IRBuilderTest.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909
  1. //===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. #include "llvm/IR/IRBuilder.h"
  9. #include "llvm/IR/BasicBlock.h"
  10. #include "llvm/IR/DIBuilder.h"
  11. #include "llvm/IR/DataLayout.h"
  12. #include "llvm/IR/Function.h"
  13. #include "llvm/IR/IntrinsicInst.h"
  14. #include "llvm/IR/LLVMContext.h"
  15. #include "llvm/IR/MDBuilder.h"
  16. #include "llvm/IR/Module.h"
  17. #include "llvm/IR/NoFolder.h"
  18. #include "llvm/IR/Verifier.h"
  19. #include "gtest/gtest.h"
  20. using namespace llvm;
  21. namespace {
  22. class IRBuilderTest : public testing::Test {
  23. protected:
  24. void SetUp() override {
  25. M.reset(new Module("MyModule", Ctx));
  26. FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
  27. /*isVarArg=*/false);
  28. F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
  29. BB = BasicBlock::Create(Ctx, "", F);
  30. GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true,
  31. GlobalValue::ExternalLinkage, nullptr);
  32. }
  33. void TearDown() override {
  34. BB = nullptr;
  35. M.reset();
  36. }
  37. LLVMContext Ctx;
  38. std::unique_ptr<Module> M;
  39. Function *F;
  40. BasicBlock *BB;
  41. GlobalVariable *GV;
  42. };
  43. TEST_F(IRBuilderTest, Intrinsics) {
  44. IRBuilder<> Builder(BB);
  45. Value *V;
  46. Instruction *I;
  47. CallInst *Call;
  48. IntrinsicInst *II;
  49. V = Builder.CreateLoad(GV->getValueType(), GV);
  50. I = cast<Instruction>(Builder.CreateFAdd(V, V));
  51. I->setHasNoInfs(true);
  52. I->setHasNoNaNs(false);
  53. Call = Builder.CreateMinNum(V, V);
  54. II = cast<IntrinsicInst>(Call);
  55. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minnum);
  56. Call = Builder.CreateMaxNum(V, V);
  57. II = cast<IntrinsicInst>(Call);
  58. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maxnum);
  59. Call = Builder.CreateMinimum(V, V);
  60. II = cast<IntrinsicInst>(Call);
  61. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minimum);
  62. Call = Builder.CreateMaximum(V, V);
  63. II = cast<IntrinsicInst>(Call);
  64. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maximum);
  65. Call = Builder.CreateIntrinsic(Intrinsic::readcyclecounter, {}, {});
  66. II = cast<IntrinsicInst>(Call);
  67. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::readcyclecounter);
  68. Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V);
  69. II = cast<IntrinsicInst>(Call);
  70. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs);
  71. EXPECT_FALSE(II->hasNoInfs());
  72. EXPECT_FALSE(II->hasNoNaNs());
  73. Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V, I);
  74. II = cast<IntrinsicInst>(Call);
  75. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs);
  76. EXPECT_TRUE(II->hasNoInfs());
  77. EXPECT_FALSE(II->hasNoNaNs());
  78. Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V);
  79. II = cast<IntrinsicInst>(Call);
  80. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow);
  81. EXPECT_FALSE(II->hasNoInfs());
  82. EXPECT_FALSE(II->hasNoNaNs());
  83. Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V, I);
  84. II = cast<IntrinsicInst>(Call);
  85. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow);
  86. EXPECT_TRUE(II->hasNoInfs());
  87. EXPECT_FALSE(II->hasNoNaNs());
  88. Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V});
  89. II = cast<IntrinsicInst>(Call);
  90. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
  91. EXPECT_FALSE(II->hasNoInfs());
  92. EXPECT_FALSE(II->hasNoNaNs());
  93. Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I);
  94. II = cast<IntrinsicInst>(Call);
  95. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
  96. EXPECT_TRUE(II->hasNoInfs());
  97. EXPECT_FALSE(II->hasNoNaNs());
  98. Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I);
  99. II = cast<IntrinsicInst>(Call);
  100. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
  101. EXPECT_TRUE(II->hasNoInfs());
  102. EXPECT_FALSE(II->hasNoNaNs());
  103. }
  104. TEST_F(IRBuilderTest, IntrinsicsWithScalableVectors) {
  105. IRBuilder<> Builder(BB);
  106. CallInst *Call;
  107. FunctionType *FTy;
  108. // Test scalable flag isn't dropped for intrinsic that is explicitly defined
  109. // with scalable vectors, e.g. LLVMType<nxv4i32>.
  110. Type *SrcVecTy = VectorType::get(Builder.getHalfTy(), 8, true);
  111. Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
  112. Type *PredTy = VectorType::get(Builder.getInt1Ty(), 16, true);
  113. SmallVector<Value*, 3> ArgTys;
  114. ArgTys.push_back(UndefValue::get(DstVecTy));
  115. ArgTys.push_back(UndefValue::get(PredTy));
  116. ArgTys.push_back(UndefValue::get(SrcVecTy));
  117. Call = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fcvtzs_i32f16, {},
  118. ArgTys, nullptr, "aarch64.sve.fcvtzs.i32f16");
  119. FTy = Call->getFunctionType();
  120. EXPECT_EQ(FTy->getReturnType(), DstVecTy);
  121. for (unsigned i = 0; i != ArgTys.size(); ++i)
  122. EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType());
  123. // Test scalable flag isn't dropped for intrinsic defined with
  124. // LLVMScalarOrSameVectorWidth.
