_data;
|
|
|
+ GError *gerr = NULL;
|
|
|
+
|
|
|
+ if (protocol < 0x200) {
|
|
|
+ fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
|
|
|
+ if (!mapped_file) {
|
|
|
+ fprintf(stderr, "qemu: error reading initrd %s: %s\n",
|
|
|
+ initrd_filename, gerr->message);
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ x86ms->initrd_mapped_file = mapped_file;
|
|
|
+
|
|
|
+ initrd_data = g_mapped_file_get_contents(mapped_file);
|
|
|
+ initrd_size = g_mapped_file_get_length(mapped_file);
|
|
|
+ if (initrd_size >= initrd_max) {
|
|
|
+ fprintf(stderr, "qemu: initrd is too large, cannot support."
|
|
|
+ "(max: %"PRIu32", need %"PRId64")\n",
|
|
|
+ initrd_max, (uint64_t)initrd_size);
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ initrd_addr = (initrd_max - initrd_size) & ~4095;
|
|
|
+
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
|
|
|
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
|
|
|
+
|
|
|
+ stl_p(header + 0x218, initrd_addr);
|
|
|
+ stl_p(header + 0x21c, initrd_size);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* load kernel and setup */
|
|
|
+ setup_size = header[0x1f1];
|
|
|
+ if (setup_size == 0) {
|
|
|
+ setup_size = 4;
|
|
|
+ }
|
|
|
+ setup_size = (setup_size + 1) * 512;
|
|
|
+ if (setup_size > kernel_size) {
|
|
|
+ fprintf(stderr, "qemu: invalid kernel header\n");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ kernel_size -= setup_size;
|
|
|
+
|
|
|
+ setup = g_malloc(setup_size);
|
|
|
+ kernel = g_malloc(kernel_size);
|
|
|
+ fseek(f, 0, SEEK_SET);
|
|
|
+ if (fread(setup, 1, setup_size, f) != setup_size) {
|
|
|
+ fprintf(stderr, "fread() failed\n");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ if (fread(kernel, 1, kernel_size, f) != kernel_size) {
|
|
|
+ fprintf(stderr, "fread() failed\n");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ fclose(f);
|
|
|
+
|
|
|
+ /* append dtb to kernel */
|
|
|
+ if (dtb_filename) {
|
|
|
+ if (protocol < 0x209) {
|
|
|
+ fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ dtb_size = get_image_size(dtb_filename);
|
|
|
+ if (dtb_size <= 0) {
|
|
|
+ fprintf(stderr, "qemu: error reading dtb %s: %s\n",
|
|
|
+ dtb_filename, strerror(errno));
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
|
|
|
+ kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
|
|
|
+ kernel = g_realloc(kernel, kernel_size);
|
|
|
+
|
|
|
+ stq_p(header + 0x250, prot_addr + setup_data_offset);
|
|
|
+
|
|
|
+ setup_data = (struct setup_data *)(kernel + setup_data_offset);
|
|
|
+ setup_data->next = 0;
|
|
|
+ setup_data->type = cpu_to_le32(SETUP_DTB);
|
|
|
+ setup_data->len = cpu_to_le32(dtb_size);
|
|
|
+
|
|
|
+ load_image_size(dtb_filename, setup_data->data, dtb_size);
|
|
|
+ }
|
|
|
+
|
|
|
+ memcpy(setup, header, MIN(sizeof(header), setup_size));
|
|
|
+
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
|
|
|
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
|
|
|
+
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
|
|
|
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
|
|
|
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
|
|
|
+
|
|
|
+ option_rom[nb_option_roms].bootindex = 0;
|
|
|
+ option_rom[nb_option_roms].name = "linuxboot.bin";
|
|
|
+ if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
|
|
|
+ option_rom[nb_option_roms].name = "linuxboot_dma.bin";
|
|
|
+ }
|
|
|
+ nb_option_roms++;
|
|
|
+}
|
|
|
+
|
|
|
+void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
|
|
|
+{
|
|
|
+ char *filename;
|
|
|
+ MemoryRegion *bios, *isa_bios;
|
|
|
+ int bios_size, isa_bios_size;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ /* BIOS load */
|
|
|
+ if (bios_name == NULL) {
|
|
|
+ bios_name = BIOS_FILENAME;
|
|
|
+ }
|
|
|
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
|
|
|
+ if (filename) {
|
|
|
+ bios_size = get_image_size(filename);
|
|
|
+ } else {
|
|
|
+ bios_size = -1;
|
|
|
+ }
|
|
|
+ if (bios_size <= 0 ||
|
|
|
+ (bios_size % 65536) != 0) {
