12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979 |
- =======================
- Writing an LLVM Backend
- =======================
- .. toctree::
- :hidden:
- HowToUseInstrMappings
- .. contents::
- :local:
- Introduction
- ============
- This document describes techniques for writing compiler backends that convert
- the LLVM Intermediate Representation (IR) to code for a specified machine or
- other languages. Code intended for a specific machine can take the form of
- either assembly code or binary code (usable for a JIT compiler).
- The backend of LLVM features a target-independent code generator that may
- create output for several types of target CPUs --- including X86, PowerPC,
- ARM, and SPARC. The backend may also be used to generate code targeted at SPUs
- of the Cell processor or GPUs to support the execution of compute kernels.
- The document focuses on existing examples found in subdirectories of
- ``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document
- focuses on the example of creating a static compiler (one that emits text
- assembly) for a SPARC target, because SPARC has fairly standard
- characteristics, such as a RISC instruction set and straightforward calling
- conventions.
- Audience
- --------
- The audience for this document is anyone who needs to write an LLVM backend to
- generate code for a specific hardware or software target.
- Prerequisite Reading
- --------------------
- These essential documents must be read before reading this document:
- * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
- the LLVM assembly language.
- * :doc:`CodeGenerator` --- a guide to the components (classes and code
- generation algorithms) for translating the LLVM internal representation into
- machine code for a specified target. Pay particular attention to the
- descriptions of code generation stages: Instruction Selection, Scheduling and
- Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
- Insertion, Late Machine Code Optimizations, and Code Emission.
- * :doc:`TableGen/index` --- a document that describes the TableGen
- (``tblgen``) application that manages domain-specific information to support
- LLVM code generation. TableGen processes input from a target description
- file (``.td`` suffix) and generates C++ code that can be used for code
- generation.
- * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
- are several ``SelectionDAG`` processing steps.
- To follow the SPARC examples in this document, have a copy of `The SPARC
- Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
- reference. For details about the ARM instruction set, refer to the `ARM
- Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about
- the GNU Assembler format (``GAS``), see `Using As
- <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
- assembly printer. "Using As" contains a list of target machine dependent
- features.
- Basic Steps
- -----------
- To write a compiler backend for LLVM that converts the LLVM IR to code for a
- specified target (machine or other language), follow these steps:
- * Create a subclass of the ``TargetMachine`` class that describes
- characteristics of your target machine. Copy existing examples of specific
- ``TargetMachine`` class and header files; for example, start with
- ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
- names for your target. Similarly, change code that references "``Sparc``" to
- reference your target.
- * Describe the register set of the target. Use TableGen to generate code for
- register definition, register aliases, and register classes from a
- target-specific ``RegisterInfo.td`` input file. You should also write
- additional code for a subclass of the ``TargetRegisterInfo`` class that
- represents the class register file data used for register allocation and also
- describes the interactions between registers.
- * Describe the instruction set of the target. Use TableGen to generate code
- for target-specific instructions from target-specific versions of
- ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write
- additional code for a subclass of the ``TargetInstrInfo`` class to represent
- machine instructions supported by the target machine.
- * Describe the selection and conversion of the LLVM IR from a Directed Acyclic
- Graph (DAG) representation of instructions to native target-specific
- instructions. Use TableGen to generate code that matches patterns and
- selects instructions based on additional information in a target-specific
- version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``,
- where ``XXX`` identifies the specific target, to perform pattern matching and
- DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp``
- to replace or remove operations and data types that are not supported
- natively in a SelectionDAG.
- * Write code for an assembly printer that converts LLVM IR to a GAS format for
- your target machine. You should add assembly strings to the instructions
- defined in your target-specific version of ``TargetInstrInfo.td``. You
- should also write code for a subclass of ``AsmPrinter`` that performs the
- LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
- * Optionally, add support for subtargets (i.e., variants with different
- capabilities). You should also write code for a subclass of the
- ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
- ``-mattr=`` command-line options.
- * Optionally, add JIT support and create a machine code emitter (subclass of
- ``TargetJITInfo``) that is used to emit binary code directly into memory.
- In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
- implement them later. Initially, you may not know which private members that
- the class will need and which components will need to be subclassed.
- Preliminaries
- -------------
- To actually create your compiler backend, you need to create and modify a few
- files. The absolute minimum is discussed here. But to actually use the LLVM
- target-independent code generator, you must perform the steps described in the
- :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
- First, you should create a subdirectory under ``lib/Target`` to hold all the
- files related to your target. If your target is called "Dummy", create the
- directory ``lib/Target/Dummy``.
- In this new directory, create a ``CMakeLists.txt``. It is easiest to copy a
- ``CMakeLists.txt`` of another target and modify it. It should at least contain
- the ``LLVM_TARGET_DEFINITIONS`` variable. The library can be named ``LLVMDummy``
- (for example, see the MIPS target). Alternatively, you can split the library
- into ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which
- should be implemented in a subdirectory below ``lib/Target/Dummy`` (for example,
- see the PowerPC target).
- Note that these two naming schemes are hardcoded into ``llvm-config``. Using
- any other naming scheme will confuse ``llvm-config`` and produce a lot of
- (seemingly unrelated) linker errors when linking ``llc``.
- To make your target actually do something, you need to implement a subclass of
- ``TargetMachine``. This implementation should typically be in the file
- ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
- directory will be built and should work. To use LLVM's target independent code
- generator, you should do what all current machine backends do: create a
- subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a
- subclass of ``TargetMachine``.)
- To get LLVM to actually build and link your target, you need to run ``cmake``
- with ``-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=Dummy``. This will build your
- target without needing to add it to the list of all the targets.
- Once your target is stable, you can add it to the ``LLVM_ALL_TARGETS`` variable
- located in the main ``CMakeLists.txt``.
- Target Machine
- ==============
- ``LLVMTargetMachine`` is designed as a base class for targets implemented with
- the LLVM target-independent code generator. The ``LLVMTargetMachine`` class
- should be specialized by a concrete target class that implements the various
- virtual methods. ``LLVMTargetMachine`` is defined as a subclass of
- ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The
- ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
- numerous command-line options.
- To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
- by copying an existing ``TargetMachine`` class and header. You should name the
- files that you create to reflect your specific target. For instance, for the
- SPARC target, name the files ``SparcTargetMachine.h`` and
- ``SparcTargetMachine.cpp``.
- For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
- have access methods to obtain objects that represent target components. These
- methods are named ``get*Info``, and are intended to obtain the instruction set
- (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
- (``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also
- implement the ``getDataLayout`` method to access an object with target-specific
- data characteristics, such as data type size and alignment requirements.
- For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
- declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
- simply return a class member.
- .. code-block:: c++
- namespace llvm {
- class Module;
- class SparcTargetMachine : public LLVMTargetMachine {
- const DataLayout DataLayout; // Calculates type size & alignment
- SparcSubtarget Subtarget;
- SparcInstrInfo InstrInfo;
- TargetFrameInfo FrameInfo;
- protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
- public:
- SparcTargetMachine(const Module &M, const std::string &FS);
- virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
- virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
- virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
- virtual const TargetRegisterInfo *getRegisterInfo() const {
- return &InstrInfo.getRegisterInfo();
- }
- virtual const DataLayout *getDataLayout() const { return &DataLayout; }
- static unsigned getModuleMatchQuality(const Module &M);
- // Pass Pipeline Configuration
- virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
- virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
- };
- } // end namespace llvm
- * ``getInstrInfo()``
- * ``getRegisterInfo()``
- * ``getFrameInfo()``
- * ``getDataLayout()``
- * ``getSubtargetImpl()``
- For some targets, you also need to support the following methods:
- * ``getTargetLowering()``
- * ``getJITInfo()``
- Some architectures, such as GPUs, do not support jumping to an arbitrary
- program location and implement branching using masked execution and loop using
- special instructions around the loop body. In order to avoid CFG modifications
- that introduce irreducible control flow not handled by such hardware, a target
- must call `setRequiresStructuredCFG(true)` when being initialized.