  125. Type *VecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
  126. Type *PtrToVecTy = VecTy->getPointerTo();
  127. PredTy = VectorType::get(Builder.getInt1Ty(), 4, true);
  128. ArgTys.clear();
  129. ArgTys.push_back(UndefValue::get(PtrToVecTy));
  130. ArgTys.push_back(UndefValue::get(Builder.getInt32Ty()));
  131. ArgTys.push_back(UndefValue::get(PredTy));
  132. ArgTys.push_back(UndefValue::get(VecTy));
  133. Call = Builder.CreateIntrinsic(Intrinsic::masked_load,
  134. {VecTy, PtrToVecTy}, ArgTys,
  135. nullptr, "masked.load");
  136. FTy = Call->getFunctionType();
  137. EXPECT_EQ(FTy->getReturnType(), VecTy);
  138. for (unsigned i = 0; i != ArgTys.size(); ++i)
  139. EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType());
  140. }
  141. TEST_F(IRBuilderTest, ConstrainedFP) {
  142. IRBuilder<> Builder(BB);
  143. Value *V;
  144. Value *VDouble;
  145. Value *VInt;
  146. CallInst *Call;
  147. IntrinsicInst *II;
  148. GlobalVariable *GVDouble = new GlobalVariable(*M, Type::getDoubleTy(Ctx),
  149. true, GlobalValue::ExternalLinkage, nullptr);
  150. V = Builder.CreateLoad(GV->getValueType(), GV);
  151. VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble);
  152. // See if we get constrained intrinsics instead of non-constrained
  153. // instructions.
  154. Builder.setIsFPConstrained(true);
  155. V = Builder.CreateFAdd(V, V);
  156. ASSERT_TRUE(isa<IntrinsicInst>(V));
  157. II = cast<IntrinsicInst>(V);
  158. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fadd);
  159. V = Builder.CreateFSub(V, V);
  160. ASSERT_TRUE(isa<IntrinsicInst>(V));
  161. II = cast<IntrinsicInst>(V);
  162. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fsub);
  163. V = Builder.CreateFMul(V, V);
  164. ASSERT_TRUE(isa<IntrinsicInst>(V));
  165. II = cast<IntrinsicInst>(V);
  166. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fmul);
  167. V = Builder.CreateFDiv(V, V);
  168. ASSERT_TRUE(isa<IntrinsicInst>(V));
  169. II = cast<IntrinsicInst>(V);
  170. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fdiv);
  171. V = Builder.CreateFRem(V, V);
  172. ASSERT_TRUE(isa<IntrinsicInst>(V));
  173. II = cast<IntrinsicInst>(V);
  174. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_frem);
  175. VInt = Builder.CreateFPToUI(VDouble, Builder.getInt32Ty());
  176. ASSERT_TRUE(isa<IntrinsicInst>(VInt));
  177. II = cast<IntrinsicInst>(VInt);
  178. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptoui);
  179. VInt = Builder.CreateFPToSI(VDouble, Builder.getInt32Ty());
  180. ASSERT_TRUE(isa<IntrinsicInst>(VInt));
  181. II = cast<IntrinsicInst>(VInt);
  182. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptosi);
  183. V = Builder.CreateFPTrunc(VDouble, Type::getFloatTy(Ctx));
  184. ASSERT_TRUE(isa<IntrinsicInst>(V));
  185. II = cast<IntrinsicInst>(V);
  186. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptrunc);
  187. VDouble = Builder.CreateFPExt(V, Type::getDoubleTy(Ctx));
  188. ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
  189. II = cast<IntrinsicInst>(VDouble);
  190. EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fpext);
  191. // Verify the codepaths for setting and overriding the default metadata.
