PerfectShuffle.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. //===-- PerfectShuffle.cpp - Perfect Shuffle Generator --------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file computes an optimal sequence of instructions for doing all shuffles
  10. // of two 4-element vectors. With a release build and when configured to emit
  11. // an altivec instruction table, this takes about 30s to run on a 2.7Ghz
  12. // PowerPC G5.
  13. //
  14. //===----------------------------------------------------------------------===//
  15. #include <cassert>
  16. #include <cstdlib>
  17. #include <iomanip>
  18. #include <iostream>
  19. #include <vector>
  20. struct Operator;
  21. // Masks are 4-nibble hex numbers. Values 0-7 in any nibble means that it takes
  22. // an element from that value of the input vectors. A value of 8 means the
  23. // entry is undefined.
  24. // Mask manipulation functions.
  25. static inline unsigned short MakeMask(unsigned V0, unsigned V1,
  26. unsigned V2, unsigned V3) {
  27. return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4));
  28. }
  29. /// getMaskElt - Return element N of the specified mask.
  30. static unsigned getMaskElt(unsigned Mask, unsigned Elt) {
  31. return (Mask >> ((3-Elt)*4)) & 0xF;
  32. }
  33. static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) {
  34. unsigned FieldShift = ((3-Elt)*4);
  35. return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift);
  36. }
  37. // Reject elements where the values are 9-15.
  38. static bool isValidMask(unsigned short Mask) {
  39. unsigned short UndefBits = Mask & 0x8888;
  40. return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0;
  41. }
  42. /// hasUndefElements - Return true if any of the elements in the mask are undefs
  43. ///
  44. static bool hasUndefElements(unsigned short Mask) {
  45. return (Mask & 0x8888) != 0;
  46. }
  47. /// isOnlyLHSMask - Return true if this mask only refers to its LHS, not
  48. /// including undef values..
  49. static bool isOnlyLHSMask(unsigned short Mask) {
  50. return (Mask & 0x4444) == 0;
  51. }
  52. /// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to
  53. /// refer to the LHS only (for when one argument value is passed into the same
  54. /// function twice).
  55. #if 0
  56. static unsigned short getLHSOnlyMask(unsigned short Mask) {
  57. return Mask & 0xBBBB; // Keep only LHS and Undefs.
  58. }
  59. #endif
  60. /// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4
  61. /// bits) into a compressed 13-bit mask, where each elt is multiplied by 9.
  62. static unsigned getCompressedMask(unsigned short Mask) {
  63. return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 +
  64. getMaskElt(Mask, 2)*9 + getMaskElt(Mask, 3);
  65. }
  66. static void PrintMask(unsigned i, std::ostream &OS) {
  67. OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0)))
  68. << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1)))
  69. << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2)))
  70. << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3)))
  71. << ">";
  72. }
  73. /// ShuffleVal - This represents a shufflevector operation.
  74. struct ShuffleVal {
  75. Operator *Op; // The Operation used to generate this value.
  76. unsigned Cost; // Number of instrs used to generate this value.
  77. unsigned short Arg0, Arg1; // Input operands for this value.
  78. ShuffleVal() : Cost(1000000) {}
  79. };
  80. /// ShufTab - This is the actual shuffle table that we are trying to generate.
  81. ///
  82. static ShuffleVal ShufTab[65536];
  83. /// TheOperators - All of the operators that this target supports.
  84. static std::vector<Operator*> TheOperators;
  85. /// Operator - This is a vector operation that is available for use.
  86. struct Operator {
  87. const char *Name;
  88. unsigned short ShuffleMask;
  89. unsigned short OpNum;
  90. unsigned Cost;
  91. Operator(unsigned short shufflemask, const char *name, unsigned opnum,
  92. unsigned cost = 1)
  93. : Name(name), ShuffleMask(shufflemask), OpNum(opnum),Cost(cost) {
  94. TheOperators.push_back(this);
  95. }
  96. ~Operator() {
  97. assert(TheOperators.back() == this);
  98. TheOperators.pop_back();
  99. }
  100. bool isOnlyLHSOperator() const {
  101. return isOnlyLHSMask(ShuffleMask);
  102. }
  103. const char *getName() const { return Name; }
  104. unsigned getCost() const { return Cost; }
  105. unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) {
  106. // Extract the elements from LHSMask and RHSMask, as appropriate.
