123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- ===================
- Debugging with XRay
- ===================
- This document shows an example of how you would go about analyzing applications
- built with XRay instrumentation. Here we will attempt to debug ``llc``
- compiling some sample LLVM IR generated by Clang.
- .. contents::
- :local:
- Building with XRay
- ------------------
- To debug an application with XRay instrumentation, we need to build it with a
- Clang that supports the ``-fxray-instrument`` option. See `XRay <XRay.html>`_
- for more technical details of how XRay works for background information.
- In our example, we need to add ``-fxray-instrument`` to the list of flags
- passed to Clang when building a binary. Note that we need to link with Clang as
- well to get the XRay runtime linked in appropriately. For building ``llc`` with
- XRay, we do something similar below for our LLVM build:
- ::
- $ mkdir -p llvm-build && cd llvm-build
- # Assume that the LLVM sources are at ../llvm
- $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
- -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument" -DCMAKE_CXX_FLAGS="-fxray-instrument" \
- # Once this finishes, we should build llc
- $ ninja llc
- To verify that we have an XRay instrumented binary, we can use ``objdump`` to
- look for the ``xray_instr_map`` section.
- ::
- $ objdump -h -j xray_instr_map ./bin/llc
- ./bin/llc: file format elf64-x86-64
-
- Sections:
- Idx Name Size VMA LMA File off Algn
- 14 xray_instr_map 00002fc0 00000000041516c6 00000000041516c6 03d516c6 2**0
- CONTENTS, ALLOC, LOAD, READONLY, DATA
- Getting Traces
- --------------
- By default, XRay does not write out the trace files or patch the application
- before main starts. If we run ``llc`` it should work like a normally built
- binary. If we want to get a full trace of the application's operations (of the
- functions we do end up instrumenting with XRay) then we need to enable XRay
- at application start. To do this, XRay checks the ``XRAY_OPTIONS`` environment
- variable.
- ::
- # The following doesn't create an XRay trace by default.
- $ ./bin/llc input.ll
- # We need to set the XRAY_OPTIONS to enable some features.
- $ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic verbosity=1" ./bin/llc input.ll
- ==69819==XRay: Log file in 'xray-log.llc.m35qPB'
- At this point we now have an XRay trace we can start analysing.
- The ``llvm-xray`` Tool
- ----------------------
- Having a trace then allows us to do basic accounting of the functions that were
- instrumented, and how much time we're spending in parts of the code. To make
- sense of this data, we use the ``llvm-xray`` tool which has a few subcommands
- to help us understand our trace.
- One of the things we can do is to get an accounting of the functions that have
- been instrumented. We can see an example accounting with ``llvm-xray account``:
- ::
- $ llvm-xray account xray-log.llc.m35qPB -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
- Functions with latencies: 29
- funcid count [ min, med, 90p, 99p, max] sum function
- 187 360 [ 0.000000, 0.000001, 0.000014, 0.000032, 0.000075] 0.001596 LLLexer.cpp:446:0: llvm::LLLexer::LexIdentifier()
- 85 130 [ 0.000000, 0.000000, 0.000018, 0.000023, 0.000156] 0.000799 X86ISelDAGToDAG.cpp:1984:0: (anonymous namespace)::X86DAGToDAGISel::Select(llvm::SDNode*)
- 138 130 [ 0.000000, 0.000000, 0.000017, 0.000155, 0.000155] 0.000774 SelectionDAGISel.cpp:2963:0: llvm::SelectionDAGISel::SelectCodeCommon(llvm::SDNode*, unsigned char const*, unsigned int)
- 188 103 [ 0.000000, 0.000000, 0.000003, 0.000123, 0.000214] 0.000737 LLParser.cpp:2692:0: llvm::LLParser::ParseValID(llvm::ValID&, llvm::LLParser::PerFunctionState*)
- 88 1 [ 0.000562, 0.000562, 0.000562, 0.000562, 0.000562] 0.000562 X86ISelLowering.cpp:83:0: llvm::X86TargetLowering::X86TargetLowering(llvm::X86TargetMachine const&, llvm::X86Subtarget const&)
- 125 102 [ 0.000001, 0.000003, 0.000010, 0.000017, 0.000049] 0.000471 Verifier.cpp:3714:0: (anonymous namespace)::Verifier::visitInstruction(llvm::Instruction&)
- 90 8 [ 0.000023, 0.000035, 0.000106, 0.000106, 0.000106] 0.000342 X86ISelLowering.cpp:3363:0: llvm::X86TargetLowering::LowerCall(llvm::TargetLowering::CallLoweringInfo&, llvm::SmallVectorImpl<llvm::SDValue>&) const
- 124 32 [ 0.000003, 0.000007, 0.000016, 0.000041, 0.000041] 0.000310 Verifier.cpp:1967:0: (anonymous namespace)::Verifier::visitFunction(llvm::Function const&)
- 123 1 [ 0.000302, 0.000302, 0.000302, 0.000302, 0.000302] 0.000302 LLVMContextImpl.cpp:54:0: llvm::LLVMContextImpl::~LLVMContextImpl()
- 139 46 [ 0.000000, 0.000002, 0.000006, 0.000008, 0.000019] 0.000138 TargetLowering.cpp:506:0: llvm::TargetLowering::SimplifyDemandedBits(llvm::SDValue, llvm::APInt const&, llvm::APInt&, llvm::APInt&, llvm::TargetLowering::TargetLoweringOpt&, unsigned int, bool) const
- This shows us that for our input file, ``llc`` spent the most cumulative time
- in the lexer (a total of 1 millisecond). If we wanted for example to work with
- this data in a spreadsheet, we can output the results as CSV using the
- ``-format=csv`` option to the command for further analysis.