  192. V = Builder.CreateFAdd(V, V);
  193. ASSERT_TRUE(isa<ConstrainedFPIntrinsic>(V));
  194. auto *CII = cast<ConstrainedFPIntrinsic>(V);
  195. ASSERT_TRUE(CII->getExceptionBehavior() == ConstrainedFPIntrinsic::ebStrict);
  196. ASSERT_TRUE(CII->getRoundingMode() == ConstrainedFPIntrinsic::rmDynamic);
  197. Builder.setDefaultConstrainedExcept(ConstrainedFPIntrinsic::ebIgnore);
  198. Builder.setDefaultConstrainedRounding(ConstrainedFPIntrinsic::rmUpward);
  199. V = Builder.CreateFAdd(V, V);
  200. CII = cast<ConstrainedFPIntrinsic>(V);
  201. ASSERT_TRUE(CII->getExceptionBehavior() == ConstrainedFPIntrinsic::ebIgnore);
  202. ASSERT_TRUE(CII->getRoundingMode() == ConstrainedFPIntrinsic::rmUpward);
  203. Builder.setDefaultConstrainedExcept(ConstrainedFPIntrinsic::ebIgnore);
  204. Builder.setDefaultConstrainedRounding(ConstrainedFPIntrinsic::rmToNearest);
  205. V = Builder.CreateFAdd(V, V);
  206. CII = cast<ConstrainedFPIntrinsic>(V);
  207. ASSERT_TRUE(CII->getExceptionBehavior() == ConstrainedFPIntrinsic::ebIgnore);
  208. ASSERT_TRUE(CII->getRoundingMode() == ConstrainedFPIntrinsic::rmToNearest);
  209. Builder.setDefaultConstrainedExcept(ConstrainedFPIntrinsic::ebMayTrap);
  210. Builder.setDefaultConstrainedRounding(ConstrainedFPIntrinsic::rmDownward);
  211. V = Builder.CreateFAdd(V, V);
  212. CII = cast<ConstrainedFPIntrinsic>(V);
  213. ASSERT_TRUE(CII->getExceptionBehavior() == ConstrainedFPIntrinsic::ebMayTrap);
  214. ASSERT_TRUE(CII->getRoundingMode() == ConstrainedFPIntrinsic::rmDownward);
  215. Builder.setDefaultConstrainedExcept(ConstrainedFPIntrinsic::ebStrict);
  216. Builder.setDefaultConstrainedRounding(ConstrainedFPIntrinsic::rmTowardZero);
  217. V = Builder.CreateFAdd(V, V);
  218. CII = cast<ConstrainedFPIntrinsic>(V);
  219. ASSERT_TRUE(CII->getExceptionBehavior() == ConstrainedFPIntrinsic::ebStrict);
  220. ASSERT_TRUE(CII->getRoundingMode() == ConstrainedFPIntrinsic::rmTowardZero);
  221. Builder.setDefaultConstrainedExcept(ConstrainedFPIntrinsic::ebIgnore);
  222. Builder.setDefaultConstrainedRounding(ConstrainedFPIntrinsic::rmDynamic);
  223. V = Builder.CreateFAdd(V, V);
  224. CII = cast<ConstrainedFPIntrinsic>(V);
  225. ASSERT_TRUE(CII->getExceptionBehavior() == ConstrainedFPIntrinsic::ebIgnore);
  226. ASSERT_TRUE(CII->getRoundingMode() == ConstrainedFPIntrinsic::rmDynamic);
  227. // Now override the defaults.
  228. Call = Builder.CreateConstrainedFPBinOp(
  229. Intrinsic::experimental_constrained_fadd, V, V, nullptr, "", nullptr,
  230. ConstrainedFPIntrinsic::rmDownward, ConstrainedFPIntrinsic::ebMayTrap);
  231. CII = cast<ConstrainedFPIntrinsic>(Call);
  232. EXPECT_EQ(CII->getIntrinsicID(), Intrinsic::experimental_constrained_fadd);
  233. ASSERT_TRUE(CII->getExceptionBehavior() == ConstrainedFPIntrinsic::ebMayTrap);
  234. ASSERT_TRUE(CII->getRoundingMode() == ConstrainedFPIntrinsic::rmDownward);
  235. Builder.CreateRetVoid();
  236. EXPECT_FALSE(verifyModule(*M));
  237. }
  238. TEST_F(IRBuilderTest, Lifetime) {
  239. IRBuilder<> Builder(BB);
  240. AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty());
  241. AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty());
  242. AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(),
  243. Builder.getInt32(123));
  244. CallInst *Start1 = Builder.CreateLifetimeStart(Var1);
  245. CallInst *Start2 = Builder.CreateLifetimeStart(Var2);
  246. CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100));
  247. EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1));
  248. EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1));
  249. EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100));
  250. EXPECT_EQ(Start1->getArgOperand(1), Var1);
  251. EXPECT_NE(Start2->getArgOperand(1), Var2);
  252. EXPECT_EQ(Start3->getArgOperand(1), Var3);
  253. Value *End1 = Builder.CreateLifetimeEnd(Var1);
  254. Builder.CreateLifetimeEnd(Var2);
  255. Builder.CreateLifetimeEnd(Var3);
  256. IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1);
  257. IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1);
  258. ASSERT_TRUE(II_Start1 != nullptr);
  259. EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start);
  260. ASSERT_TRUE(II_End1 != nullptr);
  261. EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end);
  262. }
  263. TEST_F(IRBuilderTest, CreateCondBr) {
  264. IRBuilder<> Builder(BB);
  265. BasicBlock *TBB = BasicBlock::Create(Ctx, "", F);
  266. BasicBlock *FBB = BasicBlock::Create(Ctx, "", F);
  267. BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB);
  268. Instruction *TI = BB->getTerminator();
  269. EXPECT_EQ(BI, TI);