  107. unsigned Result = 0;
  108. for (unsigned i = 0; i != 4; ++i) {
  109. unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF;
  110. unsigned ResElt;
  111. if (SrcElt < 4)
  112. ResElt = getMaskElt(LHSMask, SrcElt);
  113. else if (SrcElt < 8)
  114. ResElt = getMaskElt(RHSMask, SrcElt-4);
  115. else {
  116. assert(SrcElt == 8 && "Bad src elt!");
  117. ResElt = 8;
  118. }
  119. Result |= ResElt << (4*i);
  120. }
  121. return Result;
  122. }
  123. };
  124. static const char *getZeroCostOpName(unsigned short Op) {
  125. if (ShufTab[Op].Arg0 == 0x0123)
  126. return "LHS";
  127. else if (ShufTab[Op].Arg0 == 0x4567)
  128. return "RHS";
  129. else {
  130. assert(0 && "bad zero cost operation");
  131. abort();
  132. }
  133. }
  134. static void PrintOperation(unsigned ValNo, unsigned short Vals[]) {
  135. unsigned short ThisOp = Vals[ValNo];
  136. std::cerr << "t" << ValNo;
  137. PrintMask(ThisOp, std::cerr);
  138. std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "(";
  139. if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) {
  140. std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0);
  141. PrintMask(ShufTab[ThisOp].Arg0, std::cerr);
  142. } else {
  143. // Figure out what tmp # it is.
  144. for (unsigned i = 0; ; ++i)
  145. if (Vals[i] == ShufTab[ThisOp].Arg0) {
  146. std::cerr << "t" << i;
  147. break;
  148. }
  149. }
  150. if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) {
  151. std::cerr << ", ";
  152. if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) {
  153. std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1);
  154. PrintMask(ShufTab[ThisOp].Arg1, std::cerr);
  155. } else {
  156. // Figure out what tmp # it is.
  157. for (unsigned i = 0; ; ++i)
  158. if (Vals[i] == ShufTab[ThisOp].Arg1) {
  159. std::cerr << "t" << i;
  160. break;
  161. }
  162. }
  163. }
  164. std::cerr << ") ";
  165. }
  166. static unsigned getNumEntered() {
  167. unsigned Count = 0;
  168. for (unsigned i = 0; i != 65536; ++i)
  169. Count += ShufTab[i].Cost < 100;
  170. return Count;
  171. }
  172. static void EvaluateOps(unsigned short Elt, unsigned short Vals[],
  173. unsigned &NumVals) {
  174. if (ShufTab[Elt].Cost == 0) return;
  175. // If this value has already been evaluated, it is free. FIXME: match undefs.
  176. for (unsigned i = 0, e = NumVals; i != e; ++i)
  177. if (Vals[i] == Elt) return;
  178. // Otherwise, get the operands of the value, then add it.
  179. unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1;
  180. if (ShufTab[Arg0].Cost)
  181. EvaluateOps(Arg0, Vals, NumVals);
  182. if (Arg0 != Arg1 && ShufTab[Arg1].Cost)
  183. EvaluateOps(Arg1, Vals, NumVals);
  184. Vals[NumVals++] = Elt;
  185. }
  186. int main() {
  187. // Seed the table with accesses to the LHS and RHS.
  188. ShufTab[0x0123].Cost = 0;
  189. ShufTab[0x0123].Op = nullptr;
  190. ShufTab[0x0123].Arg0 = 0x0123;
  191. ShufTab[0x4567].Cost = 0;
  192. ShufTab[0x4567].Op = nullptr;
  193. ShufTab[0x4567].Arg0 = 0x4567;
  194. // Seed the first-level of shuffles, shuffles whose inputs are the input to
  195. // the vectorshuffle operation.
  196. bool MadeChange = true;
  197. unsigned OpCount = 0;
  198. while (MadeChange) {
  199. MadeChange = false;
  200. ++OpCount;
  201. std::cerr << "Starting iteration #" << OpCount << " with "
  202. << getNumEntered() << " entries established.\n";
  203. // Scan the table for two reasons: First, compute the maximum cost of any
  204. // operation left in the table. Second, make sure that values with undefs
  205. // have the cheapest alternative that they match.