- If we want to get a textual representation of the raw trace we can use the
- ``llvm-xray convert`` tool to get YAML output. The first few lines of that
- output for an example trace would look like the following:
- ::
- $ llvm-xray convert -f yaml -symbolize -instr_map=./bin/llc xray-log.llc.m35qPB
- ---
- header:
- version: 1
- type: 0
- constant-tsc: true
- nonstop-tsc: true
- cycle-frequency: 2601000000
- records:
- - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426023268520 }
- - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426023523052 }
- - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426029925386 }
- - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426030031128 }
- - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426046951388 }
- - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047282020 }
- - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426047857332 }
- - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047984152 }
- - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048036584 }
- - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048042292 }
- - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048055056 }
- - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048067316 }
- Controlling Fidelity
- --------------------
- So far in our examples, we haven't been getting full coverage of the functions
- we have in the binary. To get that, we need to modify the compiler flags so
- that we can instrument more (if not all) the functions we have in the binary.
- We have two options for doing that, and we explore both of these below.
- Instruction Threshold
- `````````````````````
- The first "blunt" way of doing this is by setting the minimum threshold for
- function bodies to 1. We can do that with the
- ``-fxray-instruction-threshold=N`` flag when building our binary. We rebuild
- ``llc`` with this option and observe the results:
- ::
- $ rm CMakeCache.txt
- $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
- -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument -fxray-instruction-threshold=1" \
- -DCMAKE_CXX_FLAGS="-fxray-instrument -fxray-instruction-threshold=1"
- $ ninja llc
- $ XRAY_OPTIONS="patch_premain=true" ./bin/llc input.ll
- ==69819==XRay: Log file in 'xray-log.llc.5rqxkU'
- $ llvm-xray account xray-log.llc.5rqxkU -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
- Functions with latencies: 36652
- funcid count [ min, med, 90p, 99p, max] sum function
- 75 1 [ 0.672368, 0.672368, 0.672368, 0.672368, 0.672368] 0.672368 llc.cpp:271:0: main
- 78 1 [ 0.626455, 0.626455, 0.626455, 0.626455, 0.626455] 0.626455 llc.cpp:381:0: compileModule(char**, llvm::LLVMContext&)
- 139617 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1723:0: llvm::legacy::PassManager::run(llvm::Module&)
- 139610 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1681:0: llvm::legacy::PassManagerImpl::run(llvm::Module&)
- 139612 1 [ 0.470948, 0.470948, 0.470948, 0.470948, 0.470948] 0.470948 LegacyPassManager.cpp:1564:0: (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&)
- 139607 2 [ 0.147345, 0.315994, 0.315994, 0.315994, 0.315994] 0.463340 LegacyPassManager.cpp:1530:0: llvm::FPPassManager::runOnModule(llvm::Module&)
- 139605 21 [ 0.000002, 0.000002, 0.102593, 0.213336, 0.213336] 0.463331 LegacyPassManager.cpp:1491:0: llvm::FPPassManager::runOnFunction(llvm::Function&)
- 139563 26096 [ 0.000002, 0.000002, 0.000037, 0.000063, 0.000215] 0.225708 LegacyPassManager.cpp:1083:0: llvm::PMDataManager::findAnalysisPass(void const*, bool)
- 108055 188 [ 0.000002, 0.000120, 0.001375, 0.004523, 0.062624] 0.159279 MachineFunctionPass.cpp:38:0: llvm::MachineFunctionPass::runOnFunction(llvm::Function&)
- 62635 22 [ 0.000041, 0.000046, 0.000050, 0.126744, 0.126744] 0.127715 X86TargetMachine.cpp:242:0: llvm::X86TargetMachine::getSubtargetImpl(llvm::Function const&) const
- Instrumentation Attributes
- ``````````````````````````
- The other way is to use configuration files for selecting which functions
- should always be instrumented by the compiler. This gives us a way of ensuring
- that certain functions are either always or never instrumented by not having to
- add the attribute to the source.
- To use this feature, you can define one file for the functions to always
- instrument, and another for functions to never instrument. The format of these
- files are exactly the same as the SanitizerLists files that control similar
- things for the sanitizer implementations. For example:
- ::
- # xray-attr-list.txt
- # always instrument functions that match the following filters:
- [always]
- fun:main
- # never instrument functions that match the following filters:
- [never]
- fun:__cxx_*
- Given the file above we can re-build by providing it to the
- ``-fxray-attr-list=`` flag to clang. You can have multiple files, each defining
- different sets of attribute sets, to be combined into a single list by clang.