  270. EXPECT_EQ(2u, TI->getNumSuccessors());
  271. EXPECT_EQ(TBB, TI->getSuccessor(0));
  272. EXPECT_EQ(FBB, TI->getSuccessor(1));
  273. BI->eraseFromParent();
  274. MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13);
  275. BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights);
  276. TI = BB->getTerminator();
  277. EXPECT_EQ(BI, TI);
  278. EXPECT_EQ(2u, TI->getNumSuccessors());
  279. EXPECT_EQ(TBB, TI->getSuccessor(0));
  280. EXPECT_EQ(FBB, TI->getSuccessor(1));
  281. EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof));
  282. }
  283. TEST_F(IRBuilderTest, LandingPadName) {
  284. IRBuilder<> Builder(BB);
  285. LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP");
  286. EXPECT_EQ(LP->getName(), "LP");
  287. }
  288. TEST_F(IRBuilderTest, DataLayout) {
  289. std::unique_ptr<Module> M(new Module("test", Ctx));
  290. M->setDataLayout("e-n32");
  291. EXPECT_TRUE(M->getDataLayout().isLegalInteger(32));
  292. M->setDataLayout("e");
  293. EXPECT_FALSE(M->getDataLayout().isLegalInteger(32));
  294. }
  295. TEST_F(IRBuilderTest, GetIntTy) {
  296. IRBuilder<> Builder(BB);
  297. IntegerType *Ty1 = Builder.getInt1Ty();
  298. EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1));
  299. DataLayout* DL = new DataLayout(M.get());
  300. IntegerType *IntPtrTy = Builder.getIntPtrTy(*DL);
  301. unsigned IntPtrBitSize = DL->getPointerSizeInBits(0);
  302. EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize));
  303. delete DL;
  304. }
  305. TEST_F(IRBuilderTest, UnaryOperators) {
  306. IRBuilder<NoFolder> Builder(BB);
  307. Value *V = Builder.CreateLoad(GV->getValueType(), GV);
  308. // Test CreateUnOp(X)
  309. Value *U = Builder.CreateUnOp(Instruction::FNeg, V);
  310. ASSERT_TRUE(isa<Instruction>(U));
  311. ASSERT_TRUE(isa<FPMathOperator>(U));
  312. ASSERT_TRUE(isa<UnaryOperator>(U));
  313. ASSERT_FALSE(isa<BinaryOperator>(U));
  314. // Test CreateFNegFMF(X)
  315. Instruction *I = cast<Instruction>(U);
  316. I->setHasNoSignedZeros(true);
  317. I->setHasNoNaNs(true);
  318. Value *VFMF = Builder.CreateFNegFMF(V, I);
  319. Instruction *IFMF = cast<Instruction>(VFMF);
  320. EXPECT_TRUE(IFMF->hasNoSignedZeros());
  321. EXPECT_TRUE(IFMF->hasNoNaNs());
  322. EXPECT_FALSE(IFMF->hasAllowReassoc());
  323. }
  324. TEST_F(IRBuilderTest, FastMathFlags) {
  325. IRBuilder<> Builder(BB);
  326. Value *F, *FC;
  327. Instruction *FDiv, *FAdd, *FCmp, *FCall;
  328. F = Builder.CreateLoad(GV->getValueType(), GV);
  329. F = Builder.CreateFAdd(F, F);
  330. EXPECT_FALSE(Builder.getFastMathFlags().any());
  331. ASSERT_TRUE(isa<Instruction>(F));
  332. FAdd = cast<Instruction>(F);
  333. EXPECT_FALSE(FAdd->hasNoNaNs());
  334. FastMathFlags FMF;
  335. Builder.setFastMathFlags(FMF);
  336. // By default, no flags are set.
  337. F = Builder.CreateFAdd(F, F);
  338. EXPECT_FALSE(Builder.getFastMathFlags().any());
  339. ASSERT_TRUE(isa<Instruction>(F));
  340. FAdd = cast<Instruction>(F);
  341. EXPECT_FALSE(FAdd->hasNoNaNs());
  342. EXPECT_FALSE(FAdd->hasNoInfs());
  343. EXPECT_FALSE(FAdd->hasNoSignedZeros());
  344. EXPECT_FALSE(FAdd->hasAllowReciprocal());
  345. EXPECT_FALSE(FAdd->hasAllowContract());
  346. EXPECT_FALSE(FAdd->hasAllowReassoc());
  347. EXPECT_FALSE(FAdd->hasApproxFunc());
  348. // Set all flags in the instruction.
  349. FAdd->setFast(true);
  350. EXPECT_TRUE(FAdd->hasNoNaNs());
  351. EXPECT_TRUE(FAdd->hasNoInfs());
  352. EXPECT_TRUE(FAdd->hasNoSignedZeros());
  353. EXPECT_TRUE(FAdd->hasAllowReciprocal());
  354. EXPECT_TRUE(FAdd->hasAllowContract());
  355. EXPECT_TRUE(FAdd->hasAllowReassoc());
  356. EXPECT_TRUE(FAdd->hasApproxFunc());
  357. // All flags are set in the builder.
  358. FMF.setFast();
  359. Builder.setFastMathFlags(FMF);
  360. F = Builder.CreateFAdd(F, F);
  361. EXPECT_TRUE(Builder.getFastMathFlags().any());
  362. EXPECT_TRUE(Builder.getFastMathFlags().all());
  363. ASSERT_TRUE(isa<Instruction>(F));
  364. FAdd = cast<Instruction>(F);
  365. EXPECT_TRUE(FAdd->hasNoNaNs());
  366. EXPECT_TRUE(FAdd->isFast());
  367. // Now, try it with CreateBinOp
  368. F = Builder.CreateBinOp(Instruction::FAdd, F, F);
  369. EXPECT_TRUE(Builder.getFastMathFlags().any());
  370. ASSERT_TRUE(isa<Instruction>(F));
  371. FAdd = cast<Instruction>(F);
  372. EXPECT_TRUE(FAdd->hasNoNaNs());
  373. EXPECT_TRUE(FAdd->isFast());
  374. F = Builder.CreateFDiv(F, F);
  375. EXPECT_TRUE(Builder.getFastMathFlags().all());
  376. ASSERT_TRUE(isa<Instruction>(F));
  377. FDiv = cast<Instruction>(F);
  378. EXPECT_TRUE(FDiv->hasAllowReciprocal());
  379. // Clear all FMF in the builder.
