123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770 |
- :orphan:
- ============================================================
- Kaleidoscope: Extending the Language: User-defined Operators
- ============================================================
- .. contents::
- :local:
- Chapter 6 Introduction
- ======================
- Welcome to Chapter 6 of the "`Implementing a language with
- LLVM <index.html>`_" tutorial. At this point in our tutorial, we now
- have a fully functional language that is fairly minimal, but also
- useful. There is still one big problem with it, however. Our language
- doesn't have many useful operators (like division, logical negation, or
- even any comparisons besides less-than).
- This chapter of the tutorial takes a wild digression into adding
- user-defined operators to the simple and beautiful Kaleidoscope
- language. This digression now gives us a simple and ugly language in
- some ways, but also a powerful one at the same time. One of the great
- things about creating your own language is that you get to decide what
- is good or bad. In this tutorial we'll assume that it is okay to use
- this as a way to show some interesting parsing techniques.
- At the end of this tutorial, we'll run through an example Kaleidoscope
- application that `renders the Mandelbrot set <#kicking-the-tires>`_. This gives an
- example of what you can build with Kaleidoscope and its feature set.
- User-defined Operators: the Idea
- ================================
- The "operator overloading" that we will add to Kaleidoscope is more
- general than in languages like C++. In C++, you are only allowed to
- redefine existing operators: you can't programmatically change the
- grammar, introduce new operators, change precedence levels, etc. In this
- chapter, we will add this capability to Kaleidoscope, which will let the
- user round out the set of operators that are supported.
- The point of going into user-defined operators in a tutorial like this
- is to show the power and flexibility of using a hand-written parser.
- Thus far, the parser we have been implementing uses recursive descent
- for most parts of the grammar and operator precedence parsing for the
- expressions. See `Chapter 2 <LangImpl02.html>`_ for details. By
- using operator precedence parsing, it is very easy to allow
- the programmer to introduce new operators into the grammar: the grammar
- is dynamically extensible as the JIT runs.
- The two specific features we'll add are programmable unary operators
- (right now, Kaleidoscope has no unary operators at all) as well as
- binary operators. An example of this is:
- ::
- # Logical unary not.
- def unary!(v)
- if v then
- 0
- else
- 1;
- # Define > with the same precedence as <.
- def binary> 10 (LHS RHS)
- RHS < LHS;
- # Binary "logical or", (note that it does not "short circuit")
- def binary| 5 (LHS RHS)
- if LHS then
- 1
- else if RHS then
- 1
- else
- 0;
- # Define = with slightly lower precedence than relationals.
- def binary= 9 (LHS RHS)
- !(LHS < RHS | LHS > RHS);
- Many languages aspire to being able to implement their standard runtime
- library in the language itself. In Kaleidoscope, we can implement
- significant parts of the language in the library!
- We will break down implementation of these features into two parts:
- implementing support for user-defined binary operators and adding unary
- operators.
- User-defined Binary Operators
- =============================
- Adding support for user-defined binary operators is pretty simple with
- our current framework. We'll first add support for the unary/binary
- keywords:
- .. code-block:: c++
- enum Token {
- ...
- // operators
- tok_binary = -11,
- tok_unary = -12
- };
- ...
- static int gettok() {
- ...
- if (IdentifierStr == "for")
- return tok_for;
- if (IdentifierStr == "in")
- return tok_in;
- if (IdentifierStr == "binary")
- return tok_binary;
- if (IdentifierStr == "unary")
- return tok_unary;
- return tok_identifier;
- This just adds lexer support for the unary and binary keywords, like we
- did in `previous chapters <LangImpl5.html#lexer-extensions-for-if-then-else>`_. One nice thing
- about our current AST, is that we represent binary operators with full
- generalisation by using their ASCII code as the opcode. For our extended
- operators, we'll use this same representation, so we don't need any new
- AST or parser support.
- On the other hand, we have to be able to represent the definitions of
- these new operators, in the "def binary\| 5" part of the function
- definition. In our grammar so far, the "name" for the function
- definition is parsed as the "prototype" production and into the
- ``PrototypeAST`` AST node. To represent our new user-defined operators
- as prototypes, we have to extend the ``PrototypeAST`` AST node like
- this:
- .. code-block:: c++
- /// PrototypeAST - This class represents the "prototype" for a function,
- /// which captures its argument names as well as if it is an operator.