- In addition, the ``XXXTargetMachine`` constructor should specify a
- ``TargetDescription`` string that determines the data layout for the target
- machine, including characteristics such as pointer size, alignment, and
- endianness. For example, the constructor for ``SparcTargetMachine`` contains
- the following:
- .. code-block:: c++
- SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
- : DataLayout("E-p:32:32-f128:128:128"),
- Subtarget(M, FS), InstrInfo(Subtarget),
- FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
- }
- Hyphens separate portions of the ``TargetDescription`` string.
- * An upper-case "``E``" in the string indicates a big-endian target data model.
- A lower-case "``e``" indicates little-endian.
- * "``p:``" is followed by pointer information: size, ABI alignment, and
- preferred alignment. If only two figures follow "``p:``", then the first
- value is pointer size, and the second value is both ABI and preferred
- alignment.
- * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
- "``a``" (corresponding to integer, floating point, vector, or aggregate).
- "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
- alignment. "``f``" is followed by three values: the first indicates the size
- of a long double, then ABI alignment, and then ABI preferred alignment.
- Target Registration
- ===================
- You must also register your target with the ``TargetRegistry``, which is what
- other LLVM tools use to be able to lookup and use your target at runtime. The
- ``TargetRegistry`` can be used directly, but for most targets there are helper
- templates which should take care of the work for you.
- All targets should declare a global ``Target`` object which is used to
- represent the target during registration. Then, in the target's ``TargetInfo``
- library, the target should define that object and use the ``RegisterTarget``
- template to register the target. For example, the Sparc registration code
- looks like this:
- .. code-block:: c++
- Target llvm::getTheSparcTarget();
- extern "C" void LLVMInitializeSparcTargetInfo() {
- RegisterTarget<Triple::sparc, /*HasJIT=*/false>
- X(getTheSparcTarget(), "sparc", "Sparc");
- }
- This allows the ``TargetRegistry`` to look up the target by name or by target
- triple. In addition, most targets will also register additional features which
- are available in separate libraries. These registration steps are separate,
- because some clients may wish to only link in some parts of the target --- the
- JIT code generator does not require the use of the assembler printer, for
- example. Here is an example of registering the Sparc assembly printer:
- .. code-block:: c++
- extern "C" void LLVMInitializeSparcAsmPrinter() {
- RegisterAsmPrinter<SparcAsmPrinter> X(getTheSparcTarget());
- }
- For more information, see "`llvm/Target/TargetRegistry.h
- </doxygen/TargetRegistry_8h-source.html>`_".
- Register Set and Register Classes
- =================================
- You should describe a concrete target-specific class that represents the
- register file of a target machine. This class is called ``XXXRegisterInfo``
- (where ``XXX`` identifies the target) and represents the class register file
- data that is used for register allocation. It also describes the interactions
- between registers.
- You also need to define register classes to categorize related registers. A
- register class should be added for groups of registers that are all treated the
- same way for some instruction. Typical examples are register classes for
- integer, floating-point, or vector registers. A register allocator allows an
- instruction to use any register in a specified register class to perform the
- instruction in a similar manner. Register classes allocate virtual registers
- to instructions from these sets, and register classes let the
- target-independent register allocator automatically choose the actual
- registers.
- Much of the code for registers, including register definition, register
- aliases, and register classes, is generated by TableGen from
- ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
- and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the
- implementation of ``XXXRegisterInfo`` requires hand-coding.
- Defining a Register
- -------------------
- The ``XXXRegisterInfo.td`` file typically starts with register definitions for
- a target machine. The ``Register`` class (specified in ``Target.td``) is used
- to define an object for each register. The specified string ``n`` becomes the
- ``Name`` of the register. The basic ``Register`` object does not have any
- subregisters and does not specify any aliases.
- .. code-block:: text
- class Register<string n> {
- string Namespace = "";
- string AsmName = n;
- string Name = n;
- int SpillSize = 0;
- int SpillAlignment = 0;
- list<Register> Aliases = [];
- list<Register> SubRegs = [];
- list<int> DwarfNumbers = [];
- }
- For example, in the ``X86RegisterInfo.td`` file, there are register definitions
- that utilize the ``Register`` class, such as:
- .. code-block:: text
- def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
- This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
- that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
- register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
- representing 3 different modes: the first element is for X86-64, the second for
- exception handling (EH) on X86-32, and the third is generic. -1 is a special
- Dwarf number that indicates the gcc number is undefined, and -2 indicates the
- register number is invalid for this mode.
- From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
- generates this code in the ``X86GenRegisterInfo.inc`` file:
- .. code-block:: c++
- static const unsigned GR8[] = { X86::AL, ... };
- const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
- const TargetRegisterDesc RegisterDescriptors[] = {
- ...
- { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
- From the register info file, TableGen generates a ``TargetRegisterDesc`` object
- for each register. ``TargetRegisterDesc`` is defined in
- ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
- .. code-block:: c++
- struct TargetRegisterDesc {
- const char *AsmName; // Assembly language name for the register
- const char *Name; // Printable name for the reg (for debugging)
- const unsigned *AliasSet; // Register Alias Set
- const unsigned *SubRegs; // Sub-register set
- const unsigned *ImmSubRegs; // Immediate sub-register set
- const unsigned *SuperRegs; // Super-register set
- };
- TableGen uses the entire target description file (``.td``) to determine text
- names for the register (in the ``AsmName`` and ``Name`` fields of
- ``TargetRegisterDesc``) and the relationships of other registers to the defined
- register (in the other ``TargetRegisterDesc`` fields). In this example, other
- definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
- aliases for one another, so TableGen generates a null-terminated array
- (``AL_AliasSet``) for this register alias set.
- The ``Register`` class is commonly used as a base class for more complex
- classes. In ``Target.td``, the ``Register`` class is the base for the
- ``RegisterWithSubRegs`` class that is used to define registers that need to
- specify subregisters in the ``SubRegs`` list, as shown here:
- .. code-block:: text
- class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
- let SubRegs = subregs;
- }
- In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
- a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
- and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a
- feature common to these subclasses. Note the use of "``let``" expressions to
- override values that are initially defined in a superclass (such as ``SubRegs``
- field in the ``Rd`` class).
- .. code-block:: text
- class SparcReg<string n> : Register<n> {
- field bits<5> Num;
- let Namespace = "SP";
- }
- // Ri - 32-bit integer registers
- class Ri<bits<5> num, string n> :
- SparcReg<n> {
- let Num = num;
- }
- // Rf - 32-bit floating-point registers
- class Rf<bits<5> num, string n> :
- SparcReg<n> {
- let Num = num;
- }
- // Rd - Slots in the FP register file for 64-bit floating-point values.
- class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
- let Num = num;
- let SubRegs = subregs;
- }
- In the ``SparcRegisterInfo.td`` file, there are register definitions that
- utilize these subclasses of ``Register``, such as:
- .. code-block:: text
- def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
- def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
- ...
- def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
- def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
- ...