|
|
|
+ goto bios_error;
|
|
|
+ }
|
|
|
+ bios = g_malloc(sizeof(*bios));
|
|
|
+ memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
|
|
|
+ if (!isapc_ram_fw) {
|
|
|
+ memory_region_set_readonly(bios, true);
|
|
|
+ }
|
|
|
+ ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
|
|
|
+ if (ret != 0) {
|
|
|
+ bios_error:
|
|
|
+ fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ g_free(filename);
|
|
|
+
|
|
|
+ /* map the last 128KB of the BIOS in ISA space */
|
|
|
+ isa_bios_size = MIN(bios_size, 128 * KiB);
|
|
|
+ isa_bios = g_malloc(sizeof(*isa_bios));
|
|
|
+ memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
|
|
|
+ bios_size - isa_bios_size, isa_bios_size);
|
|
|
+ memory_region_add_subregion_overlap(rom_memory,
|
|
|
+ 0x100000 - isa_bios_size,
|
|
|
+ isa_bios,
|
|
|
+ 1);
|
|
|
+ if (!isapc_ram_fw) {
|
|
|
+ memory_region_set_readonly(isa_bios, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* map all the bios at the top of memory */
|
|
|
+ memory_region_add_subregion(rom_memory,
|
|
|
+ (uint32_t)(-bios_size),
|
|
|
+ bios);
|
|
|
+}
|
|
|
+
|
|
|
+static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
|
|
|
+ const char *name, void *opaque,
|
|
|
+ Error **errp)
|
|
|
+{
|
|
|
+ X86MachineState *x86ms = X86_MACHINE(obj);
|
|
|
+ uint64_t value = x86ms->max_ram_below_4g;
|
|
|
+
|
|
|
+ visit_type_size(v, name, &value, errp);
|
|
|
+}
|
|
|
+
|
|
|
+static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
|
|
|
+ const char *name, void *opaque,
|
|
|
+ Error **errp)
|
|
|
+{
|
|
|
+ X86MachineState *x86ms = X86_MACHINE(obj);
|
|
|
+ Error *error = NULL;
|
|
|
+ uint64_t value;
|
|
|
+
|
|
|
+ visit_type_size(v, name, &value, &error);
|
|
|
+ if (error) {
|
|
|
+ error_propagate(errp, error);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (value > 4 * GiB) {
|
|
|
+ error_setg(&error,
|
|
|
+ "Machine option 'max-ram-below-4g=%"PRIu64
|
|
|
+ "' expects size less than or equal to 4G", value);
|
|
|
+ error_propagate(errp, error);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (value < 1 * MiB) {
|
|
|
+ warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
|
|
|
+ "BIOS may not work with less than 1MiB", value);
|
|
|
+ }
|
|
|
+
|
|
|
+ x86ms->max_ram_below_4g = value;
|
|
|
+}
|
|
|
+
|
|
|
+static void x86_machine_initfn(Object *obj)
|
|
|
+{
|
|
|
+ X86MachineState *x86ms = X86_MACHINE(obj);
|
|
|
+
|
|
|
+ x86ms->max_ram_below_4g = 0; /* use default */
|
|
|
+ x86ms->smp_dies = 1;
|
|
|
+}
|
|
|
+
|
|
|
+static void x86_machine_class_init(ObjectClass *oc, void *data)
|
|
|
+{
|
|
|
+ MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
+ X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
|
|
|
+ NMIClass *nc = NMI_CLASS(oc);
|
|
|
+
|
|
|
+ mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
|
|
|
+ mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
|
|
|
+ mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
|
|
|
+ x86mc->compat_apic_id_mode = false;
|
|
|
+ nc->nmi_monitor_handler = x86_nmi;
|
|
|
+
|
|
|
+ object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
|
|
|
+ x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
|
|
|
+ NULL, NULL, &error_abort);
|
|
|
+
|
|
|
+ object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
|
|
|
+ "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
|
|
|
+}
|
|
|
+
|
|
|
+static const TypeInfo x86_machine_info = {
|
|
|
+ .name = TYPE_X86_MACHINE,
|
|
|
+ .parent = TYPE_MACHINE,
|
|
|
+ .abstract = true,
|
|
|
+ .instance_size = sizeof(X86MachineState),
|
|
|
+ .instance_init = x86_machine_initfn,
|
|
|
+ .class_size = sizeof(X86MachineClass),
|
|
|
+ .class_init = x86_machine_class_init,
|
|
|
+ .interfaces = (InterfaceInfo[]) {
|
|
|
+ { TYPE_NMI },
|
|
|
+ { }
|
|
|
+ },
|
|
|
+};
|
|
|
+
|
|
|
+static void x86_machine_register_types(void)
|
|
|
+{
|
|
|
+ type_register_static(&x86_machine_info);
|
|
|
+}
|
|
|
+
|
|
|
+type_init(x86_machine_register_types)
|