  380. Builder.clearFastMathFlags();
  381. F = Builder.CreateFDiv(F, F);
  382. ASSERT_TRUE(isa<Instruction>(F));
  383. FDiv = cast<Instruction>(F);
  384. EXPECT_FALSE(FDiv->hasAllowReciprocal());
  385. // Try individual flags.
  386. FMF.clear();
  387. FMF.setAllowReciprocal();
  388. Builder.setFastMathFlags(FMF);
  389. F = Builder.CreateFDiv(F, F);
  390. EXPECT_TRUE(Builder.getFastMathFlags().any());
  391. EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
  392. ASSERT_TRUE(isa<Instruction>(F));
  393. FDiv = cast<Instruction>(F);
  394. EXPECT_TRUE(FDiv->hasAllowReciprocal());
  395. Builder.clearFastMathFlags();
  396. FC = Builder.CreateFCmpOEQ(F, F);
  397. ASSERT_TRUE(isa<Instruction>(FC));
  398. FCmp = cast<Instruction>(FC);
  399. EXPECT_FALSE(FCmp->hasAllowReciprocal());
  400. FMF.clear();
  401. FMF.setAllowReciprocal();
  402. Builder.setFastMathFlags(FMF);
  403. FC = Builder.CreateFCmpOEQ(F, F);
  404. EXPECT_TRUE(Builder.getFastMathFlags().any());
  405. EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
  406. ASSERT_TRUE(isa<Instruction>(FC));
  407. FCmp = cast<Instruction>(FC);
  408. EXPECT_TRUE(FCmp->hasAllowReciprocal());
  409. Builder.clearFastMathFlags();
  410. // Test FP-contract
  411. FC = Builder.CreateFAdd(F, F);
  412. ASSERT_TRUE(isa<Instruction>(FC));
  413. FAdd = cast<Instruction>(FC);
  414. EXPECT_FALSE(FAdd->hasAllowContract());
  415. FMF.clear();
  416. FMF.setAllowContract(true);
  417. Builder.setFastMathFlags(FMF);
  418. FC = Builder.CreateFAdd(F, F);
  419. EXPECT_TRUE(Builder.getFastMathFlags().any());
  420. EXPECT_TRUE(Builder.getFastMathFlags().AllowContract);
  421. ASSERT_TRUE(isa<Instruction>(FC));
  422. FAdd = cast<Instruction>(FC);
  423. EXPECT_TRUE(FAdd->hasAllowContract());
  424. FMF.setApproxFunc();
  425. Builder.clearFastMathFlags();
  426. Builder.setFastMathFlags(FMF);
  427. // Now 'aml' and 'contract' are set.
  428. F = Builder.CreateFMul(F, F);
  429. FAdd = cast<Instruction>(F);
  430. EXPECT_TRUE(FAdd->hasApproxFunc());
  431. EXPECT_TRUE(FAdd->hasAllowContract());
  432. EXPECT_FALSE(FAdd->hasAllowReassoc());
  433. FMF.setAllowReassoc();
  434. Builder.clearFastMathFlags();
  435. Builder.setFastMathFlags(FMF);
  436. // Now 'aml' and 'contract' and 'reassoc' are set.
  437. F = Builder.CreateFMul(F, F);
  438. FAdd = cast<Instruction>(F);
  439. EXPECT_TRUE(FAdd->hasApproxFunc());
  440. EXPECT_TRUE(FAdd->hasAllowContract());
  441. EXPECT_TRUE(FAdd->hasAllowReassoc());
  442. // Test a call with FMF.
  443. auto CalleeTy = FunctionType::get(Type::getFloatTy(Ctx),
  444. /*isVarArg=*/false);
  445. auto Callee =
  446. Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
  447. FCall = Builder.CreateCall(Callee, None);
  448. EXPECT_FALSE(FCall->hasNoNaNs());
  449. Function *V =
  450. Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
  451. FCall = Builder.CreateCall(V, None);
  452. EXPECT_FALSE(FCall->hasNoNaNs());
  453. FMF.clear();
  454. FMF.setNoNaNs();
  455. Builder.setFastMathFlags(FMF);
  456. FCall = Builder.CreateCall(Callee, None);
  457. EXPECT_TRUE(Builder.getFastMathFlags().any());
  458. EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs);
  459. EXPECT_TRUE(FCall->hasNoNaNs());
  460. FCall = Builder.CreateCall(V, None);
  461. EXPECT_TRUE(Builder.getFastMathFlags().any());
  462. EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs);
  463. EXPECT_TRUE(FCall->hasNoNaNs());
  464. Builder.clearFastMathFlags();
  465. // To test a copy, make sure that a '0' and a '1' change state.