- def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
- def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
- The last two registers shown above (``D0`` and ``D1``) are double-precision
- floating-point registers that are aliases for pairs of single-precision
- floating-point sub-registers. In addition to aliases, the sub-register and
- super-register relationships of the defined register are in fields of a
- register's ``TargetRegisterDesc``.
- Defining a Register Class
- -------------------------
- The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
- object that represents a group of related registers and also defines the
- default allocation order of the registers. A target description file
- ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
- using the following class:
- .. code-block:: text
- class RegisterClass<string namespace,
- list<ValueType> regTypes, int alignment, dag regList> {
- string Namespace = namespace;
- list<ValueType> RegTypes = regTypes;
- int Size = 0; // spill size, in bits; zero lets tblgen pick the size
- int Alignment = alignment;
- // CopyCost is the cost of copying a value between two registers
- // default value 1 means a single instruction
- // A negative value means copying is extremely expensive or impossible
- int CopyCost = 1;
- dag MemberList = regList;
- // for register classes that are subregisters of this class
- list<RegisterClass> SubRegClassList = [];
- code MethodProtos = [{}]; // to insert arbitrary code
- code MethodBodies = [{}];
- }
- To define a ``RegisterClass``, use the following 4 arguments:
- * The first argument of the definition is the name of the namespace.
- * The second argument is a list of ``ValueType`` register type values that are
- defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include
- integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
- floating-point types (``f32``, ``f64``), and vector types (for example,
- ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass``
- must have the same ``ValueType``, but some registers may store vector data in
- different configurations. For example a register that can process a 128-bit
- vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
- 32-bit integers, and so on.
- * The third argument of the ``RegisterClass`` definition specifies the
- alignment required of the registers when they are stored or loaded to
- memory.
- * The final argument, ``regList``, specifies which registers are in this class.
- If an alternative allocation order method is not specified, then ``regList``
- also defines the order of allocation used by the register allocator. Besides
- simply listing registers with ``(add R0, R1, ...)``, more advanced set
- operators are available. See ``include/llvm/Target/Target.td`` for more
- information.
- In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
- ``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the
- first argument defines the namespace with the string "``SP``". ``FPRegs``
- defines a group of 32 single-precision floating-point registers (``F0`` to
- ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
- (``D0-D15``).
- .. code-block:: text
- // F0, F1, F2, ..., F31
- def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
- def DFPRegs : RegisterClass<"SP", [f64], 64,
- (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
- D9, D10, D11, D12, D13, D14, D15)>;
- def IntRegs : RegisterClass<"SP", [i32], 32,
- (add L0, L1, L2, L3, L4, L5, L6, L7,
- I0, I1, I2, I3, I4, I5,
- O0, O1, O2, O3, O4, O5, O7,
- G1,
- // Non-allocatable regs:
- G2, G3, G4,
- O6, // stack ptr
- I6, // frame ptr
- I7, // return address
- G0, // constant zero
- G5, G6, G7 // reserved for kernel
- )>;
- Using ``SparcRegisterInfo.td`` with TableGen generates several output files
- that are intended for inclusion in other source code that you write.
- ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
- be included in the header file for the implementation of the SPARC register
- implementation that you write (``SparcRegisterInfo.h``). In
- ``SparcGenRegisterInfo.h.inc`` a new structure is defined called
- ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also
- specifies types, based upon the defined register classes: ``DFPRegsClass``,
- ``FPRegsClass``, and ``IntRegsClass``.
- ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
- included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
- implementation. The code below shows only the generated integer registers and
- associated register classes. The order of registers in ``IntRegs`` reflects
- the order in the definition of ``IntRegs`` in the target description file.
- .. code-block:: c++
- // IntRegs Register Class...
- static const unsigned IntRegs[] = {
- SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
- SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
- SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
- SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
- SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
- SP::G6, SP::G7,
- };
- // IntRegsVTs Register Class Value Types...
- static const MVT::ValueType IntRegsVTs[] = {
- MVT::i32, MVT::Other
- };
- namespace SP { // Register class instances
- DFPRegsClass DFPRegsRegClass;
- FPRegsClass FPRegsRegClass;
- IntRegsClass IntRegsRegClass;
- ...
- // IntRegs Sub-register Classes...
- static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
- NULL
- };
- ...
- // IntRegs Super-register Classes..
- static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
- NULL
- };
- ...
- // IntRegs Register Class sub-classes...
- static const TargetRegisterClass* const IntRegsSubclasses [] = {
- NULL
- };
- ...
- // IntRegs Register Class super-classes...
- static const TargetRegisterClass* const IntRegsSuperclasses [] = {
- NULL
- };
- IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
- IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
- IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
- }
- The register allocators will avoid using reserved registers, and callee saved
- registers are not used until all the volatile registers have been used. That
- is usually good enough, but in some cases it may be necessary to provide custom
- allocation orders.
- Implement a subclass of ``TargetRegisterInfo``
- ----------------------------------------------
- The final step is to hand code portions of ``XXXRegisterInfo``, which
- implements the interface described in ``TargetRegisterInfo.h`` (see
- :ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or
- ``false``, unless overridden. Here is a list of functions that are overridden
- for the SPARC implementation in ``SparcRegisterInfo.cpp``:
- * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
- order of the desired callee-save stack frame offset.
- * ``getReservedRegs`` --- Returns a bitset indexed by physical register
- numbers, indicating if a particular register is unavailable.
- * ``hasFP`` --- Return a Boolean indicating if a function should have a
- dedicated frame pointer register.
- * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
- instructions are used, this can be called to eliminate them.
- * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
- instructions that may use them.
- * ``emitPrologue`` --- Insert prologue code into the function.
- * ``emitEpilogue`` --- Insert epilogue code into the function.
- .. _instruction-set:
- Instruction Set
- ===============
- During the early stages of code generation, the LLVM IR code is converted to a
- ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
- containing target instructions. An ``SDNode`` has an opcode, operands, type
- requirements, and operation properties. For example, is an operation
- commutative, does an operation load from memory. The various operation node
- types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
- (values of the ``NodeType`` enum in the ``ISD`` namespace).
- TableGen uses the following target description (``.td``) input files to
- generate much of the code for instruction definition:
- * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
- other fundamental classes are defined.
- * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
- generators, contains ``SDTC*`` classes (selection DAG type constraint),
- definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
- ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
- ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
- * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
- instructions.
- * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
- condition codes, and instructions of an instruction set. For architecture
- modifications, a different file name may be used. For example, for Pentium
- with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
- MMX, this file is ``X86InstrMMX.td``.
- There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
- the target. The ``XXX.td`` file includes the other ``.td`` input files, but
- its contents are only directly important for subtargets.
- You should describe a concrete target-specific class ``XXXInstrInfo`` that
- represents machine instructions supported by a target machine.
- ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
- which describes one instruction. An instruction descriptor defines:
- * Opcode mnemonic
- * Number of operands
- * List of implicit register definitions and uses
- * Target-independent properties (such as memory access, is commutable)
- * Target-specific flags
- The Instruction class (defined in ``Target.td``) is mostly used as a base for
- more complex instruction classes.
- .. code-block:: text
- class Instruction {
- string Namespace = "";
- dag OutOperandList; // A dag containing the MI def operand list.
- dag InOperandList; // A dag containing the MI use operand list.
- string AsmString = ""; // The .s format to print the instruction with.
- list<dag> Pattern; // Set to the DAG pattern for this instruction.
- list<Register> Uses = [];
- list<Register> Defs = [];
- list<Predicate> Predicates = []; // predicates turned into isel match code
- ... remainder not shown for space ...