- class PrototypeAST {
- std::string Name;
- std::vector<std::string> Args;
- bool IsOperator;
- unsigned Precedence; // Precedence if a binary op.
- public:
- PrototypeAST(const std::string &name, std::vector<std::string> Args,
- bool IsOperator = false, unsigned Prec = 0)
- : Name(name), Args(std::move(Args)), IsOperator(IsOperator),
- Precedence(Prec) {}
- Function *codegen();
- const std::string &getName() const { return Name; }
- bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
- bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
- char getOperatorName() const {
- assert(isUnaryOp() || isBinaryOp());
- return Name[Name.size() - 1];
- }
- unsigned getBinaryPrecedence() const { return Precedence; }
- };
- Basically, in addition to knowing a name for the prototype, we now keep
- track of whether it was an operator, and if it was, what precedence
- level the operator is at. The precedence is only used for binary
- operators (as you'll see below, it just doesn't apply for unary
- operators). Now that we have a way to represent the prototype for a
- user-defined operator, we need to parse it:
- .. code-block:: c++
- /// prototype
- /// ::= id '(' id* ')'
- /// ::= binary LETTER number? (id, id)
- static std::unique_ptr<PrototypeAST> ParsePrototype() {
- std::string FnName;
- unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
- unsigned BinaryPrecedence = 30;
- switch (CurTok) {
- default:
- return LogErrorP("Expected function name in prototype");
- case tok_identifier:
- FnName = IdentifierStr;
- Kind = 0;
- getNextToken();
- break;
- case tok_binary:
- getNextToken();
- if (!isascii(CurTok))
- return LogErrorP("Expected binary operator");
- FnName = "binary";
- FnName += (char)CurTok;
- Kind = 2;
- getNextToken();
- // Read the precedence if present.
- if (CurTok == tok_number) {
- if (NumVal < 1 || NumVal > 100)
- return LogErrorP("Invalid precedence: must be 1..100");
- BinaryPrecedence = (unsigned)NumVal;
- getNextToken();
- }
- break;
- }
- if (CurTok != '(')
- return LogErrorP("Expected '(' in prototype");
- std::vector<std::string> ArgNames;
- while (getNextToken() == tok_identifier)
- ArgNames.push_back(IdentifierStr);
- if (CurTok != ')')
- return LogErrorP("Expected ')' in prototype");
- // success.
- getNextToken(); // eat ')'.
- // Verify right number of names for operator.
- if (Kind && ArgNames.size() != Kind)
- return LogErrorP("Invalid number of operands for operator");
- return std::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
- BinaryPrecedence);
- }
- This is all fairly straightforward parsing code, and we have already
- seen a lot of similar code in the past. One interesting part about the
- code above is the couple lines that set up ``FnName`` for binary
- operators. This builds names like "binary@" for a newly defined "@"
- operator. It then takes advantage of the fact that symbol names in the
- LLVM symbol table are allowed to have any character in them, including
- embedded nul characters.
- The next interesting thing to add, is codegen support for these binary
- operators. Given our current structure, this is a simple addition of a
- default case for our existing binary operator node:
- .. code-block:: c++
- Value *BinaryExprAST::codegen() {
- Value *L = LHS->codegen();
- Value *R = RHS->codegen();
- if (!L || !R)
- return nullptr;
- switch (Op) {
- case '+':
- return Builder.CreateFAdd(L, R, "addtmp");
- case '-':
- return Builder.CreateFSub(L, R, "subtmp");
- case '*':
- return Builder.CreateFMul(L, R, "multmp");
- case '<':
- L = Builder.CreateFCmpULT(L, R, "cmptmp");
- // Convert bool 0/1 to double 0.0 or 1.0
- return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext),
- "booltmp");
- default:
- break;
- }
- // If it wasn't a builtin binary operator, it must be a user defined one. Emit
- // a call to it.