- The XRay stack tool
- -------------------
- Given a trace, and optionally an instrumentation map, the ``llvm-xray stack``
- command can be used to analyze a call stack graph constructed from the function
- call timeline.
- The way to use the command is to output the top stacks by call count and time spent.
- ::
- $ llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc
- Unique Stacks: 3069
- Top 10 Stacks by leaf sum:
- Sum: 9633790
- lvl function count sum
- #0 main 1 58421550
- #1 compileModule(char**, llvm::LLVMContext&) 1 51440360
- #2 llvm::legacy::PassManagerImpl::run(llvm::Module&) 1 40535375
- #3 llvm::FPPassManager::runOnModule(llvm::Module&) 2 39337525
- #4 llvm::FPPassManager::runOnFunction(llvm::Function&) 6 39331465
- #5 llvm::PMDataManager::verifyPreservedAnalysis(llvm::Pass*) 399 16628590
- #6 llvm::PMTopLevelManager::findAnalysisPass(void const*) 4584 15155600
- #7 llvm::PMDataManager::findAnalysisPass(void const*, bool) 32088 9633790
- ..etc..
- In the default mode, identical stacks on different threads are independently
- aggregated. In a multithreaded program, you may end up having identical call
- stacks fill your list of top calls.
- To address this, you may specify the ``-aggregate-threads`` or
- ``-per-thread-stacks`` flags. ``-per-thread-stacks`` treats the thread id as an
- implicit root in each call stack tree, while ``-aggregate-threads`` combines
- identical stacks from all threads.
- Flame Graph Generation
- ----------------------
- The ``llvm-xray stack`` tool may also be used to generate flamegraphs for
- visualizing your instrumented invocations. The tool does not generate the graphs
- themselves, but instead generates a format that can be used with Brendan Gregg's
- FlameGraph tool, currently available on `github
- <https://github.com/brendangregg/FlameGraph>`_.
- To generate output for a flamegraph, a few more options are necessary.
- - ``-all-stacks`` - Emits all of the stacks.
- - ``-stack-format`` - Choose the flamegraph output format 'flame'.
- - ``-aggregation-type`` - Choose the metric to graph.
- You may pipe the command output directly to the flamegraph tool to obtain an
- svg file.
- ::
- $llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc -stack-format=flame -aggregation-type=time -all-stacks | \
- /path/to/FlameGraph/flamegraph.pl > flamegraph.svg
- If you open the svg in a browser, mouse events allow exploring the call stacks.
- Chrome Trace Viewer Visualization
- ---------------------------------
- We can also generate a trace which can be loaded by the Chrome Trace Viewer
- from the same generated trace:
- ::
- $ llvm-xray convert -symbolize -instr_map=./bin/llc \
- -output-format=trace_event xray-log.llc.5rqxkU \
- | gzip > llc-trace.txt.gz
- From a Chrome browser, navigating to ``chrome:///tracing`` allows us to load
- the ``sample-trace.txt.gz`` file to visualize the execution trace.
- Further Exploration
- -------------------
- The ``llvm-xray`` tool has a few other subcommands that are in various stages
- of being developed. One interesting subcommand that can highlight a few
- interesting things is the ``graph`` subcommand. Given for example the following
- toy program that we build with XRay instrumentation, we can see how the
- generated graph may be a helpful indicator of where time is being spent for the
- application.
- .. code-block:: c++
- // sample.cc
- #include <iostream>
- #include <thread>
- [[clang::xray_always_instrument]] void f() {
- std::cerr << '.';
- }
- [[clang::xray_always_instrument]] void g() {
- for (int i = 0; i < 1 << 10; ++i) {
- std::cerr << '-';
- }
- }
- int main(int argc, char* argv[]) {
- std::thread t1([] {
- for (int i = 0; i < 1 << 10; ++i)
- f();
- });
- std::thread t2([] {
- g();
- });
- t1.join();
- t2.join();
- std::cerr << '\n';
- }
- We then build the above with XRay instrumentation:
- ::
- $ clang++ -o sample -O3 sample.cc -std=c++11 -fxray-instrument -fxray-instruction-threshold=1
- $ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic" ./sample
- We can then explore the graph rendering of the trace generated by this sample
- application. We assume you have the graphviz toosl available in your system,
- including both ``unflatten`` and ``dot``. If you prefer rendering or exploring
- the graph using another tool, then that should be feasible as well. ``llvm-xray
- graph`` will create DOT format graphs which should be usable in most graph
- rendering applications. One example invocation of the ``llvm-xray graph``
- command should yield some interesting insights to the workings of C++
- applications:
- ::
- $ llvm-xray graph xray-log.sample.* -m sample -color-edges=sum -edge-label=sum \
- | unflatten -f -l10 | dot -Tsvg -o sample.svg
- Next Steps
- ----------
- If you have some interesting analyses you'd like to implement as part of the
- llvm-xray tool, please feel free to propose them on the llvm-dev@ mailing list.
- The following are some ideas to inspire you in getting involved and potentially
- making things better.
- - Implement a query/filtering library that allows for finding patterns in the
- XRay traces.
- - Collecting function call stacks and how often they're encountered in the
- XRay trace.
|