- }
- A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
- target-specific instruction that is defined in ``XXXInstrInfo.td``. The
- instruction objects should represent instructions from the architecture manual
- of the target machine (such as the SPARC Architecture Manual for the SPARC
- target).
- A single instruction from the architecture manual is often modeled as multiple
- target instructions, depending upon its operands. For example, a manual might
- describe an add instruction that takes a register or an immediate operand. An
- LLVM target could model this with two instructions named ``ADDri`` and
- ``ADDrr``.
- You should define a class for each instruction category and define each opcode
- as a subclass of the category with appropriate parameters such as the fixed
- binary encoding of opcodes and extended opcodes. You should map the register
- bits to the bits of the instruction in which they are encoded (for the JIT).
- Also you should specify how the instruction should be printed when the
- automatic assembly printer is used.
- As is described in the SPARC Architecture Manual, Version 8, there are three
- major 32-bit formats for instructions. Format 1 is only for the ``CALL``
- instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high
- bits of a register) instructions. Format 3 is for other instructions.
- Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
- ``InstSP`` is a base class for other instruction classes. Additional base
- classes are specified for more precise formats: for example in
- ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
- branches. There are three other base classes: ``F3_1`` for register/register
- operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
- floating-point operations. ``SparcInstrInfo.td`` also adds the base class
- ``Pseudo`` for synthetic SPARC instructions.
- ``SparcInstrInfo.td`` largely consists of operand and instruction definitions
- for the SPARC target. In ``SparcInstrInfo.td``, the following target
- description file entry, ``LDrr``, defines the Load Integer instruction for a
- Word (the ``LD`` SPARC opcode) from a memory address to a register. The first
- parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
- category of operation. The second parameter (``000000``\ :sub:`2`) is the
- specific operation value for ``LD``/Load Word. The third parameter is the
- output destination, which is a register operand and defined in the ``Register``
- target description file (``IntRegs``).
- .. code-block:: text
- def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
- "ld [$addr], $dst",
- [(set i32:$dst, (load ADDRrr:$addr))]>;
- The fourth parameter is the input source, which uses the address operand
- ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
- .. code-block:: text
- def MEMrr : Operand<i32> {
- let PrintMethod = "printMemOperand";
- let MIOperandInfo = (ops IntRegs, IntRegs);
- }
- The fifth parameter is a string that is used by the assembly printer and can be
- left as an empty string until the assembly printer interface is implemented.
- The sixth and final parameter is the pattern used to match the instruction
- during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
- This parameter is detailed in the next section, :ref:`instruction-selector`.
- Instruction class definitions are not overloaded for different operand types,
- so separate versions of instructions are needed for register, memory, or
- immediate value operands. For example, to perform a Load Integer instruction
- for a Word from an immediate operand to a register, the following instruction
- class is defined:
- .. code-block:: text
- def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
- "ld [$addr], $dst",
- [(set i32:$dst, (load ADDRri:$addr))]>;
- Writing these definitions for so many similar instructions can involve a lot of
- cut and paste. In ``.td`` files, the ``multiclass`` directive enables the
- creation of templates to define several instruction classes at once (using the
- ``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass``
- pattern ``F3_12`` is defined to create 2 instruction classes each time
- ``F3_12`` is invoked:
- .. code-block:: text
- multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
- def rr : F3_1 <2, Op3Val,
- (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- !strconcat(OpcStr, " $b, $c, $dst"),
- [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
- def ri : F3_2 <2, Op3Val,
- (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
- !strconcat(OpcStr, " $b, $c, $dst"),
- [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
- }
- So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
- instructions, as seen below, it creates four instruction objects: ``XORrr``,
- ``XORri``, ``ADDrr``, and ``ADDri``.
- .. code-block:: text
- defm XOR : F3_12<"xor", 0b000011, xor>;
- defm ADD : F3_12<"add", 0b000000, add>;
- ``SparcInstrInfo.td`` also includes definitions for condition codes that are
- referenced by branch instructions. The following definitions in
- ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
- For example, the 10\ :sup:`th` bit represents the "greater than" condition for
- integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
- floats.
- .. code-block:: text
- def ICC_NE : ICC_VAL< 9>; // Not Equal
- def ICC_E : ICC_VAL< 1>; // Equal
- def ICC_G : ICC_VAL<10>; // Greater
- ...
- def FCC_U : FCC_VAL<23>; // Unordered
- def FCC_G : FCC_VAL<22>; // Greater
- def FCC_UG : FCC_VAL<21>; // Unordered or Greater
- ...
- (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
- condition codes. Care must be taken to ensure the values in ``Sparc.h``
- correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``,
- ``SPCC::FCC_U = 23`` and so on.)
- Instruction Operand Mapping
- ---------------------------
- The code generator backend maps instruction operands to fields in the
- instruction. Operands are assigned to unbound fields in the instruction in the
- order they are defined. Fields are bound when they are assigned a value. For
- example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
- format instruction having three operands.
- .. code-block:: text
- def XNORrr : F3_1<2, 0b000111,
- (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- "xnor $b, $c, $dst",
- [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
- The instruction templates in ``SparcInstrFormats.td`` show the base class for
- ``F3_1`` is ``InstSP``.
- .. code-block:: text
- class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
- field bits<32> Inst;
- let Namespace = "SP";
- bits<2> op;
- let Inst{31-30} = op;
- dag OutOperandList = outs;
- dag InOperandList = ins;
- let AsmString = asmstr;
- let Pattern = pattern;
- }
- ``InstSP`` leaves the ``op`` field unbound.
- .. code-block:: text
- class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
- : InstSP<outs, ins, asmstr, pattern> {
- bits<5> rd;
- bits<6> op3;
- bits<5> rs1;
- let op{1} = 1; // Op = 2 or 3
- let Inst{29-25} = rd;
- let Inst{24-19} = op3;
- let Inst{18-14} = rs1;
- }
- ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
- fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
- ``rs1`` fields.
- .. code-block:: text
- class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
- string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
- bits<8> asi = 0; // asi not currently used
- bits<5> rs2;
- let op = opVal;
- let op3 = op3val;
- let Inst{13} = 0; // i field = 0
- let Inst{12-5} = asi; // address space identifier
- let Inst{4-0} = rs2;
- }
- ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1``
- format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
- fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
- and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
- Instruction Operand Name Mapping
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- TableGen will also generate a function called getNamedOperandIdx() which
- can be used to look up an operand's index in a MachineInstr based on its
- TableGen name. Setting the UseNamedOperandTable bit in an instruction's
- TableGen definition will add all of its operands to an enumeration in the
- llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
- table, which can be queried using getNamedOperandIdx()
- .. code-block:: text
- int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
- int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1
- int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2
- int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1
- ...
- The entries in the OpName enum are taken verbatim from the TableGen definitions,
- so operands with lowercase names will have lower case entries in the enum.
- To include the getNamedOperandIdx() function in your backend, you will need
- to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
- For example:
- XXXInstrInfo.cpp:
- .. code-block:: c++
- #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
- #include "XXXGenInstrInfo.inc"
- XXXInstrInfo.h:
- .. code-block:: c++
- #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
- #include "XXXGenInstrInfo.inc"
- namespace XXX {
- int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
- } // End namespace XXX
- Instruction Operand Types
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- TableGen will also generate an enumeration consisting of all named Operand
- types defined in the backend, in the llvm::XXX::OpTypes namespace.
- Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
- are defined for all targets in ``include/llvm/Target/Target.td``, and are
- available in each Target's OpTypes enum. Also, only named Operand types appear
- in the enumeration: anonymous types are ignored.
- For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both
- instances of the TableGen ``Operand`` class, which represent branch target
- operands:
- .. code-block:: text
- def brtarget : Operand<OtherVT>;
- def brtarget8 : Operand<OtherVT>;
- This results in:
- .. code-block:: c++
- namespace X86 {
- namespace OpTypes {
- enum OperandType {
- ...
- brtarget,
- brtarget8,
- ...
- i32imm,
- i64imm,
- ...
- OPERAND_TYPE_LIST_END
- } // End namespace OpTypes
- } // End namespace X86
- In typical TableGen fashion, to use the enum, you will need to define a
- preprocessor macro:
- .. code-block:: c++
- #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
- #include "XXXGenInstrInfo.inc"
- Instruction Scheduling
- ----------------------
- Instruction itineraries can be queried using MCDesc::getSchedClass(). The
- value can be named by an enumeration in llvm::XXX::Sched namespace generated
- by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
- the same as provided in XXXSchedule.td plus a default NoItinerary class.
- The schedule models are generated by TableGen by the SubtargetEmitter,
- using the ``CodeGenSchedModels`` class. This is distinct from the itinerary
- method of specifying machine resource use. The tool ``utils/schedcover.py``
- can be used to determine which instructions have been covered by the
- schedule model description and which haven't. The first step is to use the
- instructions below to create an output file. Then run ``schedcover.py`` on the
- output file:
- .. code-block:: shell
- $ <src>/utils/schedcover.py <build>/lib/Target/AArch64/tblGenSubtarget.with
- instruction, default, CortexA53Model, CortexA57Model, CycloneModel, ExynosM1Model, FalkorModel, KryoModel, ThunderX2T99Model, ThunderXT8XModel
- ABSv16i8, WriteV, , , CyWriteV3, M1WriteNMISC1, FalkorWr_2VXVY_2cyc, KryoWrite_2cyc_XY_XY_150ln, ,
- ABSv1i64, WriteV, , , CyWriteV3, M1WriteNMISC1, FalkorWr_1VXVY_2cyc, KryoWrite_2cyc_XY_noRSV_67ln, ,
- ...
- To capture the debug output from generating a schedule model, change to the
- appropriate target directory and use the following command:
- command with the ``subtarget-emitter`` debug option:
- .. code-block:: shell
- $ <build>/bin/llvm-tblgen -debug-only=subtarget-emitter -gen-subtarget \
- -I <src>/lib/Target/<target> -I <src>/include \
- -I <src>/lib/Target <src>/lib/Target/<target>/<target>.td \
- -o <build>/lib/Target/<target>/<target>GenSubtargetInfo.inc.tmp \
- > tblGenSubtarget.dbg 2>&1
- Where ``<build>`` is the build directory, ``src`` is the source directory,
- and ``<target>`` is the name of the target.
- To double check that the above command is what is needed, one can capture the
- exact TableGen command from a build by using:
- .. code-block:: shell
- $ VERBOSE=1 make ...
- and search for ``llvm-tblgen`` commands in the output.
- Instruction Relation Mapping
- ----------------------------
- This TableGen feature is used to relate instructions with each other. It is
- particularly useful when you have multiple instruction formats and need to
- switch between them after instruction selection. This entire feature is driven
- by relation models which can be defined in ``XXXInstrInfo.td`` files
- according to the target-specific instruction set. Relation models are defined
- using ``InstrMapping`` class as a base. TableGen parses all the models
- and generates instruction relation maps using the specified information.
- Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
- along with the functions to query them. For the detailed information on how to
- use this feature, please refer to :doc:`HowToUseInstrMappings`.
- Implement a subclass of ``TargetInstrInfo``
- -------------------------------------------
- The final step is to hand code portions of ``XXXInstrInfo``, which implements
- the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
- These functions return ``0`` or a Boolean or they assert, unless overridden.
- Here's a list of functions that are overridden for the SPARC implementation in
- ``SparcInstrInfo.cpp``:
- * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
- load from a stack slot, return the register number of the destination and the
- ``FrameIndex`` of the stack slot.
- * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
- store to a stack slot, return the register number of the destination and the
- ``FrameIndex`` of the stack slot.
- * ``copyPhysReg`` --- Copy values between a pair of physical registers.
- * ``storeRegToStackSlot`` --- Store a register value to a stack slot.
- * ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
- * ``storeRegToAddr`` --- Store a register value to memory.
- * ``loadRegFromAddr`` --- Load a register value from memory.
- * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
- store instruction for the specified operand(s).
- Branch Folding and If Conversion
- --------------------------------
- Performance can be improved by combining instructions or by eliminating
- instructions that are never reached. The ``AnalyzeBranch`` method in
- ``XXXInstrInfo`` may be implemented to examine conditional instructions and
- remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a
- machine basic block (MBB) for opportunities for improvement, such as branch
- folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine
- function passes (see the source files ``BranchFolding.cpp`` and
- ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
- to improve the control flow graph that represents the instructions.
- Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
- examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC
- does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
- shown below.
- ``AnalyzeBranch`` returns a Boolean value and takes four parameters:
- * ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
- * ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a
- conditional branch that evaluates to true, ``TBB`` is the destination.
- * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
- false, ``FBB`` is returned as the destination.
- * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
- condition for a conditional branch.
- In the simplest case, if a block ends without a branch, then it falls through
- to the successor block. No destination blocks are specified for either ``TBB``
- or ``FBB``, so both parameters return ``NULL``. The start of the
- ``AnalyzeBranch`` (see code below for the ARM target) shows the function
- parameters and the code for the simplest case.
- .. code-block:: c++
- bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
- MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- std::vector<MachineOperand> &Cond) const
- {
- MachineBasicBlock::iterator I = MBB.end();
- if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
- return false;
- If a block ends with a single unconditional branch instruction, then
- ``AnalyzeBranch`` (shown below) should return the destination of that branch in
- the ``TBB`` parameter.
- .. code-block:: c++
- if (LastOpc == ARM::B || LastOpc == ARM::tB) {
- TBB = LastInst->getOperand(0).getMBB();
- return false;
- }
- If a block ends with two unconditional branches, then the second branch is
- never reached. In that situation, as shown below, remove the last branch
- instruction and return the penultimate branch in the ``TBB`` parameter.
- .. code-block:: c++
- if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
- (LastOpc == ARM::B || LastOpc == ARM::tB)) {
- TBB = SecondLastInst->getOperand(0).getMBB();
- I = LastInst;
- I->eraseFromParent();
- return false;
- }
- A block may end with a single conditional branch instruction that falls through
- to successor block if the condition evaluates to false. In that case,
- ``AnalyzeBranch`` (shown below) should return the destination of that
- conditional branch in the ``TBB`` parameter and a list of operands in the
- ``Cond`` parameter to evaluate the condition.
- .. code-block:: c++
- if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
- // Block ends with fall-through condbranch.
- TBB = LastInst->getOperand(0).getMBB();
- Cond.push_back(LastInst->getOperand(1));
- Cond.push_back(LastInst->getOperand(2));
- return false;
- }
- If a block ends with both a conditional branch and an ensuing unconditional
- branch, then ``AnalyzeBranch`` (shown below) should return the conditional
- branch destination (assuming it corresponds to a conditional evaluation of
- "``true``") in the ``TBB`` parameter and the unconditional branch destination
- in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A
- list of operands to evaluate the condition should be returned in the ``Cond``
- parameter.