  466. F = Builder.CreateFDiv(F, F);
  467. ASSERT_TRUE(isa<Instruction>(F));
  468. FDiv = cast<Instruction>(F);
  469. EXPECT_FALSE(FDiv->getFastMathFlags().any());
  470. FDiv->setHasAllowReciprocal(true);
  471. FAdd->setHasAllowReciprocal(false);
  472. FAdd->setHasNoNaNs(true);
  473. FDiv->copyFastMathFlags(FAdd);
  474. EXPECT_TRUE(FDiv->hasNoNaNs());
  475. EXPECT_FALSE(FDiv->hasAllowReciprocal());
  476. }
  477. TEST_F(IRBuilderTest, WrapFlags) {
  478. IRBuilder<NoFolder> Builder(BB);
  479. // Test instructions.
  480. GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true,
  481. GlobalValue::ExternalLinkage, nullptr);
  482. Value *V = Builder.CreateLoad(G->getValueType(), G);
  483. EXPECT_TRUE(
  484. cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap());
  485. EXPECT_TRUE(
  486. cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap());
  487. EXPECT_TRUE(
  488. cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap());
  489. EXPECT_TRUE(cast<BinaryOperator>(
  490. Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true))
  491. ->hasNoSignedWrap());
  492. EXPECT_TRUE(
  493. cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap());
  494. EXPECT_TRUE(
  495. cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap());
  496. EXPECT_TRUE(
  497. cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap());
  498. EXPECT_TRUE(cast<BinaryOperator>(
  499. Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false))
  500. ->hasNoUnsignedWrap());
  501. // Test operators created with constants.
  502. Constant *C = Builder.getInt32(42);
  503. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C))
  504. ->hasNoSignedWrap());
  505. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C))
  506. ->hasNoSignedWrap());
  507. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C))
  508. ->hasNoSignedWrap());
  509. EXPECT_TRUE(cast<OverflowingBinaryOperator>(
  510. Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true))
  511. ->hasNoSignedWrap());
  512. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C))
  513. ->hasNoUnsignedWrap());
  514. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C))
  515. ->hasNoUnsignedWrap());
  516. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C))
  517. ->hasNoUnsignedWrap());
  518. EXPECT_TRUE(cast<OverflowingBinaryOperator>(
  519. Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false))
  520. ->hasNoUnsignedWrap());
  521. }
  522. TEST_F(IRBuilderTest, RAIIHelpersTest) {
  523. IRBuilder<> Builder(BB);
  524. EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
  525. MDBuilder MDB(M->getContext());
  526. MDNode *FPMathA = MDB.createFPMath(0.01f);
  527. MDNode *FPMathB = MDB.createFPMath(0.1f);
  528. Builder.setDefaultFPMathTag(FPMathA);
  529. {
  530. IRBuilder<>::FastMathFlagGuard Guard(Builder);
  531. FastMathFlags FMF;
  532. FMF.setAllowReciprocal();
  533. Builder.setFastMathFlags(FMF);
  534. Builder.setDefaultFPMathTag(FPMathB);
  535. EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal());
  536. EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag());
  537. }
  538. EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
  539. EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag());
  540. Value *F = Builder.CreateLoad(GV->getValueType(), GV);
  541. {
  542. IRBuilder<>::InsertPointGuard Guard(Builder);
  543. Builder.SetInsertPoint(cast<Instruction>(F));
  544. EXPECT_EQ(F, &*Builder.GetInsertPoint());
  545. }
  546. EXPECT_EQ(BB->end(), Builder.GetInsertPoint());
  547. EXPECT_EQ(BB, Builder.GetInsertBlock());
  548. }
  549. TEST_F(IRBuilderTest, createFunction) {
  550. IRBuilder<> Builder(BB);
  551. DIBuilder DIB(*M);
  552. auto File = DIB.createFile("error.swift", "/");
  553. auto CU =
  554. DIB.createCompileUnit(dwarf::DW_LANG_Swift, File, "swiftc", true, "", 0);
  555. auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  556. auto NoErr = DIB.createFunction(
  557. CU, "noerr", "", File, 1, Type, 1, DINode::FlagZero,
  558. DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
  559. EXPECT_TRUE(!NoErr->getThrownTypes());
  560. auto Int = DIB.createBasicType("Int", 64, dwarf::DW_ATE_signed);
  561. auto Error = DIB.getOrCreateArray({Int});
  562. auto Err = DIB.createFunction(
  563. CU, "err", "", File, 1, Type, 1, DINode::FlagZero,
  564. DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized, nullptr,
  565. nullptr, Error.get());
  566. EXPECT_TRUE(Err->getThrownTypes().get() == Error.get());
  567. DIB.finalize();
  568. }
  569. TEST_F(IRBuilderTest, DIBuilder) {