- Function *F = getFunction(std::string("binary") + Op);
- assert(F && "binary operator not found!");
- Value *Ops[2] = { L, R };
- return Builder.CreateCall(F, Ops, "binop");
- }
- As you can see above, the new code is actually really simple. It just
- does a lookup for the appropriate operator in the symbol table and
- generates a function call to it. Since user-defined operators are just
- built as normal functions (because the "prototype" boils down to a
- function with the right name) everything falls into place.
- The final piece of code we are missing, is a bit of top-level magic:
- .. code-block:: c++
- Function *FunctionAST::codegen() {
- // Transfer ownership of the prototype to the FunctionProtos map, but keep a
- // reference to it for use below.
- auto &P = *Proto;
- FunctionProtos[Proto->getName()] = std::move(Proto);
- Function *TheFunction = getFunction(P.getName());
- if (!TheFunction)
- return nullptr;
- // If this is an operator, install it.
- if (P.isBinaryOp())
- BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
- // Create a new basic block to start insertion into.
- BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
- ...
- Basically, before codegening a function, if it is a user-defined
- operator, we register it in the precedence table. This allows the binary
- operator parsing logic we already have in place to handle it. Since we
- are working on a fully-general operator precedence parser, this is all
- we need to do to "extend the grammar".
- Now we have useful user-defined binary operators. This builds a lot on
- the previous framework we built for other operators. Adding unary
- operators is a bit more challenging, because we don't have any framework
- for it yet - let's see what it takes.
- User-defined Unary Operators
- ============================
- Since we don't currently support unary operators in the Kaleidoscope
- language, we'll need to add everything to support them. Above, we added
- simple support for the 'unary' keyword to the lexer. In addition to
- that, we need an AST node:
- .. code-block:: c++
- /// UnaryExprAST - Expression class for a unary operator.
- class UnaryExprAST : public ExprAST {
- char Opcode;
- std::unique_ptr<ExprAST> Operand;
- public:
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
- : Opcode(Opcode), Operand(std::move(Operand)) {}
- Value *codegen() override;
- };
- This AST node is very simple and obvious by now. It directly mirrors the
- binary operator AST node, except that it only has one child. With this,
- we need to add the parsing logic. Parsing a unary operator is pretty
- simple: we'll add a new function to do it:
- .. code-block:: c++
- /// unary
- /// ::= primary
- /// ::= '!' unary
- static std::unique_ptr<ExprAST> ParseUnary() {
- // If the current token is not an operator, it must be a primary expr.
- if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
- return ParsePrimary();
- // If this is a unary operator, read it.
- int Opc = CurTok;
- getNextToken();
- if (auto Operand = ParseUnary())
- return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
- return nullptr;
- }
- The grammar we add is pretty straightforward here. If we see a unary
- operator when parsing a primary operator, we eat the operator as a
- prefix and parse the remaining piece as another unary operator. This
- allows us to handle multiple unary operators (e.g. "!!x"). Note that
- unary operators can't have ambiguous parses like binary operators can,
- so there is no need for precedence information.
- The problem with this function, is that we need to call ParseUnary from
- somewhere. To do this, we change previous callers of ParsePrimary to
- call ParseUnary instead:
- .. code-block:: c++
- /// binoprhs
- /// ::= ('+' unary)*
- static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
- std::unique_ptr<ExprAST> LHS) {
- ...
- // Parse the unary expression after the binary operator.
- auto RHS = ParseUnary();
- if (!RHS)
- return nullptr;
- ...
- }
- /// expression
- /// ::= unary binoprhs
- ///
- static std::unique_ptr<ExprAST> ParseExpression() {
- auto LHS = ParseUnary();
- if (!LHS)
- return nullptr;
- return ParseBinOpRHS(0, std::move(LHS));
- }
- With these two simple changes, we are now able to parse unary operators
- and build the AST for them. Next up, we need to add parser support for
- prototypes, to parse the unary operator prototype. We extend the binary
- operator code above with:
- .. code-block:: c++
- /// prototype
- /// ::= id '(' id* ')'
- /// ::= binary LETTER number? (id, id)
- /// ::= unary LETTER (id)
- static std::unique_ptr<PrototypeAST> ParsePrototype() {
- std::string FnName;
- unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
- unsigned BinaryPrecedence = 30;
- switch (CurTok) {
- default:
- return LogErrorP("Expected function name in prototype");
- case tok_identifier:
- FnName = IdentifierStr;
- Kind = 0;
- getNextToken();
- break;
- case tok_unary:
- getNextToken();
- if (!isascii(CurTok))
- return LogErrorP("Expected unary operator");
- FnName = "unary";
- FnName += (char)CurTok;
- Kind = 1;
- getNextToken();
- break;
- case tok_binary:
- ...