- .. code-block:: c++
- unsigned SecondLastOpc = SecondLastInst->getOpcode();
- if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
- (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
- TBB = SecondLastInst->getOperand(0).getMBB();
- Cond.push_back(SecondLastInst->getOperand(1));
- Cond.push_back(SecondLastInst->getOperand(2));
- FBB = LastInst->getOperand(0).getMBB();
- return false;
- }
- For the last two cases (ending with a single conditional branch or ending with
- one conditional and one unconditional branch), the operands returned in the
- ``Cond`` parameter can be passed to methods of other instructions to create new
- branches or perform other operations. An implementation of ``AnalyzeBranch``
- requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
- subsequent operations.
- ``AnalyzeBranch`` should return false indicating success in most circumstances.
- ``AnalyzeBranch`` should only return true when the method is stumped about what
- to do, for example, if a block has three terminating branches.
- ``AnalyzeBranch`` may return true if it encounters a terminator it cannot
- handle, such as an indirect branch.
- .. _instruction-selector:
- Instruction Selector
- ====================
- LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
- the ``SelectionDAG`` ideally represent native target instructions. During code
- generation, instruction selection passes are performed to convert non-native
- DAG instructions into native target-specific instructions. The pass described
- in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
- instruction selection. Optionally, a pass may be defined (in
- ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
- instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes
- operations and data types not supported natively (legalizes) in a
- ``SelectionDAG``.
- TableGen generates code for instruction selection using the following target
- description input files:
- * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
- target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
- included in ``XXXISelDAGToDAG.cpp``.
- * ``XXXCallingConv.td`` --- Contains the calling and return value conventions
- for the target architecture, and it generates ``XXXGenCallingConv.inc``,
- which is included in ``XXXISelLowering.cpp``.
- The implementation of an instruction selection pass must include a header that
- declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In
- ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
- selection pass into the queue of passes to run.
- The LLVM static compiler (``llc``) is an excellent tool for visualizing the
- contents of DAGs. To display the ``SelectionDAG`` before or after specific
- processing phases, use the command line options for ``llc``, described at
- :ref:`SelectionDAG-Process`.
- To describe instruction selector behavior, you should add patterns for lowering
- LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
- definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``,
- this entry defines a register store operation, and the last parameter describes
- a pattern with the store DAG operator.
- .. code-block:: text
- def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
- "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
- ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
- .. code-block:: text
- def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
- The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
- defined in an implementation of the Instructor Selector (such as
- ``SparcISelDAGToDAG.cpp``).
- In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
- below:
- .. code-block:: text
- def store : PatFrag<(ops node:$val, node:$ptr),
- (st node:$val, node:$ptr), [{
- if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
- return !ST->isTruncatingStore() &&
- ST->getAddressingMode() == ISD::UNINDEXED;
- return false;
- }]>;
- ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
- ``SelectCode`` method that is used to call the appropriate processing method
- for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE``
- for the ``ISD::STORE`` opcode.
- .. code-block:: c++
- SDNode *SelectCode(SDValue N) {
- ...
- MVT::ValueType NVT = N.getNode()->getValueType(0);
- switch (N.getOpcode()) {
- case ISD::STORE: {
- switch (NVT) {
- default:
- return Select_ISD_STORE(N);
- break;
- }
- break;
- }
- ...
- The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
- code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method
- is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
- instruction.
- .. code-block:: c++
- SDNode *Select_ISD_STORE(const SDValue &N) {
- SDValue Chain = N.getOperand(0);
- if (Predicate_store(N.getNode())) {
- SDValue N1 = N.getOperand(1);
- SDValue N2 = N.getOperand(2);
- SDValue CPTmp0;
- SDValue CPTmp1;
- // Pattern: (st:void i32:i32:$src,
- // ADDRrr:i32:$addr)<<P:Predicate_store>>
- // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
- // Pattern complexity = 13 cost = 1 size = 0
- if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
- N1.getNode()->getValueType(0) == MVT::i32 &&
- N2.getNode()->getValueType(0) == MVT::i32) {
- return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
- }
- ...
- The SelectionDAG Legalize Phase
- -------------------------------
- The Legalize phase converts a DAG to use types and operations that are natively
- supported by the target. For natively unsupported types and operations, you
- need to add code to the target-specific ``XXXTargetLowering`` implementation to
- convert unsupported types and operations to supported ones.
- In the constructor for the ``XXXTargetLowering`` class, first use the
- ``addRegisterClass`` method to specify which types are supported and which
- register classes are associated with them. The code for the register classes
- are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
- ``XXXGenRegisterInfo.h.inc``. For example, the implementation of the
- constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
- starts with the following code:
- .. code-block:: c++
- addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
- addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
- addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
- You should examine the node types in the ``ISD`` namespace
- (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
- the target natively supports. For operations that do **not** have native
- support, add a callback to the constructor for the ``XXXTargetLowering`` class,
- so the instruction selection process knows what to do. The ``TargetLowering``
- class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
- * ``setOperationAction`` --- General operation.
- * ``setLoadExtAction`` --- Load with extension.
- * ``setTruncStoreAction`` --- Truncating store.
- * ``setIndexedLoadAction`` --- Indexed load.
- * ``setIndexedStoreAction`` --- Indexed store.
- * ``setConvertAction`` --- Type conversion.
- * ``setCondCodeAction`` --- Support for a given condition code.
- Note: on older releases, ``setLoadXAction`` is used instead of
- ``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not
- be supported. Examine your release to see what methods are specifically
- supported.
- These callbacks are used to determine that an operation does or does not work
- with a specified type (or types). And in all cases, the third parameter is a
- ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
- ``Legal``. ``SparcISelLowering.cpp`` contains examples of all four
- ``LegalAction`` values.
- Promote
- ^^^^^^^
- For an operation without native support for a given type, the specified type
- may be promoted to a larger type that is supported. For example, SPARC does
- not support a sign-extending load for Boolean values (``i1`` type), so in
- ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
- ``i1`` type values to a large type before loading.
- .. code-block:: c++
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- Expand
- ^^^^^^
- For a type without native support, a value may need to be broken down further,
- rather than promoted. For an operation without native support, a combination
- of other operations may be used to similar effect. In SPARC, the
- floating-point sine and cosine trig operations are supported by expansion to
- other operations, as indicated by the third parameter, ``Expand``, to
- ``setOperationAction``:
- .. code-block:: c++
- setOperationAction(ISD::FSIN, MVT::f32, Expand);
- setOperationAction(ISD::FCOS, MVT::f32, Expand);
- Custom
- ^^^^^^
- For some operations, simple type promotion or operation expansion may be
- insufficient. In some cases, a special intrinsic function must be implemented.
- For example, a constant value may require special treatment, or an operation
- may require spilling and restoring registers in the stack and working with
- register allocators.
- As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
- from a floating point value to a signed integer, first the
- ``setOperationAction`` should be called with ``Custom`` as the third parameter:
- .. code-block:: c++
- setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
- In the ``LowerOperation`` method, for each ``Custom`` operation, a case
- statement should be added to indicate what function to call. In the following
- code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
- .. code-block:: c++
- SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
- switch (Op.getOpcode()) {
- case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
- ...
- }
- }
- Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
- convert the floating-point value to an integer.
- .. code-block:: c++
- static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
- assert(Op.getValueType() == MVT::i32);
- Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
- return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
- }
- Legal
- ^^^^^
- The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
- **is** natively supported. ``Legal`` represents the default condition, so it
- is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
- operation to count the bits set in an integer) is natively supported only for
- SPARC v9. The following code enables the ``Expand`` conversion technique for
- non-v9 SPARC implementations.