  570. IRBuilder<> Builder(BB);
  571. DIBuilder DIB(*M);
  572. auto File = DIB.createFile("F.CBL", "/");
  573. auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74,
  574. DIB.createFile("F.CBL", "/"), "llvm-cobol74",
  575. true, "", 0);
  576. auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  577. auto SP = DIB.createFunction(
  578. CU, "foo", "", File, 1, Type, 1, DINode::FlagZero,
  579. DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
  580. F->setSubprogram(SP);
  581. AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
  582. auto BarSP = DIB.createFunction(
  583. CU, "bar", "", File, 1, Type, 1, DINode::FlagZero,
  584. DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
  585. auto BadScope = DIB.createLexicalBlockFile(BarSP, File, 0);
  586. I->setDebugLoc(DebugLoc::get(2, 0, BadScope));
  587. DIB.finalize();
  588. EXPECT_TRUE(verifyModule(*M));
  589. }
  590. TEST_F(IRBuilderTest, createArtificialSubprogram) {
  591. IRBuilder<> Builder(BB);
  592. DIBuilder DIB(*M);
  593. auto File = DIB.createFile("main.c", "/");
  594. auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang",
  595. /*isOptimized=*/true, /*Flags=*/"",
  596. /*Runtime Version=*/0);
  597. auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  598. auto SP = DIB.createFunction(
  599. CU, "foo", /*LinkageName=*/"", File,
  600. /*LineNo=*/1, Type, /*ScopeLine=*/2, DINode::FlagZero,
  601. DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
  602. EXPECT_TRUE(SP->isDistinct());
  603. F->setSubprogram(SP);
  604. AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
  605. ReturnInst *R = Builder.CreateRetVoid();
  606. I->setDebugLoc(DebugLoc::get(3, 2, SP));
  607. R->setDebugLoc(DebugLoc::get(4, 2, SP));
  608. DIB.finalize();
  609. EXPECT_FALSE(verifyModule(*M));
  610. Function *G = Function::Create(F->getFunctionType(),
  611. Function::ExternalLinkage, "", M.get());
  612. BasicBlock *GBB = BasicBlock::Create(Ctx, "", G);
  613. Builder.SetInsertPoint(GBB);
  614. I->removeFromParent();
  615. Builder.Insert(I);
  616. Builder.CreateRetVoid();
  617. EXPECT_FALSE(verifyModule(*M));
  618. DISubprogram *GSP = DIBuilder::createArtificialSubprogram(F->getSubprogram());
  619. EXPECT_EQ(SP->getFile(), GSP->getFile());
  620. EXPECT_EQ(SP->getType(), GSP->getType());
  621. EXPECT_EQ(SP->getLine(), GSP->getLine());
  622. EXPECT_EQ(SP->getScopeLine(), GSP->getScopeLine());
  623. EXPECT_TRUE(GSP->isDistinct());
  624. G->setSubprogram(GSP);
  625. EXPECT_TRUE(verifyModule(*M));
  626. auto *InlinedAtNode =
  627. DILocation::getDistinct(Ctx, GSP->getScopeLine(), 0, GSP);
  628. DebugLoc DL = I->getDebugLoc();
  629. DenseMap<const MDNode *, MDNode *> IANodes;
  630. auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, Ctx, IANodes);
  631. auto NewDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
  632. I->setDebugLoc(NewDL);
  633. EXPECT_FALSE(verifyModule(*M));
  634. EXPECT_EQ("foo", SP->getName());
  635. EXPECT_EQ("foo", GSP->getName());
  636. EXPECT_FALSE(SP->isArtificial());
  637. EXPECT_TRUE(GSP->isArtificial());
  638. }
  639. TEST_F(IRBuilderTest, InsertExtractElement) {
  640. IRBuilder<> Builder(BB);
  641. auto VecTy = VectorType::get(Builder.getInt64Ty(), 4);
  642. auto Elt1 = Builder.getInt64(-1);
  643. auto Elt2 = Builder.getInt64(-2);
  644. Value *Vec = UndefValue::get(VecTy);
  645. Vec = Builder.CreateInsertElement(Vec, Elt1, Builder.getInt8(1));
  646. Vec = Builder.CreateInsertElement(Vec, Elt2, 2);
  647. auto X1 = Builder.CreateExtractElement(Vec, 1);
  648. auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2));
  649. EXPECT_EQ(Elt1, X1);
  650. EXPECT_EQ(Elt2, X2);
  651. }
  652. TEST_F(IRBuilderTest, CreateGlobalStringPtr) {
  653. IRBuilder<> Builder(BB);
  654. auto String1a = Builder.CreateGlobalStringPtr("TestString", "String1a");
  655. auto String1b = Builder.CreateGlobalStringPtr("TestString", "String1b", 0);
  656. auto String2 = Builder.CreateGlobalStringPtr("TestString", "String2", 1);
  657. auto String3 = Builder.CreateGlobalString("TestString", "String3", 2);
  658. EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0);
  659. EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0);
  660. EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1);
  661. EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2);
  662. }
  663. TEST_F(IRBuilderTest, DebugLoc) {
  664. auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx),
  665. /*isVarArg=*/false);
  666. auto Callee =
  667. Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