- As with binary operators, we name unary operators with a name that
- includes the operator character. This assists us at code generation
- time. Speaking of, the final piece we need to add is codegen support for
- unary operators. It looks like this:
- .. code-block:: c++
- Value *UnaryExprAST::codegen() {
- Value *OperandV = Operand->codegen();
- if (!OperandV)
- return nullptr;
- Function *F = getFunction(std::string("unary") + Opcode);
- if (!F)
- return LogErrorV("Unknown unary operator");
- return Builder.CreateCall(F, OperandV, "unop");
- }
- This code is similar to, but simpler than, the code for binary
- operators. It is simpler primarily because it doesn't need to handle any
- predefined operators.
- Kicking the Tires
- =================
- It is somewhat hard to believe, but with a few simple extensions we've
- covered in the last chapters, we have grown a real-ish language. With
- this, we can do a lot of interesting things, including I/O, math, and a
- bunch of other things. For example, we can now add a nice sequencing
- operator (printd is defined to print out the specified value and a
- newline):
- ::
- ready> extern printd(x);
- Read extern:
- declare double @printd(double)
- ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.
- ...
- ready> printd(123) : printd(456) : printd(789);
- 123.000000
- 456.000000
- 789.000000
- Evaluated to 0.000000
- We can also define a bunch of other "primitive" operations, such as:
- ::
- # Logical unary not.
- def unary!(v)
- if v then
- 0
- else
- 1;
- # Unary negate.
- def unary-(v)
- 0-v;
- # Define > with the same precedence as <.
- def binary> 10 (LHS RHS)
- RHS < LHS;
- # Binary logical or, which does not short circuit.
- def binary| 5 (LHS RHS)
- if LHS then
- 1
- else if RHS then
- 1
- else
- 0;
- # Binary logical and, which does not short circuit.
- def binary& 6 (LHS RHS)
- if !LHS then
- 0
- else
- !!RHS;
- # Define = with slightly lower precedence than relationals.
- def binary = 9 (LHS RHS)
- !(LHS < RHS | LHS > RHS);
- # Define ':' for sequencing: as a low-precedence operator that ignores operands
- # and just returns the RHS.
- def binary : 1 (x y) y;
- Given the previous if/then/else support, we can also define interesting
- functions for I/O. For example, the following prints out a character
- whose "density" reflects the value passed in: the lower the value, the
- denser the character:
- ::
- ready> extern putchard(char);
- ...
- ready> def printdensity(d)
- if d > 8 then
- putchard(32) # ' '
- else if d > 4 then
- putchard(46) # '.'
- else if d > 2 then
- putchard(43) # '+'
- else
- putchard(42); # '*'
- ...
- ready> printdensity(1): printdensity(2): printdensity(3):
- printdensity(4): printdensity(5): printdensity(9):
- putchard(10);
- **++.
- Evaluated to 0.000000
- Based on these simple primitive operations, we can start to define more
- interesting things. For example, here's a little function that determines
- the number of iterations it takes for a certain function in the complex
- plane to diverge:
- ::
- # Determine whether the specific location diverges.
- # Solve for z = z^2 + c in the complex plane.