- .. code-block:: c++
- setOperationAction(ISD::CTPOP, MVT::i32, Expand);
- ...
- if (TM.getSubtarget<SparcSubtarget>().isV9())
- setOperationAction(ISD::CTPOP, MVT::i32, Legal);
- Calling Conventions
- -------------------
- To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
- interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
- ``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor
- file ``XXXGenCallingConv.td`` and generate the header file
- ``XXXGenCallingConv.inc``, which is typically included in
- ``XXXISelLowering.cpp``. You can use the interfaces in
- ``TargetCallingConv.td`` to specify:
- * The order of parameter allocation.
- * Where parameters and return values are placed (that is, on the stack or in
- registers).
- * Which registers may be used.
- * Whether the caller or callee unwinds the stack.
- The following example demonstrates the use of the ``CCIfType`` and
- ``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is,
- if the current argument is of type ``f32`` or ``f64``), then the action is
- performed. In this case, the ``CCAssignToReg`` action assigns the argument
- value to the first available register: either ``R0`` or ``R1``.
- .. code-block:: text
- CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
- ``SparcCallingConv.td`` contains definitions for a target-specific return-value
- calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
- (``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates
- which registers are used for specified scalar return types. A single-precision
- float is returned to register ``F0``, and a double-precision float goes to
- register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``.
- .. code-block:: text
- def RetCC_Sparc32 : CallingConv<[
- CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
- CCIfType<[f32], CCAssignToReg<[F0]>>,
- CCIfType<[f64], CCAssignToReg<[D0]>>
- ]>;
- The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
- ``CCAssignToStack``, which assigns the value to a stack slot with the specified
- size and alignment. In the example below, the first parameter, 4, indicates
- the size of the slot, and the second parameter, also 4, indicates the stack
- alignment along 4-byte units. (Special cases: if size is zero, then the ABI
- size is used; if alignment is zero, then the ABI alignment is used.)
- .. code-block:: text
- def CC_Sparc32 : CallingConv<[
- // All arguments get passed in integer registers if there is space.
- CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
- CCAssignToStack<4, 4>
- ]>;
- ``CCDelegateTo`` is another commonly used interface, which tries to find a
- specified sub-calling convention, and, if a match is found, it is invoked. In
- the following example (in ``X86CallingConv.td``), the definition of
- ``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is
- assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
- invoked.
- .. code-block:: text
- def RetCC_X86_32_C : CallingConv<[
- CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
- CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
- CCDelegateTo<RetCC_X86Common>
- ]>;
- ``CCIfCC`` is an interface that attempts to match the given name to the current
- calling convention. If the name identifies the current calling convention,
- then a specified action is invoked. In the following example (in
- ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
- ``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in
- use, then ``RetCC_X86_32_SSE`` is invoked.
- .. code-block:: text
- def RetCC_X86_32 : CallingConv<[
- CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
- CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
- CCDelegateTo<RetCC_X86_32_C>
- ]>;
- Other calling convention interfaces include:
- * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
- * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
- attribute, then apply the action.
- * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
- attribute, then apply the action.
- * ``CCIfNotVarArg <action>`` --- If the current function does not take a
- variable number of arguments, apply the action.
- * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
- ``CCAssignToReg``, but with a shadow list of registers.
- * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
- minimum specified size and alignment.
- * ``CCPromoteToType <type>`` --- Promote the current value to the specified
- type.
- * ``CallingConv <[actions]>`` --- Define each calling convention that is
- supported.
- Assembly Printer
- ================
- During the code emission stage, the code generator may utilize an LLVM pass to
- produce assembly output. To do this, you want to implement the code for a
- printer that converts LLVM IR to a GAS-format assembly language for your target
- machine, using the following steps:
- * Define all the assembly strings for your target, adding them to the
- instructions defined in the ``XXXInstrInfo.td`` file. (See
- :ref:`instruction-set`.) TableGen will produce an output file
- (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
- method for the ``XXXAsmPrinter`` class.
- * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
- the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
- * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
- ``TargetAsmInfo`` properties and sometimes new implementations for methods.
- * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
- performs the LLVM-to-assembly conversion.
- The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
- ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly,
- ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
- replacement values that override the default values in ``TargetAsmInfo.cpp``.
- For example in ``SparcTargetAsmInfo.cpp``:
- .. code-block:: c++
- SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
- Data16bitsDirective = "\t.half\t";
- Data32bitsDirective = "\t.word\t";
- Data64bitsDirective = 0; // .xword is only supported by V9.
- ZeroDirective = "\t.skip\t";
- CommentString = "!";
- ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
- }
- The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
- where the target specific ``TargetAsmInfo`` class uses an overridden methods:
- ``ExpandInlineAsm``.
- A target-specific implementation of ``AsmPrinter`` is written in
- ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
- the LLVM to printable assembly. The implementation must include the following
- headers that have declarations for the ``AsmPrinter`` and
- ``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of
- ``FunctionPass``.
- .. code-block:: c++
- #include "llvm/CodeGen/AsmPrinter.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
- up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is
- instantiated to process variable names.
- In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
- ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In
- ``MachineFunctionPass``, the ``runOnFunction`` method invokes
- ``runOnMachineFunction``. Target-specific implementations of
- ``runOnMachineFunction`` differ, but generally do the following to process each
- machine function:
- * Call ``SetupMachineFunction`` to perform initialization.
- * Call ``EmitConstantPool`` to print out (to the output stream) constants which
- have been spilled to memory.
- * Call ``EmitJumpTableInfo`` to print out jump tables used by the current
- function.
- * Print out the label for the current function.
- * Print out the code for the function, including basic block labels and the
- assembly for the instruction (using ``printInstruction``)
- The ``XXXAsmPrinter`` implementation must also include the code generated by
- TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in
- ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
- method that may call these methods:
- * ``printOperand``
- * ``printMemOperand``
- * ``printCCOperand`` (for conditional statements)
- * ``printDataDirective``
- * ``printDeclare``
- * ``printImplicitDef``
- * ``printInlineAsm``
- The implementations of ``printDeclare``, ``printImplicitDef``,
- ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
- adequate for printing assembly and do not need to be overridden.
- The ``printOperand`` method is implemented with a long ``switch``/``case``
- statement for the type of operand: register, immediate, basic block, external
- symbol, global address, constant pool index, or jump table index. For an
- instruction with a memory address operand, the ``printMemOperand`` method
- should be implemented to generate the proper output. Similarly,
- ``printCCOperand`` should be used to print a conditional operand.
- ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
- called to shut down the assembly printer. During ``doFinalization``, global
- variables and constants are printed to output.
- Subtarget Support
- =================
- Subtarget support is used to inform the code generation process of instruction
- set variations for a given chip set. For example, the LLVM SPARC
- implementation provided covers three major versions of the SPARC microprocessor
- architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
- 64-bit architecture), and the UltraSPARC architecture. V8 has 16
- double-precision floating-point registers that are also usable as either 32
- single-precision or 8 quad-precision registers. V8 is also purely big-endian.
- V9 has 32 double-precision floating-point registers that are also usable as 16
- quad-precision registers, but cannot be used as single-precision registers.
- The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
- extensions.
- If subtarget support is needed, you should implement a target-specific
- ``XXXSubtarget`` class for your architecture. This class should process the
- command-line options ``-mcpu=`` and ``-mattr=``.
- TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
- generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the
- ``SubtargetFeature`` interface is defined. The first 4 string parameters of
- the ``SubtargetFeature`` interface are a feature name, an attribute set by the
- feature, the value of the attribute, and a description of the feature. (The
- fifth parameter is a list of features whose presence is implied, and its
- default value is an empty array.)
- .. code-block:: text
- class SubtargetFeature<string n, string a, string v, string d,
- list<SubtargetFeature> i = []> {
- string Name = n;
- string Attribute = a;
- string Value = v;
- string Desc = d;
- list<SubtargetFeature> Implies = i;
- }
- In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
- following features.
- .. code-block:: text
- def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
- "Enable SPARC-V9 instructions">;
- def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
- "V8DeprecatedInsts", "true",
- "Enable deprecated V8 instructions in V9 mode">;
- def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
- "Enable UltraSPARC Visual Instruction Set extensions">;
- Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
- define particular SPARC processor subtypes that may have the previously
- described features.
- .. code-block:: text
- class Proc<string Name, list<SubtargetFeature> Features>
- : Processor<Name, NoItineraries, Features>;
- def : Proc<"generic", []>;
- def : Proc<"v8", []>;
- def : Proc<"supersparc", []>;
- def : Proc<"sparclite", []>;
- def : Proc<"f934", []>;
- def : Proc<"hypersparc", []>;
- def : Proc<"sparclite86x", []>;
- def : Proc<"sparclet", []>;
- def : Proc<"tsc701", []>;
- def : Proc<"v9", [FeatureV9]>;
- def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>;
- def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>;
- def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
- From ``Target.td`` and ``Sparc.td`` files, the resulting
- ``SparcGenSubtarget.inc`` specifies enum values to identify the features,
- arrays of constants to represent the CPU features and CPU subtypes, and the
- ``ParseSubtargetFeatures`` method that parses the features string that sets
- specified subtarget options. The generated ``SparcGenSubtarget.inc`` file
- should be included in the ``SparcSubtarget.cpp``. The target-specific
- implementation of the ``XXXSubtarget`` method should follow this pseudocode:
- .. code-block:: c++
- XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
- // Set the default features
- // Determine default and user specified characteristics of the CPU
- // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
- // Perform any additional operations
- }
- JIT Support
- ===========
- The implementation of a target machine optionally includes a Just-In-Time (JIT)
- code generator that emits machine code and auxiliary structures as binary
- output that can be written directly to memory. To do this, implement JIT code
- generation by performing the following steps:
- * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
- that transforms target-machine instructions into relocatable machine
- code.
- * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
- target-specific code-generation activities, such as emitting machine code and
- stubs.
- * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
- through its ``getJITInfo`` method.
- There are several different approaches to writing the JIT support code. For
- instance, TableGen and target descriptor files may be used for creating a JIT
- code generator, but are not mandatory. For the Alpha and PowerPC target
- machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
- contains the binary coding of machine instructions and the
- ``getBinaryCodeForInstr`` method to access those codes. Other JIT
- implementations do not.
- Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
- ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
- ``MachineCodeEmitter`` class containing code for several callback functions
- that write data (in bytes, words, strings, etc.) to the output stream.
- Machine Code Emitter
- --------------------
- In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
- implemented as a function pass (subclass of ``MachineFunctionPass``). The
- target-specific implementation of ``runOnMachineFunction`` (invoked by
- ``runOnFunction`` in ``MachineFunctionPass``) iterates through the
- ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
- emit binary code. ``emitInstruction`` is largely implemented with case
- statements on the instruction types defined in ``XXXInstrInfo.h``. For
- example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
- around the following ``switch``/``case`` statements:
- .. code-block:: c++
- switch (Desc->TSFlags & X86::FormMask) {
- case X86II::Pseudo: // for not yet implemented instructions
- ... // or pseudo-instructions
- break;
- case X86II::RawFrm: // for instructions with a fixed opcode value
- ...
- break;
- case X86II::AddRegFrm: // for instructions that have one register operand
- ... // added to their opcode
- break;
- case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
- ... // to specify a destination (register)
- break;
- case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
- ... // to specify a destination (memory)
- break;
- case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
- ... // to specify a source (register)
- break;
- case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
- ... // to specify a source (memory)
- break;
- case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
- case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
- case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
- case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
- ...
- break;
- case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
- case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
- case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
- case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
- ...
- break;
- case X86II::MRMInitReg: // for instructions whose source and
- ... // destination are the same register
- break;
- }
- The implementations of these case statements often first emit the opcode and
- then get the operand(s). Then depending upon the operand, helper methods may
- be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``,
- for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
- the opcode added to the register operand. Then an object representing the
- machine operand, ``MO1``, is extracted. The helper methods such as
- ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
- ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
- (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
- ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
- and ``emitJumpTableAddress`` that emit the data into the output stream.)
- .. code-block:: c++
- case X86II::AddRegFrm:
- MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
- if (CurOp != NumOps) {
- const MachineOperand &MO1 = MI.getOperand(CurOp++);
- unsigned Size = X86InstrInfo::sizeOfImm(Desc);
- if (MO1.isImmediate())
- emitConstant(MO1.getImm(), Size);
- else {
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV64ri)
- rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
- if (MO1.isGlobalAddress()) {
- bool NeedStub = isa<Function>(MO1.getGlobal());
- bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
- emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
- NeedStub, isLazy);
- } else if (MO1.isExternalSymbol())
- emitExternalSymbolAddress(MO1.getSymbolName(), rt);
- else if (MO1.isConstantPoolIndex())
- emitConstPoolAddress(MO1.getIndex(), rt);
- else if (MO1.isJumpTableIndex())
- emitJumpTableAddress(MO1.getIndex(), rt);
- }
- }
- break;
- In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
- is a ``RelocationType`` enum that may be used to relocate addresses (for
- example, a global address with a PIC base offset). The ``RelocationType`` enum
- for that target is defined in the short target-specific ``XXXRelocations.h``
- file. The ``RelocationType`` is used by the ``relocate`` method defined in
- ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
- For example, ``X86Relocations.h`` specifies the following relocation types for
- the X86 addresses. In all four cases, the relocated value is added to the
- value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
- there is an additional initial adjustment.
- .. code-block:: c++
- enum RelocationType {
- reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
- reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
- reloc_absolute_word = 2, // absolute relocation; no additional adjustment
- reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
- };
- Target JIT Info
- ---------------
- ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
- code-generation activities, such as emitting machine code and stubs. At
- minimum, a target-specific version of ``XXXJITInfo`` implements the following:
- * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
- function that is used for compilation.
- * ``emitFunctionStub`` --- Returns a native function with a specified address
- for a callback function.
- * ``relocate`` --- Changes the addresses of referenced globals, based on
- relocation types.
- * Callback function that are wrappers to a function stub that is used when the
- real target is not initially known.
- ``getLazyResolverFunction`` is generally trivial to implement. It makes the
- incoming parameter as the global ``JITCompilerFunction`` and returns the
- callback function that will be used a function wrapper. For the Alpha target
- (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
- simply:
- .. code-block:: c++
- TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
- JITCompilerFn F) {
- JITCompilerFunction = F;
- return AlphaCompilationCallback;
- }
- For the X86 target, the ``getLazyResolverFunction`` implementation is a little
- more complicated, because it returns a different callback function for
- processors with SSE instructions and XMM registers.
- The callback function initially saves and later restores the callee register
- values, incoming arguments, and frame and return address. The callback
- function needs low-level access to the registers or stack, so it is typically
- implemented with assembler.
|