  206. unsigned MaxCost = ShufTab[0].Cost;
  207. for (unsigned i = 1; i != 0x8889; ++i) {
  208. if (!isValidMask(i)) continue;
  209. if (ShufTab[i].Cost > MaxCost)
  210. MaxCost = ShufTab[i].Cost;
  211. // If this value has an undef, make it be computed the cheapest possible
  212. // way of any of the things that it matches.
  213. if (hasUndefElements(i)) {
  214. // This code is a little bit tricky, so here's the idea: consider some
  215. // permutation, like 7u4u. To compute the lowest cost for 7u4u, we
  216. // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries. If
  217. // there are 3 undefs, the number rises to 729 entries we have to scan,
  218. // and for the 4 undef case, we have to scan the whole table.
  219. //
  220. // Instead of doing this huge amount of scanning, we process the table
  221. // entries *in order*, and use the fact that 'u' is 8, larger than any
  222. // valid index. Given an entry like 7u4u then, we only need to scan
  223. // 7[0-7]4u - 8 entries. We can get away with this, because we already
  224. // know that each of 704u, 714u, 724u, etc contain the minimum value of
  225. // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively.
  226. unsigned UndefIdx;
  227. if (i & 0x8000)
  228. UndefIdx = 0;
  229. else if (i & 0x0800)
  230. UndefIdx = 1;
  231. else if (i & 0x0080)
  232. UndefIdx = 2;
  233. else if (i & 0x0008)
  234. UndefIdx = 3;
  235. else
  236. abort();
  237. unsigned MinVal = i;
  238. unsigned MinCost = ShufTab[i].Cost;
  239. // Scan the 8 entries.
  240. for (unsigned j = 0; j != 8; ++j) {
  241. unsigned NewElt = setMaskElt(i, UndefIdx, j);
  242. if (ShufTab[NewElt].Cost < MinCost) {
  243. MinCost = ShufTab[NewElt].Cost;
  244. MinVal = NewElt;
  245. }
  246. }
  247. // If we found something cheaper than what was here before, use it.
  248. if (i != MinVal) {
  249. MadeChange = true;
  250. ShufTab[i] = ShufTab[MinVal];
  251. }
  252. }
  253. }
  254. for (unsigned LHS = 0; LHS != 0x8889; ++LHS) {
  255. if (!isValidMask(LHS)) continue;
  256. if (ShufTab[LHS].Cost > 1000) continue;
  257. // If nothing involving this operand could possibly be cheaper than what
  258. // we already have, don't consider it.
  259. if (ShufTab[LHS].Cost + 1 >= MaxCost)
  260. continue;
  261. for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) {
  262. Operator *Op = TheOperators[opnum];
  263. // Evaluate op(LHS,LHS)
  264. unsigned ResultMask = Op->getTransformedMask(LHS, LHS);
  265. unsigned Cost = ShufTab[LHS].Cost + Op->getCost();
  266. if (Cost < ShufTab[ResultMask].Cost) {
  267. ShufTab[ResultMask].Cost = Cost;
  268. ShufTab[ResultMask].Op = Op;
  269. ShufTab[ResultMask].Arg0 = LHS;
  270. ShufTab[ResultMask].Arg1 = LHS;
  271. MadeChange = true;
  272. }
  273. // If this is a two input instruction, include the op(x,y) cases. If
  274. // this is a one input instruction, skip this.
  275. if (Op->isOnlyLHSOperator()) continue;
  276. for (unsigned RHS = 0; RHS != 0x8889; ++RHS) {
  277. if (!isValidMask(RHS)) continue;
  278. if (ShufTab[RHS].Cost > 1000) continue;
  279. // If nothing involving this operand could possibly be cheaper than
  280. // what we already have, don't consider it.
  281. if (ShufTab[RHS].Cost + 1 >= MaxCost)
  282. continue;
  283. // Evaluate op(LHS,RHS)
  284. unsigned ResultMask = Op->getTransformedMask(LHS, RHS);
  285. if (ShufTab[ResultMask].Cost <= OpCount ||
  286. ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost ||
  287. ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost)
  288. continue;
  289. // Figure out the cost to evaluate this, knowing that CSE's only need
  290. // to be evaluated once.