- def mandelconverger(real imag iters creal cimag)
- if iters > 255 | (real*real + imag*imag > 4) then
- iters
- else
- mandelconverger(real*real - imag*imag + creal,
- 2*real*imag + cimag,
- iters+1, creal, cimag);
- # Return the number of iterations required for the iteration to escape
- def mandelconverge(real imag)
- mandelconverger(real, imag, 0, real, imag);
- This "``z = z2 + c``" function is a beautiful little creature that is
- the basis for computation of the `Mandelbrot
- Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our
- ``mandelconverge`` function returns the number of iterations that it
- takes for a complex orbit to escape, saturating to 255. This is not a
- very useful function by itself, but if you plot its value over a
- two-dimensional plane, you can see the Mandelbrot set. Given that we are
- limited to using putchard here, our amazing graphical output is limited,
- but we can whip together something using the density plotter above:
- ::
- # Compute and plot the mandelbrot set with the specified 2 dimensional range
- # info.
- def mandelhelp(xmin xmax xstep ymin ymax ystep)
- for y = ymin, y < ymax, ystep in (
- (for x = xmin, x < xmax, xstep in
- printdensity(mandelconverge(x,y)))
- : putchard(10)
- )
- # mandel - This is a convenient helper function for plotting the mandelbrot set
- # from the specified position with the specified Magnification.
- def mandel(realstart imagstart realmag imagmag)
- mandelhelp(realstart, realstart+realmag*78, realmag,
- imagstart, imagstart+imagmag*40, imagmag);
- Given this, we can try plotting out the mandelbrot set! Lets try it out:
- ::
- ready> mandel(-2.3, -1.3, 0.05, 0.07);
- *******************************+++++++++++*************************************
- *************************+++++++++++++++++++++++*******************************
- **********************+++++++++++++++++++++++++++++****************************
- *******************+++++++++++++++++++++.. ...++++++++*************************
- *****************++++++++++++++++++++++.... ...+++++++++***********************
- ***************+++++++++++++++++++++++..... ...+++++++++*********************
- **************+++++++++++++++++++++++.... ....+++++++++********************
- *************++++++++++++++++++++++...... .....++++++++*******************
- ************+++++++++++++++++++++....... .......+++++++******************
- ***********+++++++++++++++++++.... ... .+++++++*****************
- **********+++++++++++++++++....... .+++++++****************
- *********++++++++++++++........... ...+++++++***************
- ********++++++++++++............ ...++++++++**************
- ********++++++++++... .......... .++++++++**************
- *******+++++++++..... .+++++++++*************
- *******++++++++...... ..+++++++++*************
- *******++++++....... ..+++++++++*************
- *******+++++...... ..+++++++++*************
- *******.... .... ...+++++++++*************
- *******.... . ...+++++++++*************
- *******+++++...... ...+++++++++*************
- *******++++++....... ..+++++++++*************
- *******++++++++...... .+++++++++*************
- *******+++++++++..... ..+++++++++*************
- ********++++++++++... .......... .++++++++**************
- ********++++++++++++............ ...++++++++**************
- *********++++++++++++++.......... ...+++++++***************
- **********++++++++++++++++........ .+++++++****************
- **********++++++++++++++++++++.... ... ..+++++++****************
- ***********++++++++++++++++++++++....... .......++++++++*****************
- ************+++++++++++++++++++++++...... ......++++++++******************
- **************+++++++++++++++++++++++.... ....++++++++********************
- ***************+++++++++++++++++++++++..... ...+++++++++*********************
- *****************++++++++++++++++++++++.... ...++++++++***********************
- *******************+++++++++++++++++++++......++++++++*************************
- *********************++++++++++++++++++++++.++++++++***************************
- *************************+++++++++++++++++++++++*******************************
- ******************************+++++++++++++************************************
- *******************************************************************************
- *******************************************************************************
- *******************************************************************************
- Evaluated to 0.000000
- ready> mandel(-2, -1, 0.02, 0.04);
- **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
- ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
- *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
- *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
- *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
- ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
- **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
- ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
- ***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
- **********++++++++++++++++++++++++++++++++++++++++++++++.............
- ********+++++++++++++++++++++++++++++++++++++++++++..................
- *******+++++++++++++++++++++++++++++++++++++++.......................
- ******+++++++++++++++++++++++++++++++++++...........................
- *****++++++++++++++++++++++++++++++++............................
- *****++++++++++++++++++++++++++++...............................
- ****++++++++++++++++++++++++++...... .........................
- ***++++++++++++++++++++++++......... ...... ...........