  668. DIBuilder DIB(*M);
  669. auto File = DIB.createFile("tmp.cpp", "/");
  670. auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11,
  671. DIB.createFile("tmp.cpp", "/"), "", true, "",
  672. 0);
  673. auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
  674. auto SP =
  675. DIB.createFunction(CU, "foo", "foo", File, 1, SPType, 1, DINode::FlagZero,
  676. DISubprogram::SPFlagDefinition);
  677. DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP);
  678. DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP);
  679. auto BB2 = BasicBlock::Create(Ctx, "bb2", F);
  680. auto Br = BranchInst::Create(BB2, BB);
  681. Br->setDebugLoc(DL1);
  682. IRBuilder<> Builder(Ctx);
  683. Builder.SetInsertPoint(Br);
  684. EXPECT_EQ(DL1, Builder.getCurrentDebugLocation());
  685. auto Call1 = Builder.CreateCall(Callee, None);
  686. EXPECT_EQ(DL1, Call1->getDebugLoc());
  687. Call1->setDebugLoc(DL2);
  688. Builder.SetInsertPoint(Call1->getParent(), Call1->getIterator());
  689. EXPECT_EQ(DL2, Builder.getCurrentDebugLocation());
  690. auto Call2 = Builder.CreateCall(Callee, None);
  691. EXPECT_EQ(DL2, Call2->getDebugLoc());
  692. DIB.finalize();
  693. }
  694. TEST_F(IRBuilderTest, DIImportedEntity) {
  695. IRBuilder<> Builder(BB);
  696. DIBuilder DIB(*M);
  697. auto F = DIB.createFile("F.CBL", "/");
  698. auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74,
  699. F, "llvm-cobol74",
  700. true, "", 0);
  701. DIB.createImportedDeclaration(CU, nullptr, F, 1);
  702. DIB.createImportedDeclaration(CU, nullptr, F, 1);
  703. DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2);
  704. DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2);
  705. DIB.finalize();
  706. EXPECT_TRUE(verifyModule(*M));
  707. EXPECT_TRUE(CU->getImportedEntities().size() == 2);
  708. }
  709. // 0: #define M0 V0 <-- command line definition
  710. // 0: main.c <-- main file
  711. // 3: #define M1 V1 <-- M1 definition in main.c
  712. // 5: #include "file.h" <-- inclusion of file.h from main.c
  713. // 1: #define M2 <-- M2 definition in file.h with no value
  714. // 7: #undef M1 V1 <-- M1 un-definition in main.c
  715. TEST_F(IRBuilderTest, DIBuilderMacro) {
  716. IRBuilder<> Builder(BB);
  717. DIBuilder DIB(*M);
  718. auto File1 = DIB.createFile("main.c", "/");
  719. auto File2 = DIB.createFile("file.h", "/");
  720. auto CU = DIB.createCompileUnit(
  721. dwarf::DW_LANG_C, DIB.createFile("main.c", "/"), "llvm-c", true, "", 0);
  722. auto MDef0 =
  723. DIB.createMacro(nullptr, 0, dwarf::DW_MACINFO_define, "M0", "V0");
  724. auto TMF1 = DIB.createTempMacroFile(nullptr, 0, File1);
  725. auto MDef1 = DIB.createMacro(TMF1, 3, dwarf::DW_MACINFO_define, "M1", "V1");
  726. auto TMF2 = DIB.createTempMacroFile(TMF1, 5, File2);
  727. auto MDef2 = DIB.createMacro(TMF2, 1, dwarf::DW_MACINFO_define, "M2");
  728. auto MUndef1 = DIB.createMacro(TMF1, 7, dwarf::DW_MACINFO_undef, "M1");
  729. EXPECT_EQ(dwarf::DW_MACINFO_define, MDef1->getMacinfoType());
  730. EXPECT_EQ(3u, MDef1->getLine());
  731. EXPECT_EQ("M1", MDef1->getName());
  732. EXPECT_EQ("V1", MDef1->getValue());
  733. EXPECT_EQ(dwarf::DW_MACINFO_undef, MUndef1->getMacinfoType());
  734. EXPECT_EQ(7u, MUndef1->getLine());
  735. EXPECT_EQ("M1", MUndef1->getName());
  736. EXPECT_EQ("", MUndef1->getValue());
  737. EXPECT_EQ(dwarf::DW_MACINFO_start_file, TMF2->getMacinfoType());
  738. EXPECT_EQ(5u, TMF2->getLine());
  739. EXPECT_EQ(File2, TMF2->getFile());
  740. DIB.finalize();
  741. SmallVector<Metadata *, 4> Elements;
  742. Elements.push_back(MDef2);
  743. auto MF2 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 5, File2,
  744. DIB.getOrCreateMacroArray(Elements));
  745. Elements.clear();
  746. Elements.push_back(MDef1);
  747. Elements.push_back(MF2);
  748. Elements.push_back(MUndef1);
  749. auto MF1 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 0, File1,
  750. DIB.getOrCreateMacroArray(Elements));
  751. Elements.clear();
  752. Elements.push_back(MDef0);
  753. Elements.push_back(MF1);
  754. auto MN0 = MDTuple::get(Ctx, Elements);
  755. EXPECT_EQ(MN0, CU->getRawMacros());
  756. Elements.clear();
  757. Elements.push_back(MDef1);
  758. Elements.push_back(MF2);
  759. Elements.push_back(MUndef1);
  760. auto MN1 = MDTuple::get(Ctx, Elements);
  761. EXPECT_EQ(MN1, MF1->getRawElements());
  762. Elements.clear();
  763. Elements.push_back(MDef2);
  764. auto MN2 = MDTuple::get(Ctx, Elements);
  765. EXPECT_EQ(MN2, MF2->getRawElements());
  766. EXPECT_TRUE(verifyModule(*M));
  767. }
  768. }