  291. unsigned short Vals[30];
  292. unsigned NumVals = 0;
  293. EvaluateOps(LHS, Vals, NumVals);
  294. EvaluateOps(RHS, Vals, NumVals);
  295. unsigned Cost = NumVals + Op->getCost();
  296. if (Cost < ShufTab[ResultMask].Cost) {
  297. ShufTab[ResultMask].Cost = Cost;
  298. ShufTab[ResultMask].Op = Op;
  299. ShufTab[ResultMask].Arg0 = LHS;
  300. ShufTab[ResultMask].Arg1 = RHS;
  301. MadeChange = true;
  302. }
  303. }
  304. }
  305. }
  306. }
  307. std::cerr << "Finished Table has " << getNumEntered()
  308. << " entries established.\n";
  309. unsigned CostArray[10] = { 0 };
  310. // Compute a cost histogram.
  311. for (unsigned i = 0; i != 65536; ++i) {
  312. if (!isValidMask(i)) continue;
  313. if (ShufTab[i].Cost > 9)
  314. ++CostArray[9];
  315. else
  316. ++CostArray[ShufTab[i].Cost];
  317. }
  318. for (unsigned i = 0; i != 9; ++i)
  319. if (CostArray[i])
  320. std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n";
  321. if (CostArray[9])
  322. std::cout << "// " << CostArray[9] << " entries have higher cost!\n";
  323. // Build up the table to emit.
  324. std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n";
  325. std::cout << "static const unsigned PerfectShuffleTable[6561+1] = {\n";
  326. for (unsigned i = 0; i != 0x8889; ++i) {
  327. if (!isValidMask(i)) continue;
  328. // CostSat - The cost of this operation saturated to two bits.
  329. unsigned CostSat = ShufTab[i].Cost;
  330. if (CostSat > 4) CostSat = 4;
  331. if (CostSat == 0) CostSat = 1;
  332. --CostSat; // Cost is now between 0-3.
  333. unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0;
  334. assert(OpNum < 16 && "Too few bits to encode operation!");
  335. unsigned LHS = getCompressedMask(ShufTab[i].Arg0);
  336. unsigned RHS = getCompressedMask(ShufTab[i].Arg1);
  337. // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of
  338. // LHS, and 13 bits of RHS = 32 bits.
  339. unsigned Val = (CostSat << 30) | (OpNum << 26) | (LHS << 13) | RHS;
  340. std::cout << " " << std::setw(10) << Val << "U, // ";
  341. PrintMask(i, std::cout);
  342. std::cout << ": Cost " << ShufTab[i].Cost;
  343. std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy");
  344. std::cout << " ";
  345. if (ShufTab[ShufTab[i].Arg0].Cost == 0) {
  346. std::cout << getZeroCostOpName(ShufTab[i].Arg0);
  347. } else {
  348. PrintMask(ShufTab[i].Arg0, std::cout);
  349. }
  350. if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) {
  351. std::cout << ", ";
  352. if (ShufTab[ShufTab[i].Arg1].Cost == 0) {
  353. std::cout << getZeroCostOpName(ShufTab[i].Arg1);
  354. } else {
  355. PrintMask(ShufTab[i].Arg1, std::cout);
  356. }
  357. }
  358. std::cout << "\n";
  359. }
  360. std::cout << " 0\n};\n";
  361. if (0) {
  362. // Print out the table.
  363. for (unsigned i = 0; i != 0x8889; ++i) {
  364. if (!isValidMask(i)) continue;
  365. if (ShufTab[i].Cost < 1000) {
  366. PrintMask(i, std::cerr);
  367. std::cerr << " - Cost " << ShufTab[i].Cost << " - ";
  368. unsigned short Vals[30];
  369. unsigned NumVals = 0;
  370. EvaluateOps(i, Vals, NumVals);
  371. for (unsigned j = 0, e = NumVals; j != e; ++j)
  372. PrintOperation(j, Vals);
  373. std::cerr << "\n";
  374. }
  375. }
  376. }
  377. }
  378. #ifdef GENERATE_ALTIVEC
  379. ///===---------------------------------------------------------------------===//
  380. /// The altivec instruction definitions. This is the altivec-specific part of
  381. /// this file.
  382. ///===---------------------------------------------------------------------===//
  383. // Note that the opcode numbers here must match those in the PPC backend.