- ***++++++++++++++++++++++............
- **+++++++++++++++++++++..............
- **+++++++++++++++++++................
- *++++++++++++++++++.................
- *++++++++++++++++............ ...
- *++++++++++++++..............
- *+++....++++................
- *.......... ...........
- *
- *.......... ...........
- *+++....++++................
- *++++++++++++++..............
- *++++++++++++++++............ ...
- *++++++++++++++++++.................
- **+++++++++++++++++++................
- **+++++++++++++++++++++..............
- ***++++++++++++++++++++++............
- ***++++++++++++++++++++++++......... ...... ...........
- ****++++++++++++++++++++++++++...... .........................
- *****++++++++++++++++++++++++++++...............................
- *****++++++++++++++++++++++++++++++++............................
- ******+++++++++++++++++++++++++++++++++++...........................
- *******+++++++++++++++++++++++++++++++++++++++.......................
- ********+++++++++++++++++++++++++++++++++++++++++++..................
- Evaluated to 0.000000
- ready> mandel(-0.9, -1.4, 0.02, 0.03);
- *******************************************************************************
- *******************************************************************************
- *******************************************************************************
- **********+++++++++++++++++++++************************************************
- *+++++++++++++++++++++++++++++++++++++++***************************************
- +++++++++++++++++++++++++++++++++++++++++++++**********************************
- ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
- ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
- +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
- +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
- +++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
- +++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
- ++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
- +++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
- ++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
- ++++++++++++++++++++++++............. .......++++++++++++++++++++++******
- +++++++++++++++++++++++............. ........+++++++++++++++++++++++****
- ++++++++++++++++++++++........... ..........++++++++++++++++++++++***
- ++++++++++++++++++++........... .........++++++++++++++++++++++*
- ++++++++++++++++++............ ...........++++++++++++++++++++
- ++++++++++++++++............... .............++++++++++++++++++
- ++++++++++++++................. ...............++++++++++++++++
- ++++++++++++.................. .................++++++++++++++
- +++++++++.................. .................+++++++++++++
- ++++++........ . ......... ..++++++++++++
- ++............ ...... ....++++++++++
- .............. ...++++++++++
- .............. ....+++++++++
- .............. .....++++++++
- ............. ......++++++++
- ........... .......++++++++
- ......... ........+++++++
- ......... ........+++++++
- ......... ....+++++++
- ........ ...+++++++
- ....... ...+++++++
- ....+++++++
- .....+++++++
- ....+++++++
- ....+++++++
- ....+++++++
- Evaluated to 0.000000
- ready> ^D
- At this point, you may be starting to realize that Kaleidoscope is a
- real and powerful language. It may not be self-similar :), but it can be
- used to plot things that are!
- With this, we conclude the "adding user-defined operators" chapter of
- the tutorial. We have successfully augmented our language, adding the
- ability to extend the language in the library, and we have shown how
- this can be used to build a simple but interesting end-user application
- in Kaleidoscope. At this point, Kaleidoscope can build a variety of
- applications that are functional and can call functions with
- side-effects, but it can't actually define and mutate a variable itself.
- Strikingly, variable mutation is an important feature of some languages,
- and it is not at all obvious how to `add support for mutable
- variables <LangImpl07.html>`_ without having to add an "SSA construction"
- phase to your front-end. In the next chapter, we will describe how you
- can add variable mutation without building SSA in your front-end.
- Full Code Listing
- =================
- Here is the complete code listing for our running example, enhanced with
- the support for user-defined operators. To build this example, use:
- .. code-block:: bash
- # Compile
- clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
- # Run
- ./toy
- On some platforms, you will need to specify -rdynamic or
- -Wl,--export-dynamic when linking. This ensures that symbols defined in
- the main executable are exported to the dynamic linker and so are
- available for symbol resolution at run time. This is not needed if you
- compile your support code into a shared library, although doing that
- will cause problems on Windows.
- Here is the code:
- .. literalinclude:: ../../../examples/Kaleidoscope/Chapter6/toy.cpp
- :language: c++
- `Next: Extending the language: mutable variables / SSA
- construction <LangImpl07.html>`_
|