  384. enum {
  385. OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
  386. OP_VMRGHW,
  387. OP_VMRGLW,
  388. OP_VSPLTISW0,
  389. OP_VSPLTISW1,
  390. OP_VSPLTISW2,
  391. OP_VSPLTISW3,
  392. OP_VSLDOI4,
  393. OP_VSLDOI8,
  394. OP_VSLDOI12
  395. };
  396. struct vmrghw : public Operator {
  397. vmrghw() : Operator(0x0415, "vmrghw", OP_VMRGHW) {}
  398. } the_vmrghw;
  399. struct vmrglw : public Operator {
  400. vmrglw() : Operator(0x2637, "vmrglw", OP_VMRGLW) {}
  401. } the_vmrglw;
  402. template<unsigned Elt>
  403. struct vspltisw : public Operator {
  404. vspltisw(const char *N, unsigned Opc)
  405. : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
  406. };
  407. vspltisw<0> the_vspltisw0("vspltisw0", OP_VSPLTISW0);
  408. vspltisw<1> the_vspltisw1("vspltisw1", OP_VSPLTISW1);
  409. vspltisw<2> the_vspltisw2("vspltisw2", OP_VSPLTISW2);
  410. vspltisw<3> the_vspltisw3("vspltisw3", OP_VSPLTISW3);
  411. template<unsigned N>
  412. struct vsldoi : public Operator {
  413. vsldoi(const char *Name, unsigned Opc)
  414. : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
  415. }
  416. };
  417. vsldoi<1> the_vsldoi1("vsldoi4" , OP_VSLDOI4);
  418. vsldoi<2> the_vsldoi2("vsldoi8" , OP_VSLDOI8);
  419. vsldoi<3> the_vsldoi3("vsldoi12", OP_VSLDOI12);
  420. #endif
  421. #define GENERATE_NEON
  422. #ifdef GENERATE_NEON
  423. enum {
  424. OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
  425. OP_VREV,
  426. OP_VDUP0,
  427. OP_VDUP1,
  428. OP_VDUP2,
  429. OP_VDUP3,
  430. OP_VEXT1,
  431. OP_VEXT2,
  432. OP_VEXT3,
  433. OP_VUZPL, // VUZP, left result
  434. OP_VUZPR, // VUZP, right result
  435. OP_VZIPL, // VZIP, left result
  436. OP_VZIPR, // VZIP, right result
  437. OP_VTRNL, // VTRN, left result
  438. OP_VTRNR // VTRN, right result
  439. };
  440. struct vrev : public Operator {
  441. vrev() : Operator(0x1032, "vrev", OP_VREV) {}
  442. } the_vrev;
  443. template<unsigned Elt>
  444. struct vdup : public Operator {
  445. vdup(const char *N, unsigned Opc)
  446. : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
  447. };
  448. vdup<0> the_vdup0("vdup0", OP_VDUP0);
  449. vdup<1> the_vdup1("vdup1", OP_VDUP1);
  450. vdup<2> the_vdup2("vdup2", OP_VDUP2);
  451. vdup<3> the_vdup3("vdup3", OP_VDUP3);
  452. template<unsigned N>
  453. struct vext : public Operator {
  454. vext(const char *Name, unsigned Opc)
  455. : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
  456. }
  457. };
  458. vext<1> the_vext1("vext1", OP_VEXT1);
  459. vext<2> the_vext2("vext2", OP_VEXT2);
  460. vext<3> the_vext3("vext3", OP_VEXT3);
  461. struct vuzpl : public Operator {
  462. vuzpl() : Operator(0x0246, "vuzpl", OP_VUZPL, 2) {}
  463. } the_vuzpl;
  464. struct vuzpr : public Operator {
  465. vuzpr() : Operator(0x1357, "vuzpr", OP_VUZPR, 2) {}
  466. } the_vuzpr;
  467. struct vzipl : public Operator {
  468. vzipl() : Operator(0x0415, "vzipl", OP_VZIPL, 2) {}
  469. } the_vzipl;
  470. struct vzipr : public Operator {
  471. vzipr() : Operator(0x2637, "vzipr", OP_VZIPR, 2) {}
  472. } the_vzipr;
  473. struct vtrnl : public Operator {
  474. vtrnl() : Operator(0x0426, "vtrnl", OP_VTRNL, 2) {}
  475. } the_vtrnl;
  476. struct vtrnr : public Operator {
  477. vtrnr() : Operator(0x1537, "vtrnr", OP_VTRNR, 2) {}
  478. } the_vtrnr;
  